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Simple Summary: There is conflicting evidence on the impact of TP53 co-mutations on survival in
patients with EGFR-mutated advanced non-small cell lung cancer (aNSCLC). This observational
study used data from a de-identified database to assess the role of TP53 co-mutation on survival
in patients with EGFR-mutated aNSCLC (n = 356). We observed a significant decrease in survival
outcomes (namely real-world progression-free survival [rwPFS] and overall survival [OS]) duration in
the group of aNSCLC patients with presence of TP53 co-mutation compared to those with wild-type
TP53 tumors. TP53 co-mutations were also associated with worse outcomes by subgroups, including
type of EGFR-mutation and first-line treatment. Together, these findings indicated negative impact of
TP53 co-mutation in outcomes for patients with EGFR-mutated aNSCLC.

Abstract: TP53 co-mutations have shown association with poor prognosis in various solid tumors.
For EGFR-mutated advanced non-small cell lung cancer (aNSCLC), conflicting results exist regarding
its impact on survival. Clinical outcomes and genomic data were obtained retrospectively from the
real-world (rw) de-identified clinicogenomic database. Patients who initiated therapy for EGFR-
mutated aNSCLC between January 2014 and December 2020 were identified. Clinical outcomes were
evaluated by TP53-mutational status. In 356 eligible EGFR-mutated aNSCLC patients (median age 68
years), 210 (59.0%) had TP53 co-mutation and 146 (41.0%) had TP53 wild-type tumor. Unadjusted
analysis showed significantly shorter survival in patients with TP53 co-mutation versus TP53 wild-
type (rw progression-free survival [rwPFS]: HR = 1.4, 95% CI 1.1–1.9, p = 0.0196; overall survival
[OS]: HR = 1.6, 95% CI 1.1–2.2, p = 0.0088). Multivariable analysis confirmed independent association
between TP53 co-mutation and worse rwPFS (HR = 1.4, 95% CI 1.0–0.9, p = 0.0280) and OS (HR = 1.4,
95% CI 1.0–2.0, p = 0.0345). Directionally consistent findings were observed for response rates, and
subgroups by EGFR-activating mutation and first-line (1 L) therapy, with more pronounced negative
effect in 1 L EGFR-TKI subgroup. TP53 co-mutations negatively affected survival in patients with
EGFR-mutated aNSCLC receiving standard 1 L therapy in real-world practice.

Keywords: advanced non-small cell lung cancer; EGFR; EGFR-TKI; TP53; overall survival; progression-
free survival

1. Introduction

Epidermal growth factor receptor (EGFR) mutations are among the most common
oncogenic drivers in advanced or metastatic non-small cell lung cancer (aNSCLC) [1,2],
which continues to be the most common cause of cancer deaths in the world [3]. Most (~85%)
EGFR-activating mutations involve deletions in exon 19 (ex19del) or a substitution mutation
in exon 21, specifically Leu858Arg (ex21L858R) [4] and they are classical EGFR mutations [5].
The current NCCN guideline recommendation and standard of care for aNSCLC with an
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activating EGFR mutation is targeted therapy with EGFR-Tyrosine Kinase Inhibitors (EGFR-
TKIs) alone or in combination with antiangiogenics, ramucirumab or bevacizumab [4,6–9].
EGFR-TKIs are initially effective with progression-free survival ranging between 9 and 19
months [10–15]. However, resistance inevitably develops after initial benefit to EGFR-TKIs,
leading to treatment failure. A few mechanisms of primary or acquired resistance have
been identified, which include on-target EGFR-dependent mechanisms of resistance (e.g.,
exon 20 T790M and C797S mutations) and off-target EGFR-independent mechanisms (e.g.,
histologic transformation to small cell lung cancer, or acquisition of other driver alterations
such as MET, HER2, p53, or PI3KCA amplification) [16–25]. However, more investigation is
needed to understand and overcome resistance to EGFR-TKIs.

Various co-occurring genetic alterations in EGFR-mutated aNSCLC have been linked
to poorer outcomes compared with EGFR-mutated aNSCLC without co-occurring alter-
ations [26]. TP53, also known as the “guardian of the genome”, encodes the p53 transcrip-
tion factor and plays a pivotal role in controlling and maintaining the overall integrity and
stability of the genome [27]. It is the most frequently co-mutated gene in EGFR-mutated
aNSCLC (up to 72%) [28], and dysfunction of the p53 protein due to mutations contributes
to tumor development, progression, and metastasis [27]. Furthermore, the presence of mu-
tations that disrupt the normal function of p53 predisposes patients to primary or acquired
resistance to EGFR-TKI therapy [29].

Previous studies examining the impact of co-mutations in EGFR-mutated aNSCLC
treated with EGFR-TKIs demonstrated that the presence of TP53 co-mutation might be a
marker of poor prognosis [28,30–33]. However, other studies found no association between
the presence of TP53 co-mutations and clinical outcomes [34–38]. The conflicting results
were likely due to small cohort sizes, for example n = 37 in one study [34], or due to
differences in statistical analyses (e.g., univariate vs. multivariable analyses accounting
for known prognostic factors such as age, baseline metastases, and ECOG performance
status) [35]. In early disease stage lung cancers (stage I–III), the role of TP53 mutation is
more controversial [36,37]. To provide a further body of evidence by building on previ-
ous work [30–38], this study examined the impact of TP53 co-mutations on the treatment
outcomes in a cohort with EGFR-mutated aNSCLC using a nationally representative elec-
tronic medical records (EMR)-derived database linked with next-generation sequencing
data. Subgroup analyses are reported based on EGFR mutation subtype and EGFR-TKI
generation.

2. Materials and Methods
2.1. Study Design and Patients

This retrospective observational study used the nationwide de-identified Flatiron
Health Foundation Medicine (FH-FMI) aNSCLC clinicogenomic database to select adults
(≥18 years) with aNSCLC harboring an EGFR mutation, with or without the TP53 gene
mutation, who initiated first-line (1 L) therapy between January 2014 and September 2020
in routine clinical practice. The EGFR mutations included were the exon 19 deletions or the
exon 21L858R mutation, evaluated in comprehensive genomic profiling baitsets DX1, T7,
T5a, or T4b. The patient data originated from approximately 280 cancer clinics (~800 sites
of care). Patients with evidence of other primary tumors, other than non-melanoma skin
cancer, and those with no confirmed EMR activity within 90 days of aNSCLC diagnosis,
were excluded. Patients were followed from the date of initiation of 1 L therapy (index
date) until death, loss to follow-up, or end of the database (December 2020), whichever
occurred first. Eligible patients were divided into two groups based on the status of the
TP53 gene mutation: TP53 wild-type and TP53 mutant groups.

The development, structure, and validation of the linked, de-identified FH-FMI clin-
icogenomic database have been described previously [39]. Briefly, the database contains
retrospective longitudinal clinical data derived from EMR data, comprising patient-level
structured and unstructured data (e.g., demographics, tumor stage and histology, perfor-
mance status, tumor progression, death), curated via technology-enabled abstraction and
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linked to genomic data derived from FMI comprehensive genomic profiling (CGP) tests
(e.g., next generation sequencing) in the FH-FMI clinicogenomic database by de-identified,
deterministic matching. The clinicogenomic database included 12,726 patients with chart-
confirmed aNSCLC receiving care at Flatiron Health’s network of community (~75%) and
academic (~25%) oncology practices [40].

The study was exempt from institutional review board (IRB) approval because it
was a retrospective study and used de-identified data in compliance with the Health
Insurance Portability and Accountability Act. Approval from WCG IRB for data collection
for this real-world cohort was obtained prior to study conduct and included a waiver of
informed consent.

2.2. End Points

The main end point was real-world progression-free survival (rwPFS, the time until
the first documented tumor progression, death, or loss to follow-up), which was chosen
because it measures treatment effects without the cofounding influence of subsequent
therapies. Secondary end points included overall survival (OS, time until death or loss to
follow-up), real-world overall response rate (rwORR, documented complete response or
partial response), real-world disease control rate (rwDCR, documented complete response
or partial response or stable disease), and real-world duration of response (rwDoR: time
from initial tumor response to disease progression or death, whichever occurred first). Real-
world best overall response (rwBOR) was defined as best tumor response (from progressive
disease, stable disease, partial response, to complete response) during treatment. All end
points were indexed to the start of 1 L therapy unless otherwise noted.

2.3. Statistical Analysis

Baseline characteristics and time-to-event endpoints were analyzed and presented
for all eligible patients, whereas analysis of tumor response end points was restricted
to patients with post-baseline tumor response assessment data. Descriptive statistics,
including frequencies and percentages for categorical variables and median and range for
continuous variables, were used to summarize the demographic and clinical characteristics
as well as treatments received. Differences between groups were assessed using tests
appropriate for the distribution of each measure, including t-tests for continuous variables
and chi-squared tests for categorical variables. The Kaplan–Meier method was used to
estimate rwPFS and other time-to-event endpoints, along with median values and 95%
confidence intervals (CIs). The difference between groups for time-to-event endpoints was
assessed using the log-rank test.

To evaluate and identify the baseline characteristics potentially associated with out-
come in the dataset, hazard ratios (HRs) for time-to-event endpoints and odds ratios (ORs)
for response rates, along with the corresponding 95% CIs, were computed using univariate
Cox-proportional hazards and logistic regression models, respectively. Independent vari-
ables for the univariate models (including age, sex, smoking history, Eastern Cooperative
Oncology Group performance status [ECOG PS], presence of brain or bone metastases,
EGFR mutation type, and TP53 mutation status) were selected a priori as having a potential
prognostic impact in EGFR-mutated NSCLC based on the literature [41–47]. Any factor
found to be statistically significant for any endpoint, p < 0.05 in a univariate model, was
then included as a covariate in all final multivariable Cox and logistic regression models,
with one final multivariable model for each endpoint. The final multivariable models
were the primary basis for investigating the independent prognostic effect of the TP53
co-mutations. No data imputation was performed for missing values.

For rwPFS and rwDoR, patients who were alive and progression-free at the end of
the dataset (December 2020) were censored at the date of their last clinic visit. For patients
still alive at the end of the observation period, OS was censored at their last activity date
in the EMR. Subgroup analyses were performed to assess the effect of TP53 co-occurring
mutations in subsets with EGFR exon 19 deletions, EGFR exon 21L858R mutations, and
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those treated with EGFR-TKI monotherapy, first-, second-, and third-generation EGFR-
TKIs, and other non-EGFR-TKI therapy (including chemotherapy and immunotherapy).
All statistical tests were two-sided, with a p value < 0.05 considered statistically significant.
Statistical analyses were performed using SAS version 9.4 software (SAS Institute Inc., Cary,
NC, USA).

3. Results
3.1. Baseline Demographics and Clinical Characteristics

A total of 356 patients with EGFR-mutated aNSCLC were eligible for the study (Figure 1),
210 (59.0%) of whom had a TP53 co-mutation and 146 (41.0%) had TP53 wild-type tumors.
Baseline patient characteristics overall and by TP53 co-mutation status are summarized in
Table 1. Overall, the median age was 68 years (interquartile range [IQR] 60.5–76.1) and the
majority were white (60.4%) and female (68.5%) with stage IV disease (86.2%) at initial diagnosis,
no history of smoking (56.7%), and ECOG PS ≥ 1 (70.2%). The proportion of patients with
a TP53 co-mutation with exon 19 deletion or exon 21L858R mutation was 57.0% and 43.0%,
respectively. Distribution of baseline characteristics was generally similar by TP53 co-mutation
status, although patients with a TP53 co-mutation tended to be younger (<65 years: 43.3% vs.
31.5%) and white (62.3% vs. 57.5%).
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Table 1. Patient demographic and clinical characteristics.

Variable Overall
(n = 356)

TP53wt
(n = 146)

TP53mt
(n = 210)

Follow-up in months from 1 L start, mean (SD) 19.9 (15.8) 21.5 (17.5) 18.8 (14.4)
Age at adv. Dx, median (IQR) 68.0 (60.5–76.1) 69.6 (63.5–77.7) 66.7 (58.2–75.2)

Age group, n (%)
<65 years 137 (38.5) 46 (31.5) 91 (43.3)
65–74 years 115 (32.3) 51 (34.9) 64 (30.5)
75+ years 104 (29.2) 49 (33.6) 55 (26.2)

Sex, n (%)
Female 244 (68.5) 103 (70.5) 141 (67.1)
Male 112 (31.5) 43 (29.5) 69 (32.9)

Race, n (%)
Missing 26 (7.3) 9 (6.2) 17 (8.1)
Asian 41 (11.5) 22 (15.1) 19 (9.0)
Black or African American 15 (4.2) 5 (3.4) 10 (4.8)
Other Race 59 (16.6) 26 (17.8) 33 (15.7)
White 215 (60.4) 84 (57.5) 131 (62.4)

Smoking history, yes, n (%) 154 (43.3) 61 (41.8) 93 (44.3)

NSCLC stage at initial diagnosis, n (%)
I–II 20 (5.6) 11 (7.5) 9 (4.3)
III 29 (8.1) 11 (7.5) 18 (8.6)
IV 307 (86.2) 124 (84.9) 183 (87.1)

ECOG performance status, n (%)
0 107 (30.1) 43 (29.5) 64 (30.5)
1+ 145 (40.7) 59 (40.4) 86 (41.0)
Missing 104 (29.2) 44 (30.1) 60 (28.6)

EGFR mutation type, n (%)
Exon19 203 (57.0) 81 (55.5) 122 (58.1)
Exon21 153 (43.0) 65 (44.5) 88 (41.9)

Metastatic site, n (%)
Brain 77 (21.6) 28 (19.2) 49 (23.3)
Bone 97 (27.2) 34 (23.3) 63 (30.0)
Liver 14 (3.9) 8 (5.5) 6 (2.9)
Lung 51 (14.3) 17 (11.6) 34 (16.2)
Lymph Node 23 (6.5) 13 (8.9) 10 (4.8)
Adrenal 21 (5.9) 7 (4.8) 14 (6.7)
Other 5 (1.4) 3 (2.1) 2 (1.0)

Practice type, n (%)
Academic 41 (11.5) 18 (12.3) 23 (11.0)
Community 315 (88.5) 128 (87.7) 187 (89.0)

Adv. Dx = advanced diagnosis; ECOG = Eastern Cooperative Oncology Group; EGFR = epidermal growth factor
receptor; IQR = interquartile range; NSCLC = non-small cell lung cancer; SD = standard deviation; TP53 mt = TP53
co-mutation; TP53 wt = TP53 wild-type. Smoking history includes both current and past smokers. EGFR mutation
includes both exon 19 and exon 21 mutations.

3.2. Treatments Received

By inclusion criteria, all patients received 1 L systemic therapy (Table 2). However,
169 (47.5%) also received second-line (2 L) treatment during the observation period of the
study. Treatment patterns were generally similar between the TP53 co-mutation and TP53
wild-type groups (Table 2). Overall, the majority received targeted therapy with EGFR-TKI
monotherapy in 1 L (75.0%), with chemotherapy alone (10.0%) and a chemotherapy combi-
nation with immunotherapy (5.6%) as the next two common treatments administered in 1 L.
In 2 L, EGFR-TKI monotherapy (67.5%) was most received treatment, with chemotherapy
in combination with immunotherapy (7.3%), and chemotherapy alone (4.7%) as the second
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and third most common treatments administered in 2 L. Osimertinib was the most used
EGFR-TKI in both 1 L and 2 L (43.3% and 47.9%, respectively), followed by erlotinib (18.3%
and 8.9%), and afatinib (12.4% and 8.3%) (Supplementary Table S1).

Table 2. Treatment patterns in 1 L and 2 L—by drug class.

1 L 2 L

Drug Class Overall TP53wt TP53mt Drug Class Overall TP53wt TP53mt

n = 356 n = 146 n = 210 n = 169 n = 61 n = 108

EGFR-TKI monotherapy 267 (75.0) 107 (73.6) 160 (76.2) EGFR-TKI monotherapy 114 (67.5) 43 (70.5) 71 (70.3)

Chemotherapy alone 37 (10.0) 19 (13.1) 18 (8.6) Chemotherapy + Immune
Checkpoint Inhibitor 13 (7.3) 4 (6.6) 9 (7.4)

Chemotherapy +
Immune Checkpoint
Inhibitor

20 (5.6) 7 (4.3) 13 (6.2) Chemotherapy alone 8 (4.7) 2 (2.9) 6 (5.9)

Other 8 (2.5) 3 (2.1) 5 (2.4) Immune Checkpoint Inhibitor
monotherapy 7 (4.1) 5 (8.2) 2 (1.9)

Chemotherapy + VEGF
Inhibitor 8 (2.2) 3 (2.1) 5 (2.4)

EGFR-TKI + Chemotherapy +
Immune Checkpoint
Inhibitor

4 (2.4) 0 (0) 4 (3.9)

EGFR-TKI + VEGF
Inhibitor 6 (1.7) 2 (1.4) 4 (1.9) Other + Chemotherapy 3 (1.8) 2 (2.9) 1 (0.9)

EGFR-TKI + Chemotherapy 3 (0.9) 1 (0.7) 2 (0.9) EGFR-TKI + Immune
Checkpoint Inhibitor 3 (1.8) 0 (0) 3 (3.0)

Immune Checkpoint
Inhibitor monotherapy 3 (0.9) 2 (1.4) 1 (0.5) Chemotherapy + VEGF

Inhibitor 3 (1.7) 0 (0) 3 (2.8)

EGFR-TKI + Chemotherapy +
VEGF Inhibitor 1 (0.3) 0 (0) 1 (0.5) EGFR-TKI + Chemotherapy 2 (1.2) 2 (3.3) 0 (0)

EGFR-TKI + Chemotherapy +
Immune Checkpoint Inhibitor 1 (0.3) 1 (0.7) 0 (0) EGFR-TKI + Chemotherapy +

VEGF Inhibitor 2 (1.2) 0 (0) 2 (1.9)

EGFR-TKI + Immune
Checkpoint Inhibitor 1 (0.3) 0 (0) 1 (0.5) EGFR-TKI + VEGF Inhibitor 2 (1.2) 1 (1.64) 1 (0.9)

Other + EGFR-TKI 1 (0.3) 1 (0.7) 0 (0) Hormone receptor therapy 1 (0.6) 0 (0) 1 (0.9)
Immunosuppressant 1 (0.6) 0 (0) 1 (0.9)
Other + EGFR-TKI 1 (0.6) 0 (0) 1 (0.9)

All data are presented as n (%). EGFR-TKI = epidermal growth factor receptor-tyrosine kinase inhibitor;
Other = clinical study drug; TP53mt = TP53 co-mutation; TP53wt = TP53 wild-type; VEGF = vascular endothelial
growth factor. EGFR mutation includes both exon 19 and exon 21 mutations.

3.3. Survival End Points

Through December 2020, the mean (SD) follow-up for all eligible patients was 19.9
(15.8) months (median: 15.9 months [IQR, 8.3–26.7]). In the overall population, the median
rwPFS and median OS were 12.4 months (95% CI 10.6–14.1) and 28.7 months (95% CI
25.3–33.2) respectively. The rwPFS was significantly shorter in patients with TP53 co-
mutations than those with TP53 wild-type tumors (median rwPFS 10.6 vs. 14.6 months,
unadjusted HR = 1.4, 95% CI 1.1–1.9, p = 0.0196), as was OS (median OS 25.6 vs. 46.9
months, unadjusted HR = 1.6, 95% CI 1.1–2.2, p = 0.0088). One- and two-year survival
probabilities were consistently lower for patients with TP53 co-mutations (rwPFS: 47.0%
and 18.0%; OS: 77.0% and 56.0%) than those with TP53 wild-type tumors (rwPFS: 57.0%
and 27.0%; OS: 77.0% and 65.0%) (Figure 2A,B).

Based on univariate analysis, age ≥ 75 years, male sex, brain metastases, bone metas-
tases, ECOG PS ≥ 1, EGFR exon 21L858R mutation, smoking history, and the interaction
between the EGFR mutation subtype and TP53 co-mutation status were significantly associ-
ated with worse survival outcomes (rwPFS and OS, Table 3) in the overall population. After
adjustment for these factors in multivariable analysis, the TP53 co-mutations remained
independently associated with a significantly greater risk for disease progression (rwPFS:
HR = 1.4, 95% CI 1.0–1.9, p = 0.0280, Figure 2A) or death (OS: HR = 1.4, 95% CI 1.0–2.0,
p = 0.0345, Figure 2B).
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Table 3. Univariate analysis—rwPFS and OS.

Variable Category rwPFS,
HR (95% CI)

OS,
HR (95% CI)

Overall
Age at adv dx ≥75 vs. <75 1.2 (0.9–1.6) 2.0 (1.4–2.7) d

Sex Male vs. Female 1.1 (0.8–1.5) 1.4 (1.0–2.0) a

ECOG PS
1+ vs. 0 1.5 (1.1–2.2) a 1.7 (1.1–2.5) b

Unknown vs. 0 1.5 (1.0–2.2) a 0.9 (0.6–1.5)
Smoking history Yes vs. No 1.6 (1.2–2.1) b 1.4 (0.99–1.87)
TP53 status mt vs. wt 1.4 (1.1–1.9) a 1.6 (1.1–2.2) b

TP53 status/EGFR mutation type

TP53mt/Exon19 vs.
TP53wt/Exon19 1.5 (1.0–2.2) 1.9 (1.2–2.9) b

TP53mt/Exon21 vs.
TP53wt/Exon19 1.9 (1.3–2.9) b 1.8 (1.1–3.0) a

TP53wt/Exon21 vs.
TP53wt/Exon19 1.4 (0.9–2.3) 1.44 (0.8–2.5)

Bone mets Yes vs. No 1.0 (0.7–1.4) 1.4 (1.0–1.9)
Brain mets Yes vs. No 1.8 (1.3–2.5) c 1.7 (1.2–2.4) b

Exon group Exon21 vs. Exon19 1.3 (1.0–1.8) a 1.1 (0.8–1.5)

TKI Monotherapy
Age at adv dx ≥75 vs. <75 1.1 (0.8–1.6) 1.7 (1.1–2.5) b

Sex Male vs. Female 1.2 (0.8–1.7) 1.5 (1.0–2.3) a

ECOG PS
1+ vs. 0 2.1 (1.3–3.3) b 2.4 (1.4–4.1) b

Unknown vs. 0 2.2 (1.4–3.5) b 1.3 (0.7–2.3)
Smoking history Yes vs. No 1.6 (1.2–2.2) b 1.6 (1.1–2.3) a

TP53 mt vs. wt 1.6 (1.1–2.3) b 1.7 (1.1–2.6) a

TP53 status/EGFR mutation type

TP53mt/Exon19 vs.
TP53wt/Exon19 1.6 (1.0–2.4) a 2.2 (1.3–3.7) b

TP53mt/Exon21 vs.
TP53wt/Exon19 2.0 (1.2–3.2) b 2.1 (1.1–3.9) a

TP53wt/Exon21 vs.
TP53wt/Exon19 1.2 (0.6–2.1) 1.9 (0.9–3.7)

Bone mets Yes vs. No 1.1 (0.8–1.6) 1.4 (0.9–2.1)
Brain mets Yes vs. No 1.8 (1.2–2.6) b 1.7 (1.1–2.6) b

Exon group Exon21 vs. Exon19 1.2 (0.9–1.7) 1.2 (0.8–1.8)

Other Monotherapy
Age at adv dx ≥75 vs. <75 1.6 (0.8–3.0) 3.1 (1.7–5.6) c

Sex Male vs. Female 0.7 (0.4–1.4) 1.1 (0.6–2.1)

ECOG PS
1+ vs. 0 0.8 (0.4–1.6) 1.1 (0.6–2.0)

Unknown vs. 0 0.6 (0.3–1.3) 0.5 (0.2–1.3)
Smoking history Yes vs. No 1.4 (0.8–2.6) 1.0 (0.6–1.8)
TP53 mt vs. wt 0.9 (0.5–1.6) 1.3 (0.7–2.3)

TP53 status/EGFR mutation type

TP53mt/Exon19 vs.
TP53wt/Exon19 0.9 (0.4–2.3) 1.2 (0.5–2.9)

TP53mt/Exon21 vs.
TP53wt/Exon19 1.2 (0.5–3.0) 1.2 (0.5–2.7)

TP53wt/Exon21 vs.
TP53wt/Exon19 1.5 (0.6–3.7) 0.9 (0.4–2.1)

Bone mets Yes vs. No 0.9 (0.3–2.3) 1.5 (0.8–2.9)
Brain mets Yes vs. No 3.5 (1.7–7.3) c 1.8 (0.9–3.5)
Exon group Exon21 vs. Exon19 1.4 (0.8–2.6) 0.9 (0.5–1.6)

a p ≤ 0.05; b p ≤ 0.01; c p ≤ 0.001; d p ≤ 0.0001. Adv dx = advanced diagnosis; ECOG PS = Eastern Cooperative
Oncology Group performance status; EGFR = epidermal growth factor receptor; mets = metastases; NSCLC = non-
small cell lung cancer; SD = standard deviation; TP53mt = TP53 co-mutation; TP53wt = TP53 wild-type. Cox
analysis for time-to-event outcomes, and logistic regression analysis for tumor response. Other monotherapy:
non-TKI monotherapies. exon 19 = exon 19 deletions, and exon 21 = exon 21L858R mutations.



Cancers 2022, 14, 6127 9 of 17

3.4. Tumor Response

Among the 275 patients with evaluable tumor response (77.2% of overall study cohort),
the rwORR in the overall population was 78.0%. Univariate analysis (Supplementary Table
S2) showed lower response rates in patients with a TP53 co-mutation than in those with
TP53 wild-type tumors, although differences were not statistically significant (rwORR:
75.0% vs. 83.0% odds ratio (OR) = 0.6, 95% CI 0.3–1.1, p = 0.1262; rwDCR: 91.0% vs. 94.0%,
OR = 0.6, 95% CI 0.2–1.6, p = 0.3324). A similar trend was observed for rwDoR (median 9.0
[95% CI 6.9–11.1] vs. 11.9 [95% CI 8.4–15.5] months), best response of CR (4.5% vs. 10.8%)
and best response of progressive disease (8.9% vs. 5.4%), (Supplementary Table S3).

3.5. Subgroup Analysis
3.5.1. EGFR Mutation Subtype

When analysis was restricted to the type of EGFR-activating mutation, the negative
effect of TP53 co-mutations on the rwPFS in the overall population (HR = 1.4, 95% CI
1.0–1.9, Figure 2) was directionally consistent across the subgroups by activating the EGFR
mutation subtype, but was not statistically significant in the subgroups of patients with
exon 19 deletion (13.2 months [95% CI 8.7–15.3] vs. 15.6 months [95% CI 11.2–19.9], HR
= 1.5 [95% CI 1.1–2.2], p = 0.0536, Figure 3A) or those with exon 21L858R mutations
(9.9 months [95% CI 7.3–12.3] vs. 14.6 months [95% CI 9.4–19.3], HR = 1.4 [95% CI 0.0–2.2],
p = 0.1817, Figure 4A). Similarly, the negative effect of TP53 co-mutations on OS in the
overall population (HR = 1.4, 95% CI 1.0–2.0, p = 0.0345, Figure 2B) was directionally
consistent with the EGFR-activating mutation subtype. However, the difference in OS was
statistically significant only in the subgroup of patients with exon 19 deletions (median 25.6
[95% CI 21.7–29.7] vs. 47.1 [28.7-not achieved, NA], HR = 1.9, 95% CI 1.2–2.9, p = 0.0072,
Figure 3B) and not significant in those with exon 21L858R mutations (median 25.3 [95% CI
17.7–35.4] vs. 28.7 [95% CI 21.5-NA], HR = 1.2, 95% CI 0.7–2.0, p = 0.4350), Figure 4B).

Supplementary Figure S1 presents the four-way comparison between the survival values
for the included groups. Survival analysis for patients with EGFR exon 21L858R mutations and
TP53 co-mutations had the shortest median rwPFS (9.9 months) compared with 15.6 months,
14.6 months, and 13.2 months for patients with TP53 wild-type plus EGFR exon 19 deletions,
TP53 wild-type plus EGFR exon 21L858R mutations, and TP53 co-mutations plus EGFR exon 19
deletions, respectively (p = 0.0243, Supplementary Figure S1A). Similarly, patients with EGFR
exon 21L858R and TP53 co-mutations had the shortest median OS (25.3 months) compared
with 47.1 months, 28.7 months, and 25.6 months for patients with TP53 wild-type plus EGFR
exon 19 deletions, TP53 wild-type plus EGFR exon 21L858R mutations, and TP53 co-mutations
plus EGFR exon 19 deletions, respectively (p = 0.0388; Supplementary Figure S1B).

3.5.2. EGFR-TKI Monotherapy

When analysis was focused on the subset of patients receiving targeted therapy with
EGFR-TKI monotherapy (75.0% of overall study population), the median rwPFS was
14.0 months (95% CI 11.3–15.6), the median OS was 29.2 months (95% CI 25.5–36.6), and
the rwORR was 77.0% (95% CI 72.0–83.0%). The rwPFS was significantly shorter for
patients with TP53 co-mutations than those with TP53 wild-type tumors (median 12.0 vs.
16.4 months, HR = 1.6, 95% CI 1.1–2.3, p = 0.0069), as was OS (median 25.3 vs. 44.7 months,
HR = 1.7, 95% CI 1.1–2.6, p = 0.0121). In contrast, there was no significant difference in
the rwORR between the TP53 co-mutation group and the TP53 wild-type group (rwORR
73.0% vs. 84.0%, OR 0.53, 95% CI 0.27–1.03) (Supplementary Table S4). After adjustment
for significant prognostic factors in multivariable analysis, TP53 co-mutations remained
significantly associated with a worse rwPFS (HR = 1.5, 95% CI 1.1–2.2, p = 0.0168) but not
with OS (HR = 1.5, 95% CI 1.0–2.3, p = 0.0669).
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3.5.3. EGFR-TKI Generation

When patients were grouped according to generation of EGFR-TKIs, analyses showed
generally similar trends to those observed in the overall population, i.e., shorter rwPFS
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and OS in patients with TP53 co-mutations than in patients with TP53 wild-type tumor
(Supplementary Table S5). Specifically, the negative effect of a TP53 co-mutation on survival
outcomes was directionally consistent across the first- (median rwPFS: 9.0 vs. 11.3 months,
HR = 1.9, 95% CI 1.0–3.5; median OS: 29.2 vs. 42.0 months, HR 1.6, 95% CI 0.9–3.0) and third-
generation (median rwPFS: 17.0 vs. 18.4 months, HR = 1.3, 95% CI 0.8–2.2; median OS 31.2
vs. not reported [NR], HR 1.1, 95% CI 0.6–2.3) EGFR-TKI subgroups, but not in the second-
generation EGFR-TKI subgroup (median rwPFS: 13.9 vs. 11.8 months, HR = 1.3, 95% CI
0.6–3.0; median OS 25.3 vs. NR months, HR = 3.1, 95% CI 1.2–8.4), (Supplementary Table S5).
Except for the median rwPFS for first generation (p = 0.0399) and OS for second generation
(p = 0.0236), the differences did not reach statistical significance, possibly owing to the small
number of patients in these subgroups.

3.5.4. Non-EGFR-TKI Monotherapy Treatment

Analysis of the subpopulation who received other treatments (i.e., non-TKI monother-
apy, including chemotherapy alone or in combination with immunotherapy, as well as
EGFR-TKI combinations) showed no significant differences between the TP53 co-mutation
and TP53 wild-type groups in rwPFS (median 7.4 vs. 10.0 months, HR = 0.9, 95% CI 0.5–1.6),
and OS (median 25.6 vs. 24.5 months, HR = 1.3, 95% CI 0.7–2.3), although the results are
limited by the relatively small sample size (n = 89 patients, 50 with TP53 co-mutation and
39 with TP53 wild-type tumor), Supplementary Table S6.

4. Discussion

In this large retrospective clinicogenomic dataset, real-world progression-free and
overall survival were significantly shorter among treated EGFR-mutated aNSCLC patients
with a TP53 co-mutation versus those with a TP53 wild-type tumor, even after adjustment
for known clinicopathologic prognostic factors. A non-significant trend toward lower
tumor response rates was observed among patients with a TP53 co-mutation. This negative
contribution was generally independent of the type of 1 L treatment or EGFR mutation
subtype. These findings confirm and strengthen available evidence from other datasets
with limited follow-up [28,30–33,48,49], supporting the independent negative prognostic
value of TP53 co-mutation status. This may also help to identify a subset of patients
with anticipated worse outcomes on 1 L aNSCLC treatment, particularly with EGFR-TKI
monotherapy. While this study represents a large dataset, larger cohorts with EGFR and
TP53 co-mutated aNSCLC are needed to validate the current findings and to further clarify
the contribution and underlying mechanism of a TP53 co-mutation to primary or acquired
resistance to EGFR-TKIs.

The study dataset was drawn predominantly from community oncology centers and
restricted to patients with genomic testing. However, there was limited representation
from academic practices where broad-based genomic sequencing may be part of research
protocols, and from vulnerable patients with disproportionate access to physicians with
distinct testing and practice patterns. The dataset is nationally illustrative of demographic
(e.g., age, sex, and geographic location) and clinical (e.g., stage of disease) characteris-
tics and distribution of patients across community and academic practices [50–52]. For
example, the incidence of a TP53 co-mutation in our study (59%) was within the range re-
ported in other observational and clinical datasets (30–72%) of patients with EGFR-mutated
aNSCLC, using various methods of EGFR detection with different sensitivity [28]. As
also previously reported [31,48], TP53 co-mutations were generally not associated with
other measured prognostic factors (e.g., age, sex, smoking status, ECOG PS, baseline brain
metastases), EGFR mutation subtype, or treatment assignment. Lastly, consistent with
guideline recommendations [7,8] and prior studies [53], most patients with EGFR-mutated
aNSCLC received EGFR-TKI monotherapy (predominantly osimertinib) in the 1 L and 2
L settings in current study, with few patients receiving 1 L EGFR-TKI combinations with
either anti-angiogenics or chemotherapy.
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In line with previous studies linking a TP53 co-mutation with reduced sensitivity
to EGFR-TKIs [29,49], a TP53 co-mutation was associated with worse outcomes in the
current dataset, even after adjustment for known aNSCLC prognostic factors including
age, sex, smoking history, performance status, and baseline brain or bone metastases.
Our findings also suggest that TP53 co-mutations in the context of the EGFR mutation
subtype may impact response to treatment and the survival outcomes, as the negative
survival effect associated with TP53 co-mutations has been observed to occur less among
patients with EGFR exon 19 deletions than exon 21L858R mutations [31,32] and is likely
because EGFR exon 19 deletions are known to be more responsive to EGFR-TKIs [53,54],
as also demonstrated by our results. Notably, this finding appears to be driven by the
robust OS in patients with TP53 wild-type tumors plus the exon 19 deletion subgroup
(47.1 months), as the OS was similar between the exon 19 deletion subgroup plus a TP53
co-mutation (25.6 months) and an exon 21L858R mutation plus the TP53 co-mutation
subgroup (28.7 months). Sufficiently powered subgroup analyses on the effect of TP53
co-mutations by the EGFR mutation subtype are warranted to validate these associations.

One of the strengths of this study is that it was conducted between 2014–2020, where
the treatment landscape for EGFR-mutated NSCLC had dramatically changed, spanning
the approval of multiple first-, second-, and third-generation EGFR-TKIs, and allowing for
selection of a relatively large cohort with a long follow-up to assess the prognostic impact
TP53 co-mutations in this setting. Despite the large sample size and directional consistency
in survival endpoints and response, as well as subgroup analysis, the relatively small
numbers and limited follow-up among some subgroups may have (1) underestimated the
number of patients (<50% in the current dataset) who ultimately did receive 2 L treatment,
and (2) limited statistical power to detect significant differences. For instance, as FDA
approval of osimertinib in the frontline setting was in April 2018 [55], findings from
subgroup analysis by third-generation EGFR-TKIs had limited follow-up (less than 2 years)
and should be validated in future studies as cohorts of patients treated with 1 L osimertinib
mature in routine practice.

TP53 co-mutation status did not appear to influence treatment selection of therapy for
EGFR-mutated aNSCLC, likely because there are no approved therapies targeting TP53 mu-
tations. Although treatments targeting TP53 co-mutations remain under investigation, our
findings may have therapeutic implications given the expansion of precision oncology and
increased adoption of next generation sequencing and multi-gene panels [7,8,56], resulting
in increased availability of TP53 status in this EGFR-mutated aNSCLC patient population.
Specifically, these findings strengthen the rationale for clinicians to consider available or
emerging EGFR-TKI combination strategies with other therapies such as antiangiogenics
to delay resistance and prolong duration of targeted therapy for EGFR-mutated aNSCLC.
Notably, in contrast to the body of evidence [28,30–33,48], including our findings, show-
ing attenuated benefit with EGFR-TKI monotherapy in patients with EGFR and TP53 co-
mutated aNSCLC, a biomarker and subgroup analysis of the RELAY trial demonstrated that
the addition of ramucirumab (anti-VEGF receptor inhibitor) to erlotinib (first-generation
EGFR-TKI) was associated with prolonged PFS for EGFR and TP53 co-mutated aNSCLC,
both in patients with EGFR exon 19 deletions or exon 21L858R mutations [57,58]. TP53
mutations have also been linked to VEGF expression across different solid tumor cancers
therefore increasing the sensitivity of these tumors to anti-VEGF therapies [59]. While
promising [57,60], however, the efficacy of EGFR-TKI combinations in EGFR and TP53
co-mutated NSCLC is not established and needs further study in larger datasets.

The limitations of this study are inherent in the nature of the analyzed data, collected
during routine care mainly for clinical documentation, management, and billing, and not
for research. The potential for bias exists from: (1) misclassification due to data entry and
reporting errors in the EMR and use of database algorithms (e.g., line of therapy, adherence
to oral EGFR-TKIs), (2) missing or incomplete data (e.g., ECOG performance status, comor-
bidities, tumor response to therapy), and (3) unmeasured or unknown confounding bias
despite the use of multivariable regression to control for measured prognostic factors. How-
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ever, there is no reason to believe that the validity of the dataset would be systematically
biased according to TP53 co-mutation status, although the association in this study should
not imply causation. In addition, this study did not capture information on different types
of TP53 co-mutations and only TP53 co-mutation status at baseline was considered. This is
because the information on TP53 mutation subtypes was not collected or available in the
Flatiron database. As earlier reports suggest that mutations in TP53 may induce resistance
through different mechanisms in the cancer cell [61], further classification of distinct TP53
mutation subtypes (e.g., disruptive vs. non-disruptive, missense vs. non-missense, at
primary vs. metastatic lesions), both alone and in combination with other EGFR mutation
subtypes (e.g., EGFR exon 20 T790M, the most common mechanism of resistance for 1st and
2nd generation EGFR-TKIs), may predict more precisely the impact of TP53 co-mutation
on prognosis and survival on EGFR-TKIs.

5. Conclusions

This large observational study confirms and strengthens the available evidence demon-
strating that a TP53 co-mutation identifies a subset of EGFR-mutated aNSCLC patients with
worse outcomes on EGFR-TKI monotherapy as compared to those with TP53 wild-type
EGFR-mutated aNSCLC who might benefit from more intensified treatment schedules.
Tailoring the treatment to individual patient characteristics (e.g., EGFR mutation subtype
and co-occurring mutations) at baseline might be helpful to further improve treatment
outcomes for patients with EGFR-mutated aNSCLC.
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