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Simple Summary: A review of the molecular and cellular features of the major cancer syndromes
associated with radiosensitivity revealed the importance of the ATM protein, either as an impaired
kinase in the nucleus or as a complex in the cytoplasm, with the mutated protein responsible for
the syndrome.

Abstract: There are a number of genetic syndromes associated with both high cancer risk and clinical
radiosensitivity. However, the link between these two notions remains unknown. Particularly, some
cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair.
How are the DNA sequence errors propagated and amplified to cause cell transformation? Con-
versely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint
control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor
suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control.
The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a
major actor of the response to ionizing radiation, may help in providing a unified explanation of the
link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may
ensure its own specific function but may also play additional biological role(s) as an ATM phospho-
rylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer
and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize
in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering
different categories of the cancer syndromes.

Keywords: cancer; genetic syndromes; radiosensitivity; ATM protein

1. Introduction
1.1. The Syndromes Combining Cancer Proneness and Radiosensitivity

To date, radiotherapy (RT) remains as one of the major tools for cancer treatment to
control and eradicate cancer cells. Radiation oncologists have to face a double challenge:
kill the tumor and spare the healthy tissues. After more than one century of anti-cancer RT,
a considerable amount of data has been accumulated to better understand the molecular
mechanisms underlying the cellular response of tumors and healthy tissues to ionizing
radiation (IR) but also to some chemotherapy agents that mimic IR [1–5]. Particularly, in
5 to 20% of RT-treated cancer cases, some adverse tissue reactions, ranging from radiation-
induced (RI) blushes without consequence to fatal reactions, can occur during or after RT,
which oblige clinicians to modify or stop the scheduled treatment [6–8]. The prediction and
prevention of such adverse reactions of exposed tissue, called radiosensitivity reactions or
radiotoxicities, is a big challenge in radiotherapy and in radiobiology [9]. Hence, cancer
proneness can be associated with a large spectrum of RI adverse reactions, therefore defining
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some “syndromes” that link both cancer proneness and radiosensitivity. These particular
syndromes raise the question of the interplay between the cellular transformation process
leading to cancer and an abnormal response to IR leading to tissue injuries [4,5].

1.2. Interplay between DNA Damage Repair and Signaling and Cell Cycle Checkpoint Arrests

While carcinogenesis and the cellular transformation process have been mainly associ-
ated with a lack of control of cell cycle checkpoint arrests enabling cellular proliferation,
radiosensitivity has been generally linked to dysfunctions in chromosomal and DNA dam-
age signaling and repair pathways [9–11]. However, such interplay between cancer and
radiosensitivity remains unclear. For example, some mutations of the LIG4 and XP genes
that cause cancer and radiosensitivity syndromes have been shown to directly impact DNA
damage signaling and repair but not on the cell cycle checkpoint arrest control. Conversely,
some mutations of the p53 or CHK2 genes that cause some other cancer and radiosensitivity
syndromes have been shown to directly impact the cell cycle checkpoint arrest controls but
not DNA damage signaling and repair [4,5]. Lastly, the mutations of NF1 or TSC genes,
whose biological function directly impacts DNA damage signaling and repair and cell cycle
checkpoint arrest controls, have been associated with cancer and radiosensitivity [12,13].
Hence, these examples reveal not only that the molecular bases of cancer proneness remain
to be more documented, but also their link with radiosensitivity is still poorly understood.

1.3. The ATM Protein as the Crossroads of Cancer and Radiosensitivity

IR generally causes three major types of DNA damage: base damage (BD), single-
strand breaks (SSB) and DNA double-strand breaks (DSB). Throughout the natural selection,
cells are equipped with various pathways to manage BD, SSB and DSB specifically [4,14].
Each type of DNA damage triggers a specific ordered succession of enzymatic steps,
frequently operating via a cascade of phosphorylations directed by upstream kinases: DNA
damage is firstly recognized several minutes post-stress, is repaired for a few hours, cell
cycle checkpoint arrests are activated some hours post-stress, and then cellular death is
triggered several hours thereafter together with the initiation of cell transformation or
aging processes (Figure 1) [15]. Any lack or impairment of the most upstream molecular
events occurring immediately after the DNA damage formation results in the most severe
biological effects and may condition the next molecular and cellular steps [15]. Such an
RI cascade of phosphorylations reveals that RI DNA damage formation, recognition and
repair occur systematically before cell cycle checkpoint arrests, suggesting that cells do not
arrest their cycle to repair their DNA damage since the great majority of them are already
recognized and/or repaired [10,16].

Among the RI DNA damage, DSB appears to be the key damage of cell lethality [17,18].
Among the kinases involved in both DSB signaling and repair and cell cycle checkpoint
arrest control, the ATM kinase is considered as a major actor of the response to IR, since it
phosphorylates numerous protein substrates belonging to the RI cascade of phosphoryla-
tions evoked above [15,19]. More recently, we have documented the role of the RI ATM
nucleoshuttling (RIANS) in the individual response to IR and showed that the RIANS
may serve as a reliable marker of radiosensitivity, whatever the nature and the dose of
IR [8,18,20]. Briefly, after exposure to IR, the cytoplasmic ATM dimers dissociate as ATM
monomers and diffuse in the nucleus. Once in the nucleus, ATM monomers phosphorylate
the X variant of the H2A histone protein (γH2AX), which triggers the recognition of the
RI DSB by the non-homologous end-joining (NHEJ) pathway, the most predominant DSB
signaling and repair pathway in humans [8,18,20]. However, the RIANS can be delayed
by the overexpression of some cytoplasmic substrates of ATM (called X-proteins). These
X-proteins hold SQ and TQ domains that are specifically phosphorylated by ATM after
exposure to IR [19]. The X-proteins sequestrate the RI ATM monomers, decrease their flux
in the nucleus and therefore affect the nuclear ATM kinase activity and the number of
DSB recognized by NHEJ [20–22]. Hence, an overexpression of cytoplasmic X-proteins
and a delayed RIANS may cause radiosensitivity because some DSB are not recognized
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or repaired, and cancer because of DSB non-recognized by NHEJ may be misrepaired [4].
In the RIANS model, the mutated protein responsible for each syndrome associated with
delayed RIANS may elicit two impaired functions: one in the nucleus or cytoplasm, as
a single mutated protein, and the other, as an overexpressed cytoplasmic ATM substrate.
These two impaired functions may explain impaired DSB signaling and repair defects on
one hand and lack of cell cycle checkpoint arrest on the other hand [20].
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Figure 1. Schematic view of the cascades of phosphorylations occurring in response to IR activated
by kinases that trigger DNA damage recognition, repair, cell cycle arrests and cellular death. Inspired
from [15].

The RIANS model has been validated in a subset of cancer and radiosensitivity syn-
dromes [8,13,23,24]. This review aims to better identify and understand the molecular
and cellular features of the major cancer syndromes associated with radiosensitivity by
successively examining the syndromes related to impairments of DNA damage signaling
and repair (category 1), impairments of cell cycle checkpoint arrest control (category 2),
and the other syndromes for which impairments of both DNA damage signaling and repair
and cell cycle checkpoint arrest control are not obvious (category 3) (Figure 2). For each
syndrome described, the potential role of the ATM kinase and the RIANS, the presence of
SQ/TQ domains potentially phosphorylated by ATM, and the cytoplasmic forms of the
mutated proteins will be discussed to provide a novel and unified mechanistic model for
both cancer susceptibility and radiosensitivity (Figure 2).
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mutations cause cancer and radiosensitivity syndromes. Three categories can be defined: syndromes
due to some impairments in DNA damage signaling and repair, some impairments in cell cycle
checkpoint control and to other impaired biological functions.

2. Diseases of DNA Damage Repair and Signaling
2.1. Mutations of the ATM and ATR Kinases

The phosphatidylinositol-3 (PI3) kinases are the components of a large family of
enzymes involved in various cellular functions such as cell proliferation, survival and
signaling of DNA damage, through their capacity to phosphorylate their substrates [25].
Among them, the ATM and ATR kinases are the two major actors [15,26,27].

The ATM mutations play a major role in DNA break recognition, repair and sig-
naling but also in the cell cycle checkpoint control. Homozygous ATM mutations cause
ataxia telangiectasia (AT), the human syndrome associated with the highest radiosensitiv-
ity [1,28,29]. AT was described for the first time by Syllaba and Hennen in 1926 and by
Madame Louis Bar in 1941 [30,31]. AT is characterized by cerebellar ataxia with severe
prognosis oculocutaneous telangiectasia, a deficient synthesis of immunoglobulins IgA,
IgE and IgG2 and a strong predisposition to certain cancers, notably leukemias and lym-
phomas [32–34]. AT is also associated with a spontaneous reorganization of chromosomes
(10% of metaphases elicit aberrations on chromosomes 7 and 14) [35]. In the United States
and Great Britain, the incidence of AT is estimated to be about 1/100,000 [36]. AT cell lines
are systematically characterized by hyper-radiosensitivity [28]. Other radiobiological fea-
tures of AT cells include numerous chromosomal aberrations, lack of control of the G1 cycle
and inhibition of DNA synthesis (called radio-resistant synthesis). No hypersensitivity
to UV has been observed in AT patients [32,37–40]. The ATM gene has been cloned and
sequenced in 1995 [29,41]. As evoked above, the ATM kinase preferentially phosphorylates
the SQ/TQ domains in response to IR [19]. Most of the homozygous ATM mutations lead
to complete inactivation of the protein [42]. For example, cells from AT patients either do
not show γH2AX foci or show a small number of tiny γH2AX foci, suggesting an absent or
impaired RIANS [18].
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About 15% of AT patients, with so-called variants, suffer from mutations that lead to a
less severe pathology, less marked clinical signs, and a life expectancy of 50–60 years (vs.
less than 30 years for “classical” AT patients). Such mutations do not concern the kinase
domain of ATM [43,44]. Heterozygous carriers (ATH) represent about 1% of the whole
population and elicit an increased risk of breast cancer [45], although this epidemiological
feature is still debated [46–48]. ATH cells may be not more radiosensitive than cells from
radioresistant, apparently healthy individuals, although such a hypothesis remains to be
confirmed [49–52]. Altogether, this short review shows that homozygous “classical” and
variant ATM mutations are associated with both impaired DNA damage signaling and
repair and a lack of cell cycle checkpoint control.

The ATR kinase also belongs to the PI3K family and elicits an ATM-like structure with
the same affinity for the SQ/TQ domains as ATM. However, ATR is activated by UV, SSB
and BD rather than IR and DSB, such as ATM [15,27,53]. ATR may be more essential than
ATM for cell viability since only punctual mutations of ATR have been observed: such ATR
mutations cause Seckel syndrome (or microcephalic primordial dwarfism (SCKL)) [54–56].
SCKL is associated with severe microcephaly, bird-headed dwarfism, growth and mental
retardation. However, literature data suggest that SCKL is not associated with a strong
radiosensitivity such as that observed in AT cells [56]. Regarding the susceptibility to
cancer, it seems that it is not a major feature of SCKL, although some cases of leukemias
have been reported [56]. Lastly, it has been shown that mutations of the pericentrin
PCNT gene cause a SCKL-like syndrome, suggesting a possible interaction between the
PCNT and ATR proteins. PCNT mutations have been associated with high cancer risk.
However, the level of radiosensitivity potentially associated with PCNT mutations needs
to be documented [57]. Hence, the literature data suggest that further investigations are
needed to better document that SCKL and SCKL-like syndromes can be considered as
cancer and radiosensitivity syndromes.

2.2. Non-Homologous End-Joining Diseases
2.2.1. Mutations of Ku and DNA-PKcs Genes

As said above, the non-homologous end-joining (NHEJ) pathway is the most predomi-
nant DSB repair pathway in G0/G1 mammalian cells [58,59]. Historically, as opposed to
homologous recombination (HR), another DSB repair pathway, the term “non-homologous”
has been added to “end-joining” to give “non-homologous end-joining” [16]. As explained
in another review, this term has produced confusion since the notion of strand homology
has no sense in the G0/G1 phase (what would “homologous” end-joining mean?) [4].

The end-joining consists in a ligation of both broken DNA ends. The Ku80 and Ku70
proteins bind to DNA to form the Ku heterodimer. The Ku heterodimer slides on DNA
and stops at the broken ends: a third protein, DNA-PKcs, is then recruited and the trimeric
complex, named DNA-PK, and acts as a serine-threonine kinase [60]. When activated as
kinases (generally after an oxidative stress), ATM and DNA-PK can phosphorylate certain
protein substrates such as γH2AX, which triggers the formation of nuclear γH2AX foci at
the DSB sites. As evoked above, the formation of nuclear γH2AX foci is considered as the
earliest recognition step of DSB managed by NHEJ [61,62]. After this step, ligase IV (LIG4)
and XRCC4 proteins are recruited at the DSB sites, and broken DNA ends are joined. This
is the ligation step [60]. The biological role of the DNA-PK components (Ku70, Ku80, DNA-
PKcs) is so crucial for cell viability that no human syndrome is caused by their mutations.
However, in rodents, some Ku and DNA-PKs mutants exist, and they are characterized by a
severe defect of DSB repair and hyper-radiosensitivity [63]. In humans, only the glial tumor
line MO59J shows a mutation of DNA-PKs [64,65], and only one patient has been identified
with a DNA-PK mutation that does not concern the kinase domain [66,67]. In some cases of
lupus erythematosus, an autoimmune disease, the expression of Ku proteins is generally
low. However, no systematic link between lupus and radiosensitivity has been established
yet, probably because the Ku protein is so abundant that a decreased expression does not
significantly affect its role in the response to IR [68]. Hence, considering their importance
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in cell viability, no cancer and radiosensitivity syndrome associated with mutations of
the early actors of NHEJ (namely the components of the DNA-PK complex) have been
described yet.

2.2.2. Mutations of the LIG4 and XRCC4 Genes

In 2003, from the case of a patient suffering from a lymphoma who succumbed to its
radio-chemotherapeutic treatment [69,70], O’Driscoll et al. have defined a human syndrome
associated with LIG4 mutations, characterized by high radiosensitivity, immunodeficiency,
strong pancytopenia, growth retardation and dysmorphic facial features [54]. To date, in
addition to this historical case, about forty cases of patients holding LIG4 mutations have
been described [71,72].

As evoked above, the XRCC4 protein forms a complex with LIG4. XRCC4 mutations
may cause microcephalic primordial dwarfism associated with cardiomyopathy but not
with immunodeficiency nor predisposition to any malignancy [73,74]. About 15 cases of
XRCC4 mutations have been reported in humans. The first was described in 2014 [75].

In the frame of the RIANS model, can the LIG4 and XRCC4 proteins serve as X-proteins?
The LIG4 and XRCC4 proteins hold seven and one SQ/TQ domain, respectively, but no
ATM phosphorylated form of these two proteins has been described yet. Some cytoplasmic
forms of LIG4 have been reported in response to specific viral infections [76] and the LIG4
protein has been shown to regulate the nuclear localization of XRCC4 [77,78], suggesting
that XRCC4 may potentially interact with ATM in the cytoplasm in the case of specific
mutations of LIG4. However, considering the limited number of LIG4 and XRCC4 patients,
further experiments are needed to verify such hypotheses.

2.2.3. Mutations of Art, XLF, 53BP1, RAG1 and RAG2 Genes

The Artemis protein, encoded by the Art/DCLRE1C gene, is a DNA exo/endonuclease
that acts with DNA-PK to prepare broken DNA ends for ligation [79,80]. Such a step
is important, not only for DSB repair via NHEJ but also for the V(D)J recombination
process, required for immunoglobulins production. The hypomorphic (homozygous or
compound heterozygous) mutations of Art cause Artemis syndrome, a human severe
combined immunodeficiency associated with a moderate radiosensitivity but a variable
predisposition to lymphoma [81–85]. With 10 SQ/TQ domains, the Artemis protein was
found to be a major ATM phosphorylation substrate in response to IR that may serve as a
regulator of the G2/M cell cycle checkpoint [86]. However, the subcellular localization of
the Artemis protein when mutated needs to be documented.

Another important but non-essential NHEJ protein, XLF/Cernunnos, has been identi-
fied. Similar to Artemis, XLF/Cernunnos also acts downstream DNA-PK [87–89]. Hypo-
morphic (homozygous or compound heterozygous) mutations of this gene cause Cernun-
nos syndrome that is associated with mental retardation, microcephaly, strong lymphope-
nia, and severe immunodeficiency [90]. XLF interacts with XRCC4-LIG4 complex, which
stimulates the LIG4 ligase activity by helping to align broken DNA ends. To date, only
five Cernunnos syndrome patients have been identified. Similar to Artemis, Cernunnos
syndrome is associated with moderate radiosensitivity and a variable predisposition to
lymphoma [87–90]. With four SQ/TQ domains, the XLF/Cernunnos protein was also
found to be an ATM phosphorylation substrate in response to IR [91]. The Akt kinase was
shown to phosphorylate XLF, which triggers its dissociation from the LIG4-XRCC4 complex
and its cytoplasmic relocalization [92]. Further investigations are needed to identify the
role of ATM in the cascade of phosphorylation between Akt, XLF, XRCC4 and LIG4.

The 53BP1 protein has been hypothesized to act as a NHEJ protein, although its role
is still poorly understood. The 53BP1 protein forms nuclear foci after irradiation, such
as many repair proteins cited in this review [93]. The absence of 53BP1 nuclear foci in a
patient who showed strong immunodeficiency, dysmorphic aspects, intellectual difficulties
and radiosensitivity comparable to Artemis syndrome has been reported. This case was at
the origin of the definition of the RIDDLE syndrome (radiosensitivity, immunodeficiency,
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dysmorphic features and learning difficulties). However, further investigations have
documented the molecular features of RIDDLE syndrome that appeared to be caused not
by mutations of 53BP1 but by mutations of the ubiquitin-ligase RNF168 [93–95]. Hence,
while loss of 53BP1 function has been observed in some tumors, no syndrome associated
with 53BP1 mutations has been defined yet [93–95].

Finally, in this list of syndromes associated with NHEJ impairments, Omenn syn-
drome (OS) was found to be caused by mutations of the RAG1 and RAG2 genes but also
by certain mutations of Artemis [96,97]. OS is a severe immunodeficiency syndrome as-
sociated with erythroderma, hepatocellular carcinoma, splenomegaly, lymphadenopathy,
and some alopecia. OS patients have a low or total absence of B lymphocytes. The few
radiobiological studies about OS suggest that the radiosensitivity of OS is similar to that
associated with Artemis and Cernunnos syndromes [98,99]. Phosphorylation of RAG1 or
RAG2 by ATM has been described [100] but the subcellular localization of the mutated
RAG1 and RAG2 proteins needs to be better documented before considering RAG proteins
as potential X-proteins.

2.2.4. NHEJ Impairments: Immunodeficiency Rather Than Radiosensitivity?

Unlike with the early actors of the NHEJ pathway, the mutations of the downstream
NHEJ actors such as Art, XLF, RAG1, RAG2 cause a moderate radiosensitivity rather than
hyper-radiosensitivity, probably because their functions are redundant during the NHEJ
process. When cancer proneness was also reported, all the proteins concerned were found
to be phosphorylation substrates of ATM. Since the NHEJ actors are required for a normal
V(D)J recombination process, unlike for DSB repair, the major clinical features of the NHEJ
impairments described above is severe immunodeficiency rather than severe radiosensitiv-
ity. Furthermore, considering the importance of the role of NHEJ actors in lymphocytes,
the NHEJ impairments are generally associated with a high risk of leukemia/lymphoma
rather than any other cancer type. Most of the mechanistic NHEJ models proposed in the
literature do not integrate ATM kinase, while this protein acts upstream the NHEJ actors
that serve as phosphorylation substrates, and ATM mutations lead to the lack of recognition
of a great majority of RI DSB [4,5,16].

3. Recombination Repair Diseases
3.1. Mutations of the RAD51 and RAD52 Genes

In general, recombination consists in replacing the damaged DNA sequence either
by the identical sequence of the homologous chromosome (homologous recombination,
HR) [101] or by a sequence taken randomly (illegitimate or non-homologous recombina-
tion, NHR), the most frequent ones being the AGCT (AluI) sequences [102–104]. While
a functional HR is required for meiosis and mitosis, and more generally, in proliferating
organisms (e.g., bacteria, yeasts), HR is nearly absent from quiescent cells [101]. Although
many studies suggest that the RAD51-RAD52 multimeric complex is essential for the
recognition of DSB by HR, the subsequent DNA strand exchange process is still poorly
understood. Similar to the Ku heterodimer, the RAD52 protein, as a multimeric ring, was
hypothesized to slide along the DNA and stop at the DSB sites. At the DSB sites, RAD51
may associate with RAD52, and its phosphorylation by tyrosine kinases may activate both
its nuclease function and its change of shape as a filament [101–104]. While the RecA
protein is considered as the human RAD51 homolog and is essential for the exchange of
DNA strands in bacteria, the RecA sequence is however much smaller than that of RAD51
and does not hold any endonuclease site such as RAD51 [105]. Furthermore, resolvases and
the complex process of DNA strand exchange (Holliday junctions) remain misunderstood
in humans [106]. As evoked for the upstream NHEJ proteins, the mutations of the upstream
HR actors lead to the absence of viability, and no corresponding human syndrome exists.
Lastly, yeast strains carrying Rad52 mutations are among the most hyper-radiosensitive
ones, confirming the importance of HR for proliferating organisms and the differences
existing between micro-organisms and mammalians [107].
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3.1.1. The Hyper-Recombination Process—At the Origin of Carcinogenesis?

Many proteins other than RAD51 and RAD52 are involved in the recombination pro-
cess and ensure the stability of the genome via multiprotein complexes. This is particularly
the case of scaffold proteins such as BRCA1, BRCA2, and FANC, whose mutations combine
cancer predisposition and lack of control of the cell cycle checkpoints (the consequences
of their mutations will be discussed in the next chapter). In addition, the mutations of
these proteins cause a lack of control of recombination (also called hyper-recombination).
The hyper-recombination process is responsible for the production of additional and mis-
repaired DNA breaks [108–110]. In other terms, hyper-recombination results in an accu-
mulation of errors and numerous spontaneous breaks, notably through the impairment
of nucleases function [108–110]. Hyper-recombination is a common feature of all the syn-
dromes associated with a high risk of cancer. In the frame of the model of carcinogenesis
proposed by Weinberg, hyper-recombination and the resulting gene mutations may serve
as the endogenous initiation step required for cell transformation and tumorigenesis [111].

3.1.2. Mutations of the RAD50-MRE11-NBS1 Complex

The RAD50, MRE11 and NBS1 proteins form a complex involved during the several
steps of DNA damage response from DNA damage recognition to assembly repair com-
plexes, and mutations of proteins constituting this complex are associated with neurological
syndromes with tumorigenic potential. Furthermore, the MRE11 endonuclease activity was
shown to strongly depend on the integrity of the RAD50-MRE11-NBS1 complex [112–114].

The mutations of NBS1 cause Nijmegen’s syndrome (NBS), first described in the
1980s [115]. NBS was long considered as a variant form of the AT syndrome, but with
a lower radiosensitivity [116,117]. Microcephaly, small stature, mental retardation, high
lymphoma susceptibility and immunodeficiency are the main clinical manifestations of
NBS [115]. NBS patients elicit neither ataxia nor telangiectasia [116]. NBS1-mutated cells
are characterized by chromosomal instability, and their radiosensitivity may be consid-
ered as hyper-radiosensitivity even if it is systematically lower than that observed in AT
cells [4,116–118]. NBS1-mutated cells show a lack of cycle arrest in G1 [116]. Two groups of
complementation V1 (Berlin syndrome) and V2 (Nijmegen’s syndrome) were described
with the same absence of cycle arrest in G1 [119,120]. However, some studies have reported
that there is only one NBS1 gene and that it is located on chromosome 8 [121–123]. The
NBS1 protein (also called nibrin) may serve as a phosphorylation substrate of ATM with
seven SQ/TQ domains [124]. As a scaffold for the RAD50-MRE11-NBS1 complex, in NBS
cells, the NBS1 protein is absent in NBS cells, and MRE11 and RAD50 are cytoplasmic,
suggesting that these two proteins may serve as X-proteins in the case of mutations of the
NBS1 gene [125] (see also below).

Mutations of MRE11 have been initially identified in three patients whose fibroblasts
have been found radiosensitive and deficient in DNA damage repair. The radiosensitivity
associated with mutations of MRE11 is lower than with NBS1 mutations [126]. Historically,
the first identified family with homozygous mutations of MRE11 showed similar clinical
features to AT but with less pronounced intensity. The associated syndrome has been
therefore called Ataxia–Telangiectasia-Like Disorder (ATLD) [126]. After identifying other
families, ATLD is now considered as a neurological syndrome with radiosensitivity compa-
rable to NBS but associated neither with immunodeficiency nor with high susceptibility to
cancer [127–129]. With seven SQ/TQ domains, MRE11 is a phosphorylated substrate of
ATM that is localized in both the cytoplasm and nucleus and provides nuclear foci after
exposure to IR in an ATM-dependent manner. We have shown that cancer syndromes are
generally associated with the formation of MRE11 foci early (some minutes) after irradia-
tion while aging syndromes are generally associated with the formation of late foci (24 h)
after irradiation [5].

Finally, the case of a patient showing a mutation of RAD50 has been described in
2009 with microcephaly, mental retardation, a bird face, and a small stature [130]. This
RAD50-mutated patient developed a malignant lymphoma at the age of 23 without se-
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vere immunodeficiency. The cells from this patient elicited radiosensitivity similar to
those observed with NBS. Such a syndrome has been called Nijmegen Breakage Syndrome
Like-Disorder (NBSLD) [130]. With seven SQ/TQ domains, the RAD50 protein is phos-
phorylated by ATM at Ser-635 that plays an important adaptor role in signaling for cell
cycle control and DNA repair [131,132]. However, in the cells from the single NBSLD case,
the MRE11 protein predominantly appeared cytoplasmic, and the RAD50 protein was
absent [130].

Altogether, this brief review about the mutations of the RAD50-MRE11-NBS1 complex
reveals that all the components of the complex are some ATM phosphorylation substrates,
and the mutation of one component may lead to the cytoplasmic localization of at least
one of the other components of the RAD50-MRE11-NBS1 and to at least the possibility of
sequestrating ATM and preventing rapid RIANS.

3.1.3. Mutations of the Nucleotide and Base Excision Repair Genes

The single-strand annealing (SSA) pathway has been defined only in vitro with very
specific sequences (short DNA sequences in which some reporter genes have been placed
very close (few hundred bases) to each other) [133,134]: in such a limited and specific
DNA sequence system, even a random phenomenon can lead to a faithful repair. Hence,
caution must be taken about any in vivo extrapolation of the SSA phenomenon since
coding sequences are generally much more spaced and the genome is much longer than the
sequences used for the investigations about SSA. Lastly, few proteins have been considered
specific to SSA, which relativizes again the existence of such a repair pathway in vivo,
especially in response to IR [4].

It has been shown that ligase III, PARP, XRCC1 are the major proteins involved in
the base excision resynthesis (BER) [135,136]. However, no genetic syndrome has been
associated with mutations of the BER proteins in humans. Such a situation is similar to
that discussed above with the Ku heterodimer and with the RAD51 and RAD52 proteins:
XRCC1, PARP, ligase III, and DNA polymerase β are proteins required for DNA damage
recognition (here BD recognition). They may be so abundant and essential for survival
that their mutations systematically lead to a loss of viability: the homozygous mutations
of these three genes are lethal at the embryonic state. However, the literature regularly
reports diseases associated with BER defects or impairments, but these are generally either
the syndromes already mentioned whose mutated genes are not directly involved in BER,
or else polymorphisms [136]. Lastly, PARP inhibitors are currently used in the treatments
of BRCA1/2-mutated tumors in which DNA breaks accumulate until cell killing [137].

Unlike SSA and BER, the nucleotide excision resynthesis (NER) pathway involves
many proteins acting from BD recognition to final DNA sequences polymerization, whose
mutations may cause human syndromes associated with cancer, radiosensitivity or even
photosensitivity. Particularly, the mutations of some XP genes involved in the transcription
factor II H (TFIIH) complex, essential for a functional NER, can cause xeroderma pigmen-
tosum syndrome (XP). XP is dispatched in several groups of complementation [138,139].
Some XP proteins are involved in the NER as endonucleases, helicases, or oriented poly-
merases. This is notably the case of XP-A to XP-G XP-G, whose mutations are linked to
photosensitivity, neurodegeneration and/or brain or skin cancer [139–141]. In addition,
some complementation groups such as XPD may be also associated with moderate ra-
diosensitivity, suggesting some role in DSB repair and signaling [23,142]. All the mutations
of XP-A to XP-G genes may cause misrepaired BD, SSB and/or DSB [4]. All the XP-A to
XP-G genes hold SQ/TQ domains and show cytoplasmic forms when mutated, suggesting
that ATM may phosphorylate and interact with them in the cytoplasm. For example, some
specific mutations of XPD were shown to sequestrate ATM in the cytoplasm after exposure
to IR and lead to cancer proneness and radiosensitivity [23].

Often necessary during or after the DNA strands exchange process, the RECQ helicases
are inextricably linked to the maintenance of genome integrity. The RECQ family contains
three proteins identified in humans, including WRN, BLM, RECQL4 [143,144]. Mutations
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of BLM, WRN and RECQL4 cause Bloom (BLM), Werner (WRN) and Rothmund–Thompson
(RTS) syndromes, respectively. The BLM, WRN and RECQL4 proteins show nuclease
domains, which support their involvement in hyper-recombination processes [145–147]. In
addition to growth disorders and accelerated aging, these three syndromes have in common
a strong predisposition to sarcoma. With regard to aging and predisposition to early
senescence, it can be hypothesized that an instable helicase–endonuclease complex would
be responsible of the generation of spontaneous breaks that may promote a senescence
phenomenon [145–147]. All these syndromes are associated with significant but moderate
radiosensitivity [1].

The WRN and BLM proteins hold SQ/TQ domains and have been shown to be phos-
phorylated by ATM [148,149]. The WRN and BLM cells show cytoplasmic forms [150,151].
With regard to RECQL4 cells, we recently pointed out the existence of the SQ/TQ domain,
the cytoplasmic forms of some mutated RECQL4 proteins, and the delay of RIANS.

4. Mutations of Mismatch Repair Genes

Human non-polyposis hereditary colon cancers (HNPCC) syndromes are often
grouped under the name of Lynch syndrome (LS), even though some physicians dis-
tinguish both [152–154]. HNPCC syndromes are caused by mutations of DNA mismatch
repair genes (MMR) [155]. MMR is a DNA damage repair and signaling pathway that
manages erroneous insertions or deletions of bases during DNA replication (S phase)
and recombination (mitosis) [156]. Such a pathway is therefore particularly active in pro-
liferating cells and tissues. By highlighting the biases raised by the extrapolation from
micro-organisms to mammalians evoked above, it is noteworthy that many MMR genes
found in yeasts do not exist in humans. Mutations of the MMR hMLH1, hMSH2, hMSH6
and hPMS2 genes are responsible for many forms of HNPCC [152–155]. HNPCC show a
high susceptibility to colon cancer but also to endometrial, ovarian, stomach, small intes-
tine, liver, upper urinary tract, brain, and skin cancers [153,157]. HNPCC are generally
characterized by chemosensitivity and moderate radiosensitivity. However, some cases of
severe radiosensitivity have been reported but always in the context of Turcot syndrome
(TS), a pathology often associated with the mutation of hMSH2 [158]. Intestinal pathologies
generally associated with mutations of the APC gene may also be associated with MMR
gene mutations: familial recto-colic polyposis and attenuated forms of familial recto-colic
polyposis, Gardner syndrome (GS) and Turcot syndrome [154,158]. The last two syndromes
are associated with other tumors such as osteomas, fibroids, lipomas and thyroid or adrenal
tumors for GS and central nervous system tumors for TS [154,158]. Although polyposis
is generally associated with mutations of the APC gene, mutations of hMSH2 can also
cause TS as mentioned above. Both GS and TS are associated with significant but moderate
radiosensitivity. However, the biological functions of the APC gene are still unknown,
but some studies have reported a role of APC in the regulation of mitosis microtubules,
which cannot explain the radiosensitivity observed in quiescent cells derived from these
syndromes [1,158].

The hMLH1, hMSH2, hMSH6, hPMS2 and APC proteins hold SQ/TQ domains, show
cytoplasmic localization when mutated and can interact with ATM [159,160].

5. Diseases of Cell Cycle Checkpoint Control
5.1. A Lack of Control of the Cell Cycle Checkpoint, Another Requirement for Carcinogenesis?

In the frame of the most current models of carcinogenesis, including the initia-
tion/promotion/progression model, one mutation in one cell or even one mutation in
several cells does not necessarily lead to cell transformation and cancer [111]. An amplifica-
tion of the number of cells holding mutations is therefore required to ensure the formation
of a pre-tumor. Such amplification may occur when the cell cycle checkpoints are impaired.
Let us review the major diseases of the cell cycle checkpoint control.
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5.2. Overgrowth Syndromes

The PI3K kinase is composed of an 85 kDa regulatory subunit and a 110 kDa catalytic
subunit. Among the numerous variants of these subunits, the p110α one, called PI3KCA,
has been shown to be involved in the control of cellular proliferation. Some somatic
mosaic mutations of the PI3KCA gene are associated with overgrowth syndromes called
PI3KCA-related overgrowth spectrum (PROS) syndromes [161–165]. Some cases of cancers
have been reported in the PROS patients [164,165]. All these syndromes are associated
with overgrowth malformations in skin, vasculature, bones or brain tissues due to somatic
mosaic heterozygous mutations leading to overactivity of the PI3K kinase [161–165]. ATM
and PI3K kinases have been shown to interact and activate in response to genotoxic
stress [161,166,167]. Recently, we have shown that PROS syndromes are associated with
radiosensitivity and radiosusceptibility: some mutations of the PI3KCA gene lead to the
over-expression of cytoplasmic forms that, as substrates of ATM, result in a delayed
RIANS [161].

Proteus syndrome, which does not belong to the PROS syndromes family, is charac-
terized by tissue overgrowth, and hyperplasia of multiple tissues may also be associated
with high susceptibility to the development of tumors. Proteus syndrome is caused by
somatic activating mutations of the AKT1 gene, which triggers activation of the PI3K-AKT
pathway [168]. The pleckstrin homology domain of AKT binds to the cellular membrane
via its affinity for PI molecules phosphorylated by PI3K, which stimulates cell proliferation
and invasiveness. Cytoplasmic ATM was found to be an upstream activator of AKT1, and
both proteins are involved in a common pathway with PI3K that promotes cell proliferation
when altered or hyperactivated [169,170].

The PTEN protein is a phosphatase responsible of the dephosphorylation of PI
molecules, which inhibits the PI3K-AKT signaling pathway described above [171,172].
In the case of PTEN mutations, the PI3K-AKT signaling pathway is activated, which stimu-
lates cell proliferation and invasiveness [171–175]. Inherited mutations of the PTEN gene
notably cause Cowden disease associated with a high risk of developing breast cancer [176].
The PTEN-mutated cells were found to be sensitive to radiation [177]. ATM is known to
phosphorylate PTEN in the cytoplasm, which triggers its translocation from the cytoplasm
to the nucleus in response to oxidative stress [178].

5.3. Mutations of the CHK1 and CHK2 Genes

Checkpoint kinases 1 and 2, namely CHK1 and CHK2, are serine/threonine kinases
that coordinate cell cycle response to genotoxic stress and are generally activated by the
phosphorylation of both ATM and ATR kinases [15,179,180]

CHK1 is particularly required for G2/M arrest in response to IR [15,180]. However,
while CHK1 gene overexpression (as its non-phosphorylated form) has been reported
in several tumor models, no germline CHK1 mutation has been detected in any cancer
syndrome. Conversely, heritable mutations within the CHK1 C-terminal regulatory domain
have been recently shown to cause female infertility in humans through the blockage of
oocytes in their first mitosis [180].

Unlike CHK1, CHK2 phosphorylated by ATM is required for ensuring G1 arrest in
response to IR [15,179]. Again, unlike CHK1, several CHK2 mutations have been observed in
different types of cancers, including prostate, colon, lung, thyroid and mainly breast cancers.
Hence, to date, CHK2 is considered as a tumor suppressor gene, a phosphorylation substrate
of ATM [181]. Overexpression and cytoplasmic localization of CHK2 was observed in a
large subset of tumors and are associated with genomic instability and high levels of DNA
damage [182,183].

5.4. Mutations of the BRCA1, BRCA2, FANC Genes

While the BRCA1 and BRCA2 proteins have almost the same acronyms, they do
not share identical sequences or domains [184]. The BRCA1 protein is a large protein
(220 kDa), and two major structural domains have been identified: a RING domain in its
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N-terminal region, and a tandem of two BRCT (BRCA1 C-terminal) domains [185,186].
This last domain is found in many proteins involved in DNA damage repair (e.g., LIG4)
and cell cycle checkpoint control (e.g., p53) [187]. Furthermore, BRCA1 holds 13 SQ and
3 TQ domains that are specifically phosphorylated by ATM and ATR kinases [19]. The
phosphorylation of BRCA1 by ATM in response to IR leads to the formation of nuclear
foci [188,189]. Except for the three identified domains, RING, BRCT and the SQ/TQ cluster,
no other functional sites such as kinase, ligase, nuclease, etc., have been identified in the
BRCA1 sequence [190]. The BRCA1 protein is localized both in the nucleus and cytoplasm
and acts as a scaffold protein for a multitude of ATM phosphorylation substrates [188,189].
Homozygous mutations of BRCA1 are not viable in humans. Heterozygous mutations
of BRCA1 lead to inherited breast cancer syndromes but are also seen in about 18% of
ovarian cancers and represent a significant factor of risk for other cancers such as prostate
cancers [191–194]. Mutations in the C-terminal BRCT domains of the BRCA1 protein result
in cytoplasmic mislocalization [195–197].

BRCA2 has a molecular weight of 384 kDa and is a protein larger than BRCA1. BRCA2
contains BRC domains different from the BRCT domains observed in the BRCA1 sequence.
Similar to BRCA1, the BRCA2 protein serves as a scaffold and has many protein partners,
including the ATM kinase [191]. Similar to BRCA1, homozygous mutations of BRCA2 do not
exist in humans since they cause lethality at the embryonic state. Heterozygous mutations
of BRCA2 are the cause of inherited ovarian cancers and male breast cancers [110,190,198].

The BRCA1 and BRCA2 proteins are essential for the action of RAD51 and RAD52
in active HR in the G2/M phase [189]. Interactions between BRCA1 and MRE11 have
also been described, reinforcing the hypothesis that BRCA1 may participate in both HR
and NHR processes [199,200]. Most BRCA1 and BRCA2 mutations confer a moderate
radiosensitivity in G1 comparable to that observed in the case of MRE11 mutations [201].
Some mutations of BRCA1 and BRCA2 are also associated with high chemosensitivities,
particularly to alkylating agents such as cis-platinum [201,202]. However, some studies
about the RI cascade of phosphorylations of ATM substrates show that BRCA1 and BRCA2
should be considered more as cell cycle checkpoint proteins than as DNA repair proteins
since the kinetics of RI phosphorylation of BRCA1/2 proteins are slower than the molecular
events involved in DNA damage recognition and repair [15].

The Fanconi anemia (FA) complementation group (FANC) gathers 14 FANC proteins
that are involved in post-replication repair and in cell cycle checkpoint control [203,204].
Most of them interact with BRCA1/2 proteins and ATM (FANCD2 and BRCA2 are the same
protein) [110,205]. Furthermore, such as the BRCA1/2 proteins, the FANC proteins have no
active domain for ensuring a specific enzymatic function. Mutations of the FANC proteins
cause Fanconi anemia (FA) syndrome that was first described by the Swiss pediatrician
Guido Fanconi in 1927 [206–208]. FA is one of the major hereditary syndromes of spinal
cord failure. It is often associated with congenital malformations (including microcephaly),
growth defects (small size), skin disorders (café-au-lait spots) and generally progresses to
aplasia or leukemia. The predisposition to FA-related cancer is not limited to lymphocytes,
but also extends to breast cancer. Rather characterized by their chemosensitivity, cells
from FA patients show low but significant radiosensitivity [206,209–211]. Although the
FANC proteins hold numerous SQ/TQ domains, the phosphorylation of FANC by ATM
has been described only for FANCD2/BRCA2 [191,209]. In addition, since nearly all the
FANC proteins show cytoplasmic forms, whether mutated or not, mutations of the FANC
gene may lead to a sequestration of ATM by FANC proteins. However, further experiments
are needed to confirm this hypothesis.

5.5. Mutations of the RB1 and P53 Genes

The pRB protein, a product of the RB1 gene, acts as a negative regulator of the cell cycle,
notably by blocking cells in G1 phase through its non-phosphorylated form. In proliferating
cells, the cyclin-dependent kinase complexes phosphorylate pRB, which liberates the E2F
transcription factor and favors the transition to S phase [212,213]. Heterozygous germline
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RB1 mutations cause retinoblastoma syndrome (RB), a rare pediatric disease associated
with tumors in retina cells [214–217]. The pRB protein is also a phosphorylation substrate of
the ATM kinase, and we have shown that skin fibroblasts from RB patients elicit moderate
but significant radiosensitivity associated with delayed RIANS caused by the cytoplasmic
overexpression of some mutated pRB proteins [24].

The p53 protein is the most documented of the human transcription actors and is
involved in the cell cycle checkpoint and in some specific cellular death pathways [218–220].
Again, from studies about the RI cascade of phosphorylations of ATM substrates, p53 cannot
be considered as a DNA damage repair protein since its activation appears later than the
DNA damage recognition and repair step [15]. Similar to the pRB and BRCA1/2 proteins,
p53 is phosphorylated by the ATM kinase in response to IR [15]. While homozygous
mutations of the p53 gene are lethal in the embryonic state, heterozygous mutations of p53
cause Li-Fraumeni syndrome (LFS), associated with predisposition to rhabdomyosarcoma,
but also to multiple cancers such as in muscles, breast, bones, and blood cancers [221,222].
Similarly to pRB, we have shown that skin fibroblasts from LFS patients elicit moderate
but significant radiosensitivity associated with delayed RIANS caused by the cytoplasmic
overexpression of some mutated p53 proteins [222].

6. Cancer Syndromes and the RI ATM Nucleoshuttling Model

Some cancer syndromes may be caused by mutations of genes whose protein products
are directly involved either in DNA repair and signaling or in cell cycle checkpoint control.
Such diseases therefore raise the question of the molecular mechanisms of carcinogenesis.
Let us review the molecular and clinical features of the major ones.

6.1. Mutations of the NF1, NF2, TSC1 and TSC2 Genes

The NF1 gene encodes for the neurofibromin 1 protein, a GTPase-activating protein
involved in neural development. Furthermore, neurofibromin was reported to modulate
the Ras-dependent oncogenic pathways, which may favor abnormal proliferation [223].
However, considering individual specificities, the NF1 gene cannot be considered as di-
rectly involved in cell cycle checkpoint control such as CHK1 or CHK2. The heterozygous
mutations of neurofibromin cause neurofibromatosis type 1 (NF1) syndrome associated
with benign tumors along the peripheral and optic nerves and malignant tumors such as
neurofibrosarcomas, astrocytomas, and rhabdomyosarcomas [224–228]. A study has shown
that the neurofibromin 1 protein was a substrate of ATM kinase and that cells from NF1
patients elicit a moderate but significant radiosensitivity associated with delayed RIANS
caused by the cytoplasmic overexpression of the mutated neurofibromin [13].

The NF2 gene encodes for the neurofibromin 2 protein (also called schwannomin or
moesin–ezrin–radixin (merlin) protein), which is a cytoskeletal protein. Neurofibromin
2 is considered as a scaffold protein linking transmembrane receptors, actors of cell ad-
hesion, small GTPases, mTOR- and PI3K/AKT-dependent pathways proteins [223,229].
Loss of function mutations or deletions in NF2 genes cause neurofibromatosis type 2 (NF2)
syndrome associated with a multiple-tumor-forming disease of the nervous system and
notably schwannomas, meningiomas and ependymomas [229,230]. Even if the clinical
consequences of the mutations of NF2 gene strongly suggest that it is a tumor suppressor
gene, the biological role of the merlin is not documented enough to consider it as directly
involved in DNA damage repair and signaling and/or in the cell cycle checkpoint con-
trol. Preliminary experiments in our lab reveal that fibroblasts from NF2 patients show
a moderate but significant radiosensitivity (N.F., personal communication). Although
the merlin protein holds one TQ domain, no ATM phosphorylation of the merlin protein
has been described yet. Conversely, the merlin protein was shown to be cytoplasmic in
G0/G1 and mitosis but nuclear in S phase, through the mediation of its phosphorylation by
AKT1 in serine 518, hence describing a cell-cycle-dependent nucleoshuttling [231]. Further
experiments are needed to examine whether ATM and merlin proteins interact in cytoplasm
in cells from NF2 patients.
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The TSC1 and TSC2 genes encode for the hamartin [232,233] and the tuberin [232,234]
proteins, respectively, that interact with a very large multiprotein complex called the
tuberous sclerosis complex (TSC). Both proteins are involved in the regulation of cell
growth control and the activity of the target of rapamycin (TOR) complex 1 (TORC1).
However, their direct role in cell proliferation remains to be more documented [235–239].
Heterozygous mutations of either of the two TSC1 and TSC2 genes cause the TSC syn-
drome [240,241]. TSC is associated with high incidence of angiofibroma, astrocytoma, renal
angiomyolipoma and lymphangioleiomyomatosis [232,242]. Recently, it was reported that
fibroblasts from TSC patients show a moderate but significant radiosensitivity and that TSC
and ATM dynamically interact in response to IR. In cells from TSC patients, hamartin was
found overexpressed in cytoplasm and complexed with ATM, therefore causing a delayed
RIANS [12].

6.2. Requirement of Both Impaired DNA Damage and Cell Cycle Checkpoints

Literature data and this review suggest that carcinogenesis and cell transformation
require both misrepaired DNA damage that generates DNA sequence errors and impaired
cell cycle checkpoint control that facilitates cell proliferation and therefore errors propa-
gation. These two steps are consistent with the hypothesis of initiation and promotion
steps proposed by several oncologists [111]. As evoked above, the cancer and radiosensi-
tivity syndromes described in this review may be therefore classified into three categories
(Figure 2):

Category 1: the cancer syndromes caused by mutations of genes directly involved
in DNA damage recognition, repair and signaling pathway. Considering the importance
of DNA damage recognition and repair in cell viability, these syndromes are generally
very rare (prevalence of about 1/100,000), recessive and caused by hypomorphic muta-
tions leading to a partial loss of the function of the gene. However, two subcategories
can be considered according to the importance of the mutated gene and the associated
radiosensitivity quantified by the cell survival at 2 Gy (SF2). Radiosensitivity can be either
extreme (10% < SF2 < 30%) such as LIG4 syndrome or moderate (30% < SF2 < 60%) such as
Artemis syndrome [4,5]. All these gene products are substrates of ATM and may localize
in cytoplasm when mutated. The gene mutations may explain misrepaired DNA damage.
However, how can the resulting sequence errors be propagated through impaired cell
cycle checkpoints?

Category 2: the cancer syndromes caused by mutations of the genes directly involved
in the cell cycle checkpoint control. These syndromes are more frequent than the first
category (prevalence is higher than 1/40,000), are generally dominant and are caused by
heterozygous mutations. One of the most representative examples of such syndromes is
Li-Fraumeni syndrome (heterozygous p53 mutations). Their associated radiosensitivity
is moderate but significant (30% < SF2 < 60%) [4,5]. Again, all these gene products are
substrates of ATM and may localize in the cytoplasm when mutated. The gene mutations
may explain the impairment of the cell cycle checkpoints that lead to the propagation
of errors. However, how can the misrepaired DNA damage be generated with such
gene mutations?

Category 3: the cancer syndromes caused by mutations of genes that are directly
involved either in DNA damage recognition, repair and signaling pathway or in the
cell cycle checkpoint control. The gene mutations that cause these syndromes may be
homozygous, heterozygous or de novo, which explains why their prevalence can be lower
than the syndromes from Category 2. One of the most representative examples of such
syndromes are the PROS syndromes. Their associated radiosensitivity is moderate but
significant (30% < SF2 < 60%) [4,5]. Again, all these gene products are substrates of ATM
and may localize in the cytoplasm when mutated [12,13]. How can the misrepaired DNA
damage be generated and propagated with such gene mutations?

Altogether, these categories raise the question of gene mutations that would lead to
two concomitant but distinct molecular and cellular consequences, one in DNA damage
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recognition and repair and the other in cell cycle checkpoint control. Throughout the RI
ATM nucleoshuttling (RIANS) model that is now very documented [20], let us propose a
mechanistic model to integrate these three categories of syndromes in a unique explanation.

6.3. The ATM Nucleoshuttling Model: A Possible Explanation for Carcinogenesis?

While the upstream action of the ATM protein in the predominant DNA damage
repair and signaling pathways, notably in NHEJ, suggests a nuclear sublocalization, some
authors have reported that ATM is also a cytoplasmic protein [22,243–245]. By analyzing
hundreds of fibroblast cell lines derived from cancer patients eliciting a large spectrum
of post-radiotherapy radiosensitivity, it appears that IR triggers a drastic change in the
subcellular localization of ATM. As evoked above, in quiescent cells, after exposure to IR,
the cytoplasmic ATM dimers dissociate as ATM monomers and diffuse in the nucleus. Once
in the nucleus, ATM monomers phosphorylate H2AX histone protein (γH2AX), which
triggers the activation of NHEJ [20–22]. However, in the nucleus, ATM monomers also
phosphorylate some other ATM substrates such as MRE11 (which limits the nuclease activ-
ity of the RAD50–MRE11–NBS1 complex evoked above) and CHK1 and CHK2 proteins
(which trigger cell cycle arrest in G2/M and G1, respectively) [15,20]. Nevertheless, in
cells that show moderate but significant radiosensitivity, RIANS is delayed by the overex-
pression of cytoplasmic substrates of ATM, which sequestrate the RI ATM monomers in
the cytoplasm. Such a model was confirmed by both immunoblots and proximity ligation
assays [20,21,246]. These ATM substrates, called X-proteins, are generally the proteins mu-
tated specifically in the syndrome considered [5,8,18,20,21] (Figure 3). Hence, the RIANS
model integrates the hypothesis that two distinct biological functions may be impaired as
discussed in Section 1.3. A mutation of an X-protein may lead to: (1) the impairment of its
intrinsic biological function as a single protein, and (2) the impairment of some biological
functions caused by the X-protein as a cytoplasmic ATM substrate.
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Figure 3. Schematic representation of the RIANS model in radioresistant cells. A rapid RIANS leads
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Hence, the RIANS model permits to revisit the three categories of cancer syndromes
defined above by providing a relevant unified model.

Category 1: Two subcategories can be considered. In the first one, mutations of
crucial genes directly involved in the DNA damage recognition, repair and signaling
that do not result in an embryonic state (such as ATM and LIG4 mutations) produce
a level of misrepaired DNA breaks and genomic instability that is so high that it also
produces mutations in some other genes involved in the cell cycle checkpoint control.
The spontaneous (p14; q11) chromosome exchanges currently observed in ATM-mutated
cells are a representative example of cytogenetic events that may concern more than one
gene [32,33,247]. In other terms, in this category of cancer syndromes, the initiation and
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promotion steps may occur concomitantly [4,18]. This is notably the case of ATM- and LIG4-
mutations (Figure 4A and Table 1). In the second subcategory, the mutations of less crucial
DNA damage recognition and repair genes may result in high cytoplasmic expression of the
gene products (as X-proteins). Such expression of X-proteins may lead to delayed RIANS,
which limits DSB recognition through incomplete γH2AX phosphorylation and G2/M
and G1 arrests through incomplete CHK1 and CHK2 phosphorylation. Hence, in this
subcategory, the mutated protein, as an impaired contributor of DNA damage recognition
and repair, favors errors formation, while the mutated protein, as an X-protein, delays
the RIANS, which favors their propagation via impaired phosphorylation of cell cycle
checkpoint control proteins. This is notably the case of some XPD mutations (Figure 4B,
Table 1).
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Figure 4. Schematic representation of the RIANS model in cells from Category 1 cancer syndromes.
(A) First subcategory: Mutated genes are crucial for DNA damage recognition and repair. In this
case, the genomic instability is so high that some spontaneous mutations may also affect cell cycle
checkpoint control. (B) Second subcategory: Mutated genes are involved in DNA damage recognition
and repair but are not crucial. The encoded proteins are X-proteins. The RIANS is delayed by the cy-
toplasmic overexpression of X-proteins, and few ATM monomers enter in the nucleus. Consequently,
CHK proteins are not phosphorylated, and therefore G1/G2 arrests are impaired.
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Table 1. Molecular and cellular features of the major syndromes associated with both cancer and individual radiosensitivity.

Cancer Syndrome
Category Gene Protein Involvement

in DNA Repair
Involvement in Cell

Cycle Checkpoint Syndrome Type of Cancer SF2 (%)

Category 1

ATM ATM X - Ataxia Telangiectasia Leukemia/Lymphoma 1–5

ATR ATR X - Seckel Syndrome Leukemia 40–50

LIG4 DNA Ligase 4 X - LIG4 syndrome Lymphoma 2–6

XRCC4 XRCC4 X - Microcephalic Primordial
Dwarfism - nd

Art/DCLRE1C Artemis X - Artemis Syndrome Lymphoma 30–50

XLF/Cernunnos XLF/Cernunnos X - Cernunnos Syndrome Lymphoma 30–50

RAG1 and RAG2 RAG1 and RAG2 X - Omenn Syndrome Hepatocarcinoma 30–50

NBS NBS1 X - Nijmegen Syndrome Lymphoma 5–9

MRE11 MRE11 X - Ataxia–Telangiectasia-Like
Disorder Diverse 15–30

RAD50 RAD50 X - Nijmegen Breakage
Syndrome-Like Disorder Lymphoma 15

XPA to XPG XP-A to XP-G X - Xeroderma Pigmentosum Brain and/or skin 15–30

BLM/RECQL2 BLM X - Bloom Syndrome Sarcoma 15–40

WRN/RECQL3 WRN X - Werner Syndrome Sarcoma 20–55

RTS/RECQL4 RTS X - Rothmund-Thompson Sarcoma 30–50

MMR
(hMLH1, hMSH2,
hMSH6, hPMS2)

MMR
(MLH1, MSH2, MSH6,

PMS2)
X -

Human Non-Polyposis
Hereditary Colon Cancers

Syndrome or Lynch Syndrome

Colon, endometrial, ovarian,
stomach, small intestine, liver, upper

urinary tract, brain,
and skin cancers

30–50

hMSH2 MSH2 X - Turcot Syndrome Brain
and colon 21–30

APC APC X - Gardner Syndrome and Turcot
Syndrome

Diverse for Gardner
and CNS tumors for Turcot 18–30
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Table 1. Cont.

Cancer Syndrome
Category Gene Protein Involvement

in DNA Repair
Involvement in Cell

Cycle Checkpoint Syndrome Type of Cancer SF2 (%)

Category 2

PI3KCA PI3K - X PROS Syndromes Skin, vasculature,
bones, brain 35–40

AKT1 AKT - X Proteus Syndrome Diverse nd

PTEN PTEN - X Cowden Disease Breast cancer nd

CHK2 CHK2 - X - Prostate, colon,
lung, thyroid, and breast cancer nd

BRCA1 BRCA1 - X Inherited Breast Cancer, Ovarian
Cancer

Inherited breast cancer, ovarian
cancer 30–50

BRCA2 BRCA2 - X
Inherited Ovarian Cancer

and
Male Breast Cancer

Inherited ovarian cancer
and

male breast cancer
20–40

FANC FANC - X Fanconi Anemia Leukemia
and breast cancer 15–40

RB1 pRB - X Retinoblastoma Syndrome Retina cancer 25–35

p53 p53 - X Li-Fraumeni Diverse 20–50

Category 3

NF1 NF1
(neurofibromin 1) - - Neurofibromatosis type 1

Syndrome

Benign optic nerve tumor and
neurofibrosarcomas, astrocytoma

and rhabdomyosarcoma
15–35

NF2 NF2 (schwannomin or
merlin protein) - - Neurofibromatosis type 2

Syndrome
Nervous system and schwannomas,

meningiomas and ependymomas 12–30

TSC1 Hamartin protein - - TSC Syndrome
Angiofibromas, astrocytomas, renal
angiomyolipomas and pulmonary

lymphangioleimyomatosis
15–30

TSC2 Tuberin - - TSC Syndrome
Angiofibromas, astrocytomas, renal
angiomyolipomas and pulmonary

lymphangioleimyomatosis
nd

Nd: not determined.



Cancers 2022, 14, 6141 19 of 30

Category 2: Mutations of genes directly involved in the cell cycle checkpoint control are
generally heterozygous mutations and are associated with a high expression of cytoplasmic
forms of the protein. This is notably the case of PI3KCa [161], p53 [201,222], or pRB
proteins [24]. These abundant cytoplasmic X-proteins contribute to sequestrate the ATM
monomers and therefore lead to a decrease in the flux of ATM monomers entering in the
nucleus. Consequently, less DSB are recognized by NHEJ, and the number of misrepaired
DSB increases. Hence, in this category, the mutated protein, as an X-protein, delays the
RIANS, which favors error formation, while the mutated protein, as an impaired contributor
to cell cycle checkpoint control, favors their propagation (Figure 5A and Table 1).
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Figure 5. Schematic representation of the RIANS model in cells from Category 2 and 3 cancer
syndromes. (A). Category 2: Mutated genes are involved in cell cycle checkpoint control. The
encoded proteins are X-proteins. The RIANS is delayed by the high cytoplasmic expression of X-
proteins, and few ATM monomers enter into the nucleus. Consequently, few DSB are recognized by
NHEJ and therefore may be misrepaired. (B). Category 3: Mutated genes are directly involved either
in DNA damage recognition and repair or in the cell cycle checkpoint control. The encoded proteins
are X-proteins. The RIANS is therefore delayed by the cytoplasmic overexpression of X-proteins, and
few ATM monomers may enter into the nucleus. Consequently, few DSB are recognized by NHEJ and
therefore may be misrepaired. Furthermore, CHK proteins are not phosphorylated, and therefore,
G1/G2 arrests are impaired.

Category 3: Mutated genes that are directly involved either in DNA damage recog-
nition and repair or in the cell cycle checkpoint control may also be associated with high
cancer proneness if they are X-proteins. Their heterozygous mutations are responsible
for their high expression in the cytoplasm. Thus, as described above, the resulting se-
questration of RI ATM monomers contributes to reducing the flux of ATM monomers in
the nucleus, to decreasing the DSB recognition by NHEJ and to increasing the number of
misrepaired DSB. In addition, a delayed RIANS may also decrease the phosphorylation
of CHK1 and CHK2 by ATM in the nucleus, which may impair the G2 and G1 arrests,
respectively (Figure 5B, Table 1).

6.4. What Are the Limits of the Validity of the RIANS Model?

All the genes whose mutations that cause cancer and radiosensitivity syndromes
show SQ/TQ domains: they have been identified or considered as phosphorylation ATM
substrates and may present cytoplasmic forms, at least, when mutated, suggesting that
the RIANS model may unify the three categories of syndromes defined above. However,
the validity of our model should be discussed in three specific conditions of irradiation, at
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least: the influence of cell cycle, the effect of linear energy transfer (LET) and the influence
of low dose, which all may act in cancer proneness and radiosensitivity.

In the frame of the RIANS model, all the DNA damage is supposed to be induced in
the G0/G1 phase. In this specific cell cycle phase, the NHEJ repair pathway is predominant.
In these conditions, the propagation of errors is mostly conditioned to the impairment
of G1/S arrest to reach the G2/M phase. By contrast, the RIANS model is not relevant
for the G2/M cells since ATM nucleoshuttling does not exist in this phase. Hence, the
model proposed here may be completed with mechanisms describing the fate of the DNA
damage when induced during the G2/M phase. In this phase, the HR repair pathway
is predominant. More specifically, the role of HR to manage the DNA breaks generated
by IR in the G2/M phase should be integrated into the RIANS model together with the
HR/NHEJ balance that may be dependent on ATM but also on ATM substrates such as
MRE11 or BRCA1 [49].

LET is an important factor influencing both cancer induction and radiosensitivity. The
RIANS model has been shown to be relevant whatever the LET value. Particularly, the
spatial and density distribution of the energy depositions that occur after irradiation is
specific to each particle or rays. Notably, the spatial and density distribution of the energy
deposition conditions the level of oxidative stress that causes RI ATM monomerization in
the cytoplasm and RI DNA breaks in the nucleus. Hence, the ratio between the number of
ATM monomers and that of RI DSB directly depends on the LET value and therefore on the
corresponding clinical consequences [248]. However, further experiments are needed to
verify whether RI cancer risk and radiosensitivity observed clinically may be predicted by
in vitro experiments performed with RIANS biomarkers.

The fact that low doses of IR (namely lower than 0.5 Gy) may cause cancer is an
important question that has been debated for several decades [249]. The RIANS model
has been validated at low doses and provides a biological explanation for hormesis and
hypersensitivity to low doses phenomena [250,251]. Furthermore, the RIANS biomarkers
have already been validated with two scenarios of CT exams [252,253]. The ratio between
the number of ATM monomers and that of RI DSB evoked above with the LET is also an
important feature to predict the risk of low doses. For example, while the number of RI DSB
is directly proportional to the dose, the number of ATM monomers depends on the amount
of X-proteins present in the cytoplasm and therefore on the individual factor. Again, the
model of cancer proneness and radiosensitivity proposed in this review must be verified
and documented in different irradiation conditions involving low doses to better evaluate
the risk of RI cancer and toxicity for each of the genetic syndromes reviewed here.

7. Conclusions

This review aimed to survey the major cancer and radiosensitivity syndromes. One
of the first conclusions is that the proteins whose mutations are responsible for these
syndromes are all phosphorylation substrates of ATM and may present cytoplasmic forms
when mutated. The ATM kinase therefore appears at the crossroads of the molecular and
cellular bases of cancer proneness and radiosensitivity.

The impairment of the ATM-dependent DNA damage recognition, signaling and repair
may cause misrepaired DNA damage that may be either endogenous (e.g., spontaneous
DNA breaks) or exogenous (e.g., from the environment). Their formation can be considered
as an initiation step in carcinogenesis.

The impairment of the ATM-dependent cell cycle checkpoint control: impaired G2/M
and/or G1 arrests may contribute to the propagation of the errors described above. This
step can be considered as a promotion step in carcinogenesis.

While these two requirements involve two different functions that should be both
impaired, our review shows that the major cancer and radiosensitivity syndromes are
caused by one mutation in a single gene. In the frame of the RIANS model, a given protein
may ensure its own intrinsic function but may also play additional biological role(s) as
a cytoplasmic ATM substrate (called X-protein). Hence, whether spontaneously or after
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oxidative stress (such as exposure to IR), the flux of ATM monomers from the cytoplasm
to the nucleus may be delayed by X-proteins, which may cause impairments of both
recognition and repair of DSB via NHEJ and in cell cycle checkpoint control via a limited
phosphorylation of CHK1 and/or CHK2 proteins. Such a model appears relevant for the
three categories of the major cancer and radiosensitivity syndromes. However, further
experiments are needed to better document and consolidate such hypotheses, especially in
specific conditions of irradiation.
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