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Simple Summary: Mutations in the isocitrate dehydrogenases 1 and 2 are causal in the development
and progression of high-grade chondrosarcoma, high-grade glioma and intrahepatic cholangiocarci-
noma. Due to the lack of effective treatment options, these aggressive types of cancer have a dismal
outcome. Since hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy
and platinum-based chemotherapy, we introduce hyperthermia as the cornerstone of a multimodality
treatment regimen for patients with IDH1MUT solid cancer. These regimens include (I) hyperthermia
added to conventional treatment with radiation and/or chemotherapy such as cisplatin and (II)
hyperthermia in combination with PARP inhibitors.

Abstract: Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of
malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and
>80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these
types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG).
Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination
and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine
5′-diphosphate–ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-
damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of
DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 ◦C for
1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma
cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival,
cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that
hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks
and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This
vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the
PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in
combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious
sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible,
such as IDH1MUT chondrosarcoma of the extremities.
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1. Introduction

Mutations in the isocitrate dehydrogenase 1 gene are driving events in the develop-
ment and progression of various types of cancer, including glioma, chondrosarcoma, cholan-
giocarcinoma and acute myeloid leukemia (AML) [1–3]. IDH1 is a homodimeric enzyme
(IDH1WT) that catalyzes the conversion of isocitrate to α-ketoglutarate (αKG) with con-
comitant reduction of NADP+ to NADPH in the cytoplasm [1]. The heterozygous hotspot
mutations in IDH1 lead to the formation of IDH1WT/MUT heterodimers (IDH1MUT) with a
neomorphic IDH activity that converts αKG into the oncometabolite D-2-hydroxyglutarate
(D-2HG) [4]. This activity induces a decrease in intracellular reducing power (NADPH)
and an accumulation of D-2HG in IDH1MUT cancer cells (Figure 1), resulting in improved
responses to irradiation and chemotherapy in solid tumors [1,5].
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Figure 1. Schematic representation of the activity of an IDH1WT/MUT heterodimer. The WT allele
of the heterodimer produces αKG and NADPH, which are used by the mutated allele to produce
D-2HG and NADP. The reduced NADPH production capacity leads to insufficient detoxification of,
e.g., ROS, during irradiation and/or chemotherapy, whereas D-2HG inhibits homologous recombina-
tion, which causes increased therapeutic sensitivity.

Accumulation of D-2HG has been implicated in tumor progression through its in-
hibitory effects on αKG-dependent dioxygenases, which cause suppression of the homolo-
gous recombination repair system of DNA double-strand breaks (Figure 1) [6]. The absence
of a proper functioning homologous recombination system leads to an increase in double-
strand breaks and programmed cell death [7]. Homologous recombination deficiency also
sensitizes IDH1MUT cancer cells to DNA-repair-inhibiting agents such as poly-(adenosine
5′-diphosphate–ribose) polymerase inhibitors (PARPi); the PARP inhibition causes reduced
repair of both double-strand breaks by homologous recombination deficiency and single-
strand breaks (Figure 2) [8]. Recent reports demonstrated sensitivity of IDH1MUT cancer
cells to DNA damage and sensitization to PARPi in clinically relevant models, including
patient-derived glioma and sarcoma cell lines as well as in vivo models [6,8–12].

Hyperthermia is an anti-cancer therapeutic strategy in which the tumor temperature is
elevated to 40–43 ◦C for approximately 1 h. Hyperthermia has multiple anti-cancer effects,
such as enhancing immune responses, inducing heat shock proteins and interfering with
DNA metabolism [13–15]. When combined with other therapies, such as radiotherapy
(RT) and chemotherapy, hyperthermia increases treatment responses in several types of
cancer [16,17]. One of the important effects of hyperthermia is heat-induced degradation of
proteins involved in DNA repair, which results in a deficient homologous recombination
repair system and increased DNA damage [13,16]. Second, the accumulation of reactive
oxygen species (ROS) and inhibition of antioxidant mechanisms caused by hyperthermia
increase oxidative stress in cells [18,19]. Third, blood flow and tissue perfusion increase
significantly due to hyperthermia, which improves tumor oxygenation and thereby the sen-
sitivity of (initially hypoxic) cancer cells to RT, since well-oxygenated cancer cells are more
sensitive to RT [20]. The hyperthermia-induced deficiency in homologous recombination
DNA repair provided a strong rationale for adding PARP inhibition to the combination
treatment of HT and RT and/or chemotherapy [21–23]. Hyperthermia-induced sensitivity



Cancers 2022, 14, 6228 3 of 12

of IDH1MUT cancer cells is likely mediated by at least two components causing cell death:
first, the altered metabolism and relatively low reducing power (NADPH) of IDH1MUT can-
cer cells [20] and, second, the reduced effectiveness of DNA repair systems. Dysfunctional
homologous recombination repair systems and altered oxidative stress responses caused by
altered metabolism explain the susceptibility of IDH1MUT cancer cells to the combinational
treatment with hyperthermia and PARPis.
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Figure 2. Schematic representation of the effect of hyperthermia and PARPi on the lethality of
IDH1MUT cancer cells. Accumulation of D-2HG has inhibitory effects on αKG-dependent di-
oxygenases, which causes suppression of the homologous recombination repair system of double-
strand breaks. Instead of monotreatment with PARPi, combination treatment with hyperthermia
targeting the defect homologous recombination system in IDH1MUT cancer cells leads to an increase
in double-strand breaks and programmed cell death.

The first goal of the present study was to provide in vitro evidence of the effect of
hyperthermia as an emulsifier in the treatment of patients with IDH1MUT cancers, either in
addition to conventional cytotoxic treatments (RT and/or chemotherapy) or in combination
with conventional cytotoxic treatments and PARPis. This multimodality approach, which
utilizes hyperthermia and PARPis of IDH1MUT solid tumors, may provide a novel, therapeu-
tic strategy for IDH1MUT solid cancers that could locally disable homologous recombination
and single-strand breaks repair, thereby sensitizing cancer cells to DNA-damaging agents
and increasing cell death (Figure 2).

2. Materials and Methods
2.1. Cell Culture

HCT116 IDH1MUT knock-in colon carcinoma cells (IDH1MUT HCT116 cells), gen-
erated by AAV-targeting technology GENESIS [24], were kindly provided by Horizon
Discovery (Cambridge, United Kingdom). Hyperthermia1080 chondrosarcoma cells were
gifted by Dr. Hamann (Department of Experimental Immunology, Amsterdam UMC, loca-
tion AMC). IDH1MUT and IDH1WT HCT116 cells were cultured in McCoy’s 5A medium
(Gibco; Life Technologies; Thermo Fisher Scientific, Waltham, MA, USA) in 5% CO2 at
37 ◦C. Hyperthermia 1080 chondrosarcoma cells were cultured in 10% CO2 at 37 ◦C in
complete DMEM (Gibco). All media were supplemented with 10% fetal bovine serum
(HyClone; Thermo Fisher Scientific), 100 units/mL penicillin and 100 mg/mL streptomycin
(both Gibco).
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2.2. Reagents

The IDH1MUT inhibitor AGI-5198 was purchased from MedChemExpress (Monmouth
Junction, NJ, USA), D-2HG, oligomycin, olaparib, antimycin A, rotenone, carbonyl-cyanide-
(trifluoromethoxy)phenylhydrazone (FCCP), L-glutamine and sodium pyruvate were pur-
chased from MilliporeSigma (Burlington, MA, USA) and Sigma-Aldrich (St. Louis, MO,
USA), and cisplatin was purchased from Pharmachemie B.V. (Haarlem, The Netherlands).

2.3. Cell Survival Analyses

Colony-forming assays evaluating cell survival were performed and analyzed as
described previously [25]. From 5 to 500 cells/cm2 were seeded; higher cell densities
were used with increasing treatment doses to obtain sufficient numbers of colonies. Prior
to radiation exposure at doses of 0, 2 and 4 Gy (137Cs at a dose rate of approximately
0.5 Gy/min, at room temperature; Laboratory of Experimental Oncology and Radiobiology,
Amsterdam UMC, location AMC), and exposure to cisplatin (0, 2.5 and 5 µM for 48 h),
hyperthermia (42 ◦C for 1 h) and/or olaparib (10 µM for 48 h), cells were pretreated for
72 h with D-2HG, for 14 days with AGI-5198 or with solvent only (DMSO, 0.5%). Cells
were treated for 1 h at 42 ◦C with hyperthermia in a thermostatically controlled water bath
(Lauda aqualine AL12, Beun de Ronde, Abcoude, The Netherlands). Temperature was
checked in parallel dishes, and the preferred temperature (±0.1 ◦C) was reached in circa
5 min with an air atmosphere of 5% CO2/95% and an air inflow of 2 L/min. Cells were
treated with cisplatin 4 h after plating in the presence of 0–1 µM AGI-5198 or 0–10 mM
D-2HG. After 10 days of treatment, a 0.05% crystal violet (Merck, Darmstadt, Germany)
and 6% glutaraldehyde (Merck) mixture was used for fixation of cells for 2 h at room temp.
Cell colonies were manually counted using a stereoscope (Leica MZ6; Leica Microsystems,
Mannheim, Germany). As described previously, clones consisting of at least 50 cells were
included and expressed as the clonogenic fraction; this is the number of colonies counted
divided by the number of cells plated, corrected for the plating efficiency [26].

2.4. Cell Cycle Analyses

Cell cycle distribution was analyzed using the Click-iT® EdU Imaging Kit (Invitrogen,
Waltham, MA, USA), which allows for direct measurement of DNA synthesis. The thymi-
dine analogue 5-ethynyl-2′deoxiuridine (EdU) was incorporated into S-phase cells and, as it
had an Alexa FluorTM 647 picolyl azide attached, the fluorescence levels of individual cells
reflected the cell cycle phase in which they were arrested. Cells (500,000 cells/mL) were
plated in 6-well plates before treatment with hyperthermia (1 h at 42 ◦C). Subsequently,
16 h after treatment, 10 µM EdU was added for 1 h. Then, cells were harvested and fixed as
suggested by the manufacturer’s protocol. Finally, the Click-it Plus reaction cocktail was
added for 30 min (500 µL of phosphate-buffered saline (PBS), 10 µL of copper protectant,
2.5 µL of Alexa FluorTM 647 picolyl azide and 50 µL of Click-itTM EdU buffer per plate).
Cells were washed as suggested, and directly measured using a flow cytometer (BD FACS
Canto II, 633/635 nm excitation filter; BD Biosciences, Franklin Lakes, NJ, USA).

2.5. γ-H2AX Immunofluorescence Staining and Quantification

Cells were plated on coverslips coated with 0.01% poly-D-lysine (Merck) 24 h prior to
treatment. Different treatment combinations were used: cisplatin (5 mM for 24 h) alone or
in combination with hyperthermia (42 ◦C for 1 h) 24 h prior to fixation, RT (1 Gy) and/or
hyperthermia (42 ◦C for 1 h) for 30 min before fixation with 2% paraformaldehyde (Merck).
After washing with PBS and permeabilization with TNBS (1% FCS + 0.1% Triton X-100
in PBS; MilliporeSigma) for 30 min, cells were incubated with a monoclonal mouse anti-
γ-H2AX primary antibody (dilution 1:100 in TNBS) for 60 min. Next, the samples were
washed with PBS and incubated for 30 min with a goat anti-mouse-Cy3 secondary anti-
body (dilution 1:100 in TNBS). After washing, DAPI-mounting gel (Vector Laboratories,
Newark, CA, USA) was added and coverslips were sealed with nail polish. Directly af-
terwards, samples were imaged using a wide-field fluorescence microscope (Leica DM6
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FS fixed-stage fluorescence microscope) [7]. The number of γ-H2AX foci per cell was
analyzed as described previously [7]. Moreover, Cy3 and DAPI signals were captured
using excitation/emission wavelengths of 550/570 nm for 400 ms and 360/460 nm for
50 ms, respectively. Stack images of at least 50 cells per sample were prepared. A custom-made
software program was used to automatically score the number of γ-H2AX foci per cell.

2.6. Statistical Analysis

Data were processed and analyzed with Excel (Microsoft, Redmond, WA, USA) and
visualized using Prism (GraphPad, La Jolla, CA, USA). Two-side tests were used with an
α of 0.05. p values were calculated as described in figure legends; * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001.

3. Results

3.1. IDH1MUT Cancer Cells Are Sensitive to Hyperthermia and This Induces Higher Sensitivity to
RT and Chemotherapy

We first investigated the effect of hyperthermia as monotherapy using IDH1MUT and
IDH1WT HCT116 colon cancer cells by performing colony-forming assays. Hyperthermia
treatment alone caused a significantly higher reduction in the surviving fraction of 70%
in IDH1MUT cells compared to 40% in IDH1WT HCT116 cells (Figure 3A). In addition, we
evaluated the effect of hyperthermia in combined treatment with RT or chemotherapy on
IDH1MUT and IDH1WT HCT116 cells. The combined treatment with hyperthermia (42 ◦C
for 1 h) and RT using doses of 2 and 4 Gy increased the sensitivity of IDH1MUT HCT116
cells dose dependently when compared with IDH1WT HCT116 cells (Figure 3B). Combined
treatment of hyperthermia and RT (2 and 4 Gy) increased the sensitivity of IDH1WT HCT116
cancer cells by 51% and 85%, respectively, compared to hyperthermia treatment alone. In
IDH1MUT HCT116 cells, this combined treatment of hyperthermia and RT (2 and 4 Gy)
increased the sensitivity by 76% and 85% compared to hyperthermia treatment alone,
respectively. Compared to IDH1WT HCT116 cells, IDH1MUT HCT116 cells showed 60%
(2 Gy) and 50% (4 Gy) more sensitivity to combined treatment of hyperthermia and RT.
Hyperthermia is also known to improve the therapeutic effect of cisplatin [27,28], and since
IDH1MUT cancer cells are more sensitive to cisplatin, we investigated whether combining it
with hyperthermia increased this sensitivity. As shown in Figure 3C, the combined treat-
ment with hyperthermia and 2.5 or 5 µM cisplatin for 48 h increased sensitivity of IDH1MUT

HCT116 cells. Compared to IDH1WT HCT116 cells, combination treatment of hyperthermia
with 2.5 and 5 µM cisplatin showed a significant higher survival reduction of 65% and
93% in IDH1MUT HCT116 cells, respectively. To exclude cell cycle distribution variations
after hyperthermia treatment, we evaluated the effects of hyperthermia on the cell cycle
of IDH1MUT and IDH1WT cancer cells. As illustrated in Figure 4, IDH1MUT and IDH1WT

cancer cells responded similarly and went into cell cycle arrest (G2/M accumulation) after
1 h treatment with hyperthermia (42 ◦C), suggesting that the observed sensitivity after
hyperthermia treatment did not have different effects on the cell cycle in IDH1WT and
IDH1MUT cancer cells.

3.2. IDH1MUT Inhibitor Protects lDH1MUT Cancer Cells to Combination Treatment Induced
by Hyperthermia

IDH1MUT cancer cells are known to be sensitive to RT and cisplatin due to a decreased
NADPH production capacity and increased metabolic vulnerability [26,29]. To confirm the
causal relationship between IDH1MUT and increased sensitivity to combination treatment with
hyperthermia, we investigated whether the IDH1MUT inhibitor AGI-5198 protects IDH1MUT

cells against combination treatment with hyperthermia. We exposed IDH1MUT and IDH1WT

HCT116 cells to 1 µM AGI-5198 for 7 days before exposure to treatment with RT or cisplatin.
AGI-5198 did not affect the sensitivity of IDH1WT HCT116 cells, but it did reduce the sensitivity
of IDH1MUT HCT116 cells to combination treatment in a manner comparable to that of IDH1WT
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HCT116 cells (Figure 3D–G). These data show that AGI-5198 reduced IDH1MUT-induced
sensitivity to combination treatment of hyperthermia and RT or cisplatin.
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Figure 3. Clonogenic survival assays of HCT116 IDH1WT and IDH1MUT cells after combinations of
anti-cancer treatment. (A) Images of crystal-violet-stained colonies (top IDH1WT, bottom IDH1MUT

cells) at day 14 after hyperthermia (42 ◦C for 1 h) and survival assay. Clonogenic survival assay (B)
after combined RT (2 Gy and 4 Gy) and hyperthermia treatment of IDH1WT T and IDH1MUT HCT116
cells; (C) IDH1WT and IDH1MUT HCT116 cells after combined cisplatin (2.5–5 µM for 48 h) and
hyperthermia (42 ◦C for 1 h) treatment; (D) IDH1WT and IDH1MUT HCT116 cells after (pre)treatment
with AGI-5198 inhibitor in combination with RT and hyperthermia treatment; (E) IDH1WT and
IDH1MUT HCT116 cells after (pre)treatment with AGI-5198 inhibitor in combination with cisplatin
and hyperthermia treatment; (F) IDH1WT HCT116 cells after (pre)treatment with AGI-5198 inhibitor in
combination with RT and hyperthermia treatment; and (G) IDH1WT HCT116 cells after (pre)treatment
with AGI-5198 in combination with cisplatin and hyperthermia treatment. p values were determined
using one-way ANOVA to reveal the difference between cisplatin-treated or irradiation-treated and
untreated cells, using Tukey correction for multiple comparisons. Significance levels are shown by
* p < 0.05; ** p < 0.01; **** p < 0.0001.
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IDH1MUT

IDH1WT

Figure 4. Cell cycle distribution patterns. Cell cycle distribution graphs of untreated (control) and
hyperthermia treated IDH1WT cells and IDH1MUT HCT116 cells. IDH1MUT and IDH1WT HCT116
cancer cells responded similarly and went into cell cycle arrest (G2/M accumulation) after 1 h
treatment with hyperthermia (42 ◦C).

3.3. Increased Numbers of DNA Double-Strand Breaks in IDH1MUT Cancer Cells after
Combination Treatment

The accumulation of DNA strand breaks, particularly double-strand breaks, is an im-
portant mediator of RT- and cisplatin-induced cell death in replicating cells [30]. Therefore,
we investigated whether IDH1MUT cells are sensitive to hyperthermia combined with RT or
cisplatin due to a deficiency of the homologous recombination system leading to increased
numbers of DNA double-strand breaks after treatment. Data presented in Figure 5 show a
higher increase in the number of γ-H2AX foci in IDH1MUT compared with IDH1WT cells
following exposure to RT (1 Gy) or cisplatin (5 µM for 24 h) and hyperthermia.
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Figure 5. Double-strand breaks induced by hyperthermia, radiation (RT) and cisplatin in IDH1WT

and IDH1MUT cancer cells. (A) Representative images of γ-H2AX foci in untreated cells (control),
irradiated cells (1 Gy) and cells treated with cisplatin (5 µM for 24 h), with or without hyperthermia.
γ-H2AX was stained immunocytochemically (red) to demonstrate DNA double-strand breaks and
with DAPI (blue) to demonstrate DNA in nuclei. (B) Plots of γ-H2AX-positive foci per cell after
cisplatin, RT and hyperthermia exposure of IDH1WT and IDH1MUT HCT116 cells. Plots are visualized
with 95% confidence intervals and significance levels are shown by ** p < 0.01 and **** p < 0.0001.
p values were determined using one-way ANOVA to reveal the difference between treated and
untreated cells, using Tukey correction for multiple comparisons.
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3.4. lDH1MUT Cancer Cells Are Sensitive to PARPi and to Combination Treatment with RT

In addition to the combination of hyperthermia with RT and cisplatin, we investigated
whether the combination with a PARPi increased the sensitivity of IDH1MUT cancer cells.
First, sensitivity to 10 µM olaparib for 48 h was assessed to confirm the causal relationship
between IDH1MUT and increased sensitivity to PARPi (Figure 6A). We then examined the
combination treatment using olaparib and hyperthermia, which increased the sensitivity of
IDH1MUT HCT116 cancer cells compared to IDH1WT HCT116 cancer cells. Furthermore,
the response of IDH1MUT cancer cells to the combination of olaparib, RT and hyperthermia
was investigated. With the combination of the three modalities, a significant decrease
in the survival of IDH1MUT compared to IDH1WT cancer cells was observed (Figure 6B).
Reduced survival of IDH1MUT cancer cells after hyperthermia treatment was also found in
hyperthermia1080 chondrosarcoma cells with IDH1MUT (Figure 6C).
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treatments. p values were determined using one-way ANOVA to reveal the difference between
cisplatin-treated and -untreated cells, using Tukey correction for multiple comparisons. Significance
levels are shown by ** p < 0.01 and *** p < 0.001.

4. Discussion

Chondrosarcoma, glioma and intrahepatic cholangiocarcinoma are types of cancer
that often behave aggressively, often cannot be completely resected, tend to recur locally
and commonly cause death through local progression. Since IDH1MUT is causal in the
development and progression of these types of cancer, many efforts have been made to
discover specific vulnerabilities, especially in domains of metabolism and DNA damage
induction and repair [31]. This resulted in a better understanding of the sensitization
of cancer cells by IDH1MUT to conventional chemotherapy and RT, but also to targeted
agents, such as PARPis. In vitro and in vivo models demonstrated that IDH1MUT cancers
are sensitive to PARPis, and that this sensitivity to PARPis synergizes with temozolomide,
RT or cisplatin treatment in vitro [6,8–10]. Ongoing clinical trials have been set up to test the
effects of PARPis in IDH1MUT solid cancers (NCT03212274), PARPis in recurrent IDHMUT
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glioma (NCT03561870) and PARPis in combination with temozolomide in IDH1MUT glioma
(NCT03749187). A randomized phase 1/2 study of temozolomide in combination with the
PARPi veliparib showed no benefit in recurrent temozolomide-refractory glioblastoma, but
the IDH1MUT status was not considered in the enrollment criteria or subgroup analyses [32].
This phase 1/2 study indicates that strategies and designs of clinical trials may be improved
through a more profound understanding of the molecular mechanisms of these therapies.

Hyperthermia has been proven to be beneficial in the treatment of a number of cancer
types and is generally applied in combination with RT and/or chemotherapy [17,21–23,33–35].
To our knowledge, combined treatment with a PARPi and hyperthermia has not been exam-
ined in the specific setting of IDH1MUT tumors at either the experimental or clinical level. Our
multimodality treatment approach of combining PARPis with hyperthermia to standard RT
or cisplatin treatment is a novel strategy in IDH1MUT solid cancers that can locally disable
homologous recombination and sensitize cancer cells to DNA-damaging agents (Figure 7).
Furthermore, we are the first to show that combined hyperthermia and PARPi in vitro increase
the effectivity of RT and cisplatin treatment of IDH1MUT and IDH1WT cancer cells, with a
10-fold greater increase in IDH1MUT than IDH1WT cancer cells. We confirmed the causal
relationship between IDH1MUT and increased sensitivity to hyperthermia in combination with
RT or cisplatin by pretreating IDH1MUT cancer cells with an IDH1MUT inhibitor (AGI-5198).
IDH1MUT inhibition reversed the sensitivity and protected IDH1MUT cancer cells from the
combination treatment of hyperthermia with RT or cisplatin.
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Figure 7. Effect of hyperthermia and PARPi in IDH1MUT cancer cells. Hyperthermia-induced
sensitivity of IDH1MUT cancer cells is likely mediated by at least two components causing cell death:
first, the reduced effectiveness of DNA repair systems, and second the relatively low redox status
of IDH1MUT cancer cells. A dysfunctional homologues recombination repair system and altered
oxidative stress responses due to the altered metabolism explain the susceptibility of IDH1MUT cancer
cells to the combinational treatment with hyperthermia and/or PARPi.

Hyperthermia-induced sensitivity of IDH1MUT cancer cells to combination treatment
with PARPi is at least partly mediated by the reduced effectiveness of DNA repair systems
in IDH1MUT cancer cells. The relatively low redox status of IDH1MUT cancer cells may also
play a role. Hyperthermia is known to increase ROS levels and cause oxidative stress in
cancer cells [15,18]; it also inhibits mitochondrial antioxidant systems via mechanisms such
as reduced NADPH levels, which then contribute to increased intracellular ROS levels [18].
We and others have shown that the altered redox responses result in improved responses
to therapy in IDH1MUT cancers [26,36,37]. In the present study, we showed that IDH1MUT

cancer cells are more sensitive to hyperthermia than IDH1WT cancer cells, and we envisage
future research that will investigate hyperthermia-induced ROS formation and sensitivity
mechanisms in IDH1MUT cancer cells.

Another biological mechanism for hyperthermia that yields a strong enhancement of
the effect of RT is inhibition of DNA damage repair [38], which has an impact on clinical
results [39,40]. Locally applied hyperthermia also improves the effect of cisplatin [28] by
enhancing cytotoxicity in the tumor without changing systemic toxicity [41,42]. Addition
of hyperthermia to standard treatment regimens has shown favorable results for cervical
carcinoma, soft tissue sarcoma, melanoma, rectal cancer and recurrent breast carcinoma in
large randomized trials [17,33,35,43,44].
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5. Conclusions

Hyperthermia may be considered, in view of our preclinical data, as a cornerstone
of multimodality treatment regimes for patients with IDH1MUT solid cancer. Regimens
include (I) hyperthermia added to conventional treatment with RT and/or chemotherapy
such as cisplatin and (II) hyperthermia in combination with PARPis. This multimodality
treatment approach may be clinically achievable in certain settings, e.g., in case of an
irresectable IDH1MUT chondrosarcoma in an extremity and therefore deserves further study
in a clinical trial.
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D-2HG D-2-hydroxyglutarate
HT hyperthermia
DSB double-strand break
MUT mutation
IDH1 isocitrate dehydrogenase 1
αKG α-ketoglutarate
NAC N-acetyl cysteine
OCR oxygen consumption rate
OXPHOS oxidative phosphorylation
PARPi poly-(adenosine 5′-diphosphate–ribose) polymerase inhibitor
ROS reactive oxygen species
RT radiotherapy
SSB single-strand break
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