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Simple Summary: MRI radiomic models outperformed traditional clinical parameters in the predic-
tion of survival in patients with hypopharyngeal cancer who had undergone concurrent chemora-
diotherapy. By combining the identified radiomic signature with independent traditional clinical
variables, we were able to devise new nomograms that successfully predicted survival outcomes in
this patient group.

Abstract: A reliable prognostic stratification of patients with locally advanced hypopharyngeal cancer
who had been treated with concurrent chemoradiotherapy (CCRT) is crucial for informing tailored
management strategies. The purpose of this retrospective study was to develop robust and objective
magnetic resonance imaging (MRI) radiomics-based models for predicting overall survival (OS)
and progression-free survival (PFS) in this patient population. The study participants included
198 patients (median age: 52.25 years (interquartile range = 46.88–59.53 years); 95.96% men) who
were randomly divided into a training cohort (n = 132) and a testing cohort (n = 66). Radiomic
parameters were extracted from post-contrast T1-weighted MR images. Radiomic features for model
construction were selected from the training cohort using least absolute shrinkage and selection
operator–Cox regression models. Prognostic performances were assessed by calculating the inte-
grated area under the receiver operating characteristic curve (iAUC). The ability of radiomic models
to predict OS (iAUC = 0.580, 95% confidence interval (CI): 0.558–0.591) and PFS (iAUC = 0.625,
95% CI = 0.600–0.633) was validated in the testing cohort. The combination of radiomic signatures
with traditional clinical parameters outperformed clinical variables alone in the prediction of survival
outcomes (observed iAUC increments = 0.279 [95% CI = 0.225–0.334] and 0.293 [95% CI = 0.232–0.351]
for OS and PFS, respectively). In summary, MRI radiomics has value for predicting survival outcomes
in patients with hypopharyngeal cancer treated with CCRT, especially when combined with clinical
prognostic variables.

Keywords: hypopharyngeal cancer; concurrent chemoradiotherapy; MRI; radiomics; overall survival;
progression-free survival
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1. Introduction

Hypopharyngeal cancer represents a distinct clinical entity, and estimates derived
from the most recent update of the Taiwan Cancer Registry show that the crude incidence
rate is 5.15 per 100,000 persons. Among different head and neck malignancies, hypopha-
ryngeal cancer continues to show unfavorable survival outcomes [1]. In addition, a large
proportion of patients (70–85%) have advanced stages at diagnosis due to the presence of
occult symptoms and signs [2,3]. While primary surgery remains a treatment option in
advanced hypopharyngeal cancer, concurrent chemoradiotherapy (CCRT) has increasingly
emerged as a non-surgical alternative to achieve organ preservation [4]. Unfortunately,
approximately 50% of patients with advanced hypopharyngeal cancer who had received
non-surgical primary treatment ultimately experience disease recurrences [5], while the
outcomes of salvage surgery are generally unsatisfactory [6,7]. In this scenario, a reliable
prognostic stratification of patients treated with primary CCRT is crucial for informing
tailored management strategies.

By virtue of its excellent soft tissue contrast, magnetic resonance imaging (MRI)
outperforms computed tomography (CT) in terms of anatomical resolution and is com-
monly applied for head and neck cancer staging. Although there is a growing potential
for utilizing radiomic features as prognostic biomarkers in patients with head and neck
malignancies [8–13], previous research has mainly relied on CT features. Previous stud-
ies have described the robustness of CT radiomic features and their potential usefulness
for predicting various clinical endpoints; however, CT radiomic features are intrinsically
limited by low soft tissue contrast. It is therefore crucial to investigate the potential use-
fulness of MRI-based radiomics in assisting prognostic stratification. Starting from these
premises, the purpose of this retrospective study was to develop robust and objective MRI
radiomics-based models for predicting overall survival (OS) and progression-free survival
(PFS) in patients with locally advanced hypopharyngeal cancer who had undergone CCRT.
By combining the identified radiomic signature with independent clinical variables, we
were able to devise new nomograms that outperformed traditional prediction models.

2. Materials and Methods

This retrospective study was approved by the Institutional Review Board of the Chang
Gung Medical Foundation, Taiwan (reference number: 201901900B0) and received a waiver
of patient consent. All procedures complied with the tenets outlined in the Declaration of
Helsinki and the Good Clinical Practice Guidelines.

2.1. Study Patients

We retrospectively reviewed the clinical records of patients with newly diagnosed
hypopharyngeal cancer who presented at the Chang Gung Memorial Hospital, Taoyuan,
Taiwan, between August 2006 and September 2015. Inclusion criteria were as follows:
(1) pathologically proven diagnosis of advanced hypopharyngeal cancer, (2) availability of
pretreatment contrast-enhanced head and neck MRI, and (3) curative-intent treatment with
primary CCRT according to the National Comprehensive Cancer Network guidelines [14].
Patients with histology types different from squamous cell carcinoma and those with second
primary tumors or synchronous cancers were excluded, as were those with metastatic
disease. Demographic data (including age and sex), tumor differentiation and information
on clinical stages (including T stage, N stage, and overall stage) were collected in all
participants. Disease staging was performed using the American Joint Committee on Cancer
(AJCC) Staging Manual, Seventh Edition. A detailed description of the CCRT protocol is
reported in Appendix C. For model training and validation, the study participants were
divided (2:1 ratio) into a training cohort and a testing cohort.

2.2. Follow-Up and Survival

All patients were clinically followed-up with physical and pharyngoscopic examina-
tions every 1–3 months during the first two years, every 3–6 months during the third year,
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and 6–12 months thereafter. Imaging follow-up was alternatively performed with CT or
MRI every 3 months during the first post-treatment year, every 6 months during the subse-
quent three years, and on an annual basis thereafter. All of the imaging examinations were
scheduled in advance and were generally performed in the week preceding the clinical
follow-up visits. OS was defined as the interval between the date of initial pathologic
diagnosis and the date of death or the day of last follow-up. Patients who were lost to
follow-up or were alive at the day of last follow-up were treated as censored observations.
PFS was calculated as the interval between the date of initial pathologic diagnosis and the
date of the first sign of progression, death, or the day of last follow-up.

2.3. MRI Acquisition Protocol and Radiomic Features Extraction

MR images were acquired on a 3-Tesla scanner (Magnetom Tim Trio; Siemens Health-
ineers, Erlangen, Germany). After administration of a gadolinium-based contrast agent
(0.1 mL/kg), post-contrast T1-weighted images were acquired using a fat-saturated turbo
spin echo sequence. The following parameters were applied: repetition time/echo
time = 550/10 ms, flip angle = 150◦, echo train length = 3, acquisition matrix = 320 × 253,
slice thickness = 4 mm, field of view = 220 mm × 220 mm, and number of averages = 2.

Using a slice-by-slice approach, all tumor volumes of interest were manually con-
toured on the transverse section using an open-source platform (ITK-SNAP, version 3.8.0;
http://www.itksnap.org, accessed on 12 June 2019). All procedures were carried out by
a senior head and neck radiologist (S.H.N.; 35 years of working experience). To assess
interobserver reproducibility, images obtained from a randomly selected patient subset
(n = 30) in the training cohort were subjected to segmentation by an independent radiologist
(T.Y.S.; 8 years of working experience in the field of head and neck imaging). During tumor
contouring, both radiologists were blinded to clinical information. Intraclass correlation
coefficients (ICCs) were used to quantify the interobserver reproducibility of the extracted
radiomic features, with reproducibility being defined as an ICC ≥ 0.75.

Prior to feature extraction, a pre-processing pipeline was applied to fat-saturated
gadolinium-enhanced T1-weighted MR images to normalize signal intensity and geometric
variations. The detailed procedure is described in Appendix C. An open-source platform
(PyRadiomics, version 3.0.1) was used for both image pre-processing and radiomic features
extraction. Most of the features extracted with PyRadiomics were in accordance with the
criteria outlined in the Image Biomarker Standardization Initiative [15].

2.4. Model Construction and Data Analysis

Model construction and data analysis were carried out in the R environment (version 3.6.3;
http://www.r-project.org/), accessed on 6 March 2020. The R packages used in the study
are reported in Appendix C.

2.4.1. Machine-Learning-Based Radiomic Model

Feature selection and model building were carried out in the training cohort, whereas
model performance was examined in the testing cohort. We applied a feature selection
strategy that included the following steps: reproducibility assessment, redundancy re-
duction, univariate outcome analysis, and least absolute shrinkage and selection operator
(LASSO)–Cox regression modeling. We initially disregarded all features characterized by
low reproducibility (i.e., ICC < 0.75), followed by removal of radiomic features showing
a high degree of collinearity (i.e., Pearson’s r > 0.9). This was accomplished using the
“caret: find Correlation” function in R. The retained features were subsequently subjected
to univariate Cox analysis to preselect significant (p < 0.05) prognostic factors. Finally,
the LASSO-Cox regression model was applied in the training set to identify the strongest
predictive parameters. On the basis of the regulation weight (λ), LASSO shrinks all of
the regression coefficients towards zero and removes irrelevant features by setting their
coefficients exactly to zero. The optimal λ value was identified by applying a ten-fold cross-
validation with minimum criteria. We finally devised a radiomic score (termed RadScore)

http://www.itksnap.org
http://www.r-project.org/
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for outcome prediction using a linear combination of the selected features weighted by
their non-zero coefficients generated with LASSO. The workflow used for radiomic model
construction is summarized in Figure 1.

Figure 1. Workflow used for analysis of radiomic features. Abbreviation: LASSO—least absolute
shrinkage and selection operator.

2.4.2. Development of Clinical and Combined Radiomic–Clinical Models

Clinical characteristics, including age, sex, histologic grading, T stage, N stage, and
overall clinical stage, were collected from medical records and subsequently entered into
a multivariate Cox regression model (with the exception of histologic grading due to
a high number of missing data). Survival outcomes served as dependent variables. The
combination of parameters characterized by the lowest Akaike information criterion (AIC)
value was selected to construct the clinical model. The radiomic–clinical model was
subsequently devised by combining the RadScore with the variables selected in the clinical
model, with the resulting estimates being plotted in nomograms. Calibration curves were
used to illustrate the agreement between the estimated prognosis and the observed survival.

2.4.3. Statistics

The training cohort was dichotomized into two groups (high- versus low-risk) accord-
ing to the median values of predicted risk scores. The same cutoffs were subsequently
applied to the testing cohort. Intergroup comparisons of survival outcomes, including OS
and PFS, were performed using the log-rank test. The prognostic performance of each
model was assessed using iAUC based on the predicted risk. The iAUC is an integral of
the product of area under the cumulative/dynamic time-dependent ROC curve and the
probability density function of the time-to-event outcome [16]. Higher iAUC values reflect
a better prognostic ability. The iAUC values of different models were compared, and the
differences were calculated by applying a total of 1000 bootstrap replicates. All hypothesis
testing was two-tailed, with statistical significance defined as a p value < 0.05.

3. Results
3.1. Patient Characteristics

A total of 198 patients (190 [95.6%] men; median age: 52.25 years (interquartile
range = 46.88–59.53 years)) were included in the study (Figure 2). The median values
of OS and PFS were 884 days (interquartile range = 331.8–2470.5 days) and 525.5 days
(interquartile range = 213.8–2343.0 days), respectively. The training and testing cohorts
consisted of 138 and 66 patients, respectively (Table 1). No intergroup differences were ob-
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served in terms of OS (p = 0.91), PFS (p = 0.96), age (p = 1.00), sex (p = 1.00), T stage (p = 0.17),
N stage (p = 0.29), tumor grading (p = 0.33), and overall stage (p = 0.97).

1 
 

 

 
Figure 2. Flow of patients through the study. Abbreviation: MRI—magnetic resonance imaging.

Table 1. General characteristics of patients in the training and testing cohorts.

Variable Training Cohort Testing Cohort p †

Number of patients 132 66
Median (IQR) overall survival, days 891 (317.3–2351.8) 851 (380.3–2599.5) 0.91 ‡

Number of deaths 74 (56.06) 37 (56.06)

Median (IQR) progression-free survival, days 467.5
(216.3–2294.3) 560.5 (208.3–2553.5) 0.96 ‡

Number of patients with progressive disease 86 (65.15) 43 (65.15)
Median (IQR) age, years 51.6 (46.3–60.4) 53.1 (48.5–58.4) 0.59
Sex 0.80

Male 127 (96.21) 63 (95.45)
Female 5 (3.79) 3 (4.55)

Clinical stage T 0.17
T3 28 (21.21) 17 (25.76)
T4a 98 (74.24) 42 (63.64)
T4b 6 (4.55) 7 (10.61)

Clinical stage N 0.29
N0 24 (18.18) 10 (15.15)
N1 18 (13.64) 4 (6.06)
N2a 0 (0.00) 0 (0.00)
N2b 49 (37.12) 31 (46.97)
N2c 17 (12.88) 12 (18.18)
N3 24 (18.18) 9 (13.64)
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Table 1. Cont.

Variable Training Cohort Testing Cohort p †

Overall stage 0.98
Stage III 9 (6.82) 4 (6.06)
Stage IVA 96 (72.73) 48 (72.73)
Stage IVB 27 (20.45) 14 (21.21)

Tumor differentiation 0.33
Well differentiated 2 (1.52) 1 (1.52)
Moderately differentiated 66 (50.00) 42 (63.64)
Poorly differentiated 18 (13.64) 7 (10.61)
Unknown 46 (34.85) 16 (24.24)

Data are expressed as counts and percentages in parentheses, unless otherwise indicated. Percentages may not
equal 100 due to rounding. Abbreviation: IQR—interquartile range. † Student’s t-test for continuous variables
and the χ2 test for categorical variables, unless otherwise indicated. ‡ Log-rank test.

3.2. MRI Radiomic Models

Of the 1223 radiomic features extracted from each patient, 858 were found to be re-
producible (ICC ≥ 0.75) and 702 were selected for further analyses after the removal of
redundancies. Univariate analysis identified 125 and 131 features as being significantly
associated with OS and PFS, respectively. After applying LASSO selection, four (de-
noted as f 1–f 4) and nine (denoted as f ’1–f ’9) features were retained for the prediction
of OS and PFS, respectively. Table 2 summarizes the selected features and their coeffi-
cients. Two RadScores—termed RadScore_OS and RadScore_PFS for the prediction of
OS and PFS, respectively—were calculated through a linear combination of selected fea-
tures weighted by their coefficients. The definitions of the selected radiomic features
can be accessed at the following URL: https://pyradiomics.readthedocs.io/en/latest/
features.html, accessed on 18 July 2021. The relationships between the RadScores and
the clinicopathological characteristics in the training (Figure 3A, OS; Figure 3B, PFS) and
testing (Figure 3C, OS; Figure 3D, PFS) cohorts are presented as heat maps. In the testing
cohort, the RadScore_OS and the RadScore_PFS predicted OS (hazard ratio (HR) = 3.97;
95% confidence interval (CI) = 1.54–10.21; p = 0.004) and PFS (HR = 2.39; 95% CI = 1.18–4.87;
p = 0.02), respectively (Table 3). The ability of these scores for predicting OS (model 1a:
iAUC = 0.580; 95% CI = 0.558–0.591]) and PFS (model 2a: iAUC = 0.625; 95% CI = 0.600–0.633)
was validated in the testing cohort (Table 4). Using the median values of the RadScore_OS
(0.50) and the RadScore_PFS (−3.28) as cutoffs, the radiomic models were used to di-
chotomize patients in the training and testing cohorts into low- versus high-risk groups
(OS in the training cohort (Figure 4A), p = 0.009, log-rank test; OS in the testing cohort
(Figure 4B), p = 0.004, log-rank test; PFS in the training cohort (Figure 5A), p < 0.001,
log-rank test; and PFS in the testing cohort (Figure 5B), p = 0.003; log-rank test).

Table 2. Radiomic features associated with overall survival and progression-free survival and
coefficients selected by LASSO-Cox regression.

Survival Outcome and Radiomic Features Coefficient

Overall survival
f 1: log.sigma.1.5.mm.3D_firstorder_90Percentile 8.3852 × 10−1

f 2: log.sigma.1.mm.3D_firstorder_Energy 1.0157 × 104

f 3: log.sigma.1.mm.3D_firstorder_TotalEnergy 5.1365 × 10−19

f 4: wavelet-LHL_glszm_SizeZoneNonUniformity 1.8947 × 10−4

Progression-free survival
f ’1: log.sigma.1.5.mm.3D_firstorder_90Percentile 4.8540 × 100

f ’2: log.sigma.1.5.mm.3D_glcm_SumEntropy −2.2024 × 10−1

f ’3: log.sigma.1.mm.3D_firstorder_Energy 5.3927 × 10−5

f ’4: log.sigma.2.mm.3D_glcm_SumEntropy −3.9874 × 10−1

f ’5: log.sigma.2.mm.3D_ngtdm_Busyness 2.7371 × 10−1

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Table 2. Cont.

Survival Outcome and Radiomic Features Coefficient

f ’6: original_glszm_SmallAreaEmphasis −1.8426 × 100

f ’7: wavelet-LHH_glszm_SizeZoneNonUniformityNormalized −7.4020 × 10−2

f ’8: wavelet-LHL_glszm_SizeZoneNonUniformity 1.7324 ×10−5

f ’9: wavelet-LLL_glcm_Imc1 −2.8368 × 100

Abbreviations: glszm—gray-level size zone matrix; glcm—gray-level co-occurrence matrix; and
ngtdm—neighboring gray tone difference matrix. LHH, LHL, and LLL denote the high- and low-pass filters on
the x, y, and z dimensions, respectively (H—high; L—low).

 

2 

 
Figure 3. Heatmaps of clinicopathological characteristics and survival outcomes in patients stratified
according to RadScores. Patients are displayed in an ascending order with respect to RadScores.
Differences in overall survival and progression-free survival in the training (A and B, respectively)
and testing (C and D, respectively) cohorts. Abbreviations: OS—overall survival; PFS—progression-
free survival.

Table 3. Cox Proportional Hazard Models for Overall Survival and Progression-free Survival
in Patients with Hypopharyngeal Cancer Underwent Concurrent Chemoradiotherapy in the
Testing Cohort.

Overall Survival Progression-Free Survival

HR 95% CI p Value HR 95% CI p Value

Radiomic Model
RadScore 3.97 1.54–10.21 0.004 2.39 1.18–4.87 0.02

Clinical Model
T4a stage 1.23 0.55–2.78 0.62 1.52 0.70–3.26 0.29
T4b stage 1.33 0.40–4.45 0.64 1.44 0.48–4.32 0.52
N2c stage 2.54 1.21–5.33 0.01 1.93 0.96–3.90 0.07
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Table 3. Cont.

Overall Survival Progression-Free Survival

HR 95% CI p Value HR 95% CI p Value

Combined Radiomic–Clinical Model
RadScore 2.99 0.95–9.44 0.06 2.09 0.99–4.42 0.05
T4a stage 1.06 0.46–2.44 0.88 1.36 0.62–2.96 0.44
T4b stage 0.84 0.22–3.24 0.80 1.03 0.32–3.33 0.97
N2c stage 1.92 0.84–4.37 0.12 1.69 0.59–0.82 0.15

Abbreviations: HR—hazard ratio, CI—confidence interval.

Table 4. Performance of different models in the prediction of overall survival and progression-free survival.

Survival Outcome Model Type iAUC (95% CI)

Overall survival
Model 1a Radiomic model 0.580 (0.558–0.591)
Model 1b Clinical model 0.392 (0.322–0.447)
Model 1c Combined radiomic–clinical model 0.671 (0.637–0.693)

Progression-free survival
Model 2a Radiomic model 0.625 (0.600–0.633)
Model 2b Clinical model 0.381 (0.308–0.433)
Model 2c Combined radiomic–clinical model 0.675 (0.641–0.687)

Abbreviations: iAUC—integrated area under the time-dependent receiver operating characteristic curve,
CI—confidence interval.

 

3 

Figure 4. Kaplan–Meier overall survival plots in the training (A,C,E) and testing (B,D,F) cohorts
stratified according to the predicted risk derived from radiomic models (A,B), clinical models (C,D),
and combined radiomic–clinical models (E,F). p values were calculated using log-rank tests.
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4 

Figure 5. Kaplan–Meier progression-free survival plots in the training (A,C,E) and testing (B,D,F)
cohorts stratified according to the predicted risk derived from radiomic models (A,B), clinical models
(C,D), and combined radiomic–clinical models (E,F). p values were calculated using log-rank tests.

3.3. Clinical Models

According to the least AIC values, the optimal clinical models for the prediction
of both OS and PFS included T4a stage, T4b stage, and N2c stage. In the testing cohort,
multivariate Cox proportional hazard analysis revealed no independent associations
of T4a or T4b stages with both OS (T4a stage: HR = 1.23 [95% CI = 0.55–2.78], p = 0.62;
T4b stage: HR = 1.33 [95% CI = 0.40–4.45], p = 0.64) and PFS (T4a stage: HR = 1.52
[95% CI = 0.70–3.26], p = 0.29; T4b stage: HR = 1.44 [95% CI = 0.48–4.32], p = 0.52) (Table 3).
However, the associations of N2c stage with OS (HR = 2.54 [95% CI = 1.21–5.33], p = 0.01) and
PFS were statistically significant and marginally significant (HR = 1.93 [95% CI = 0.96–3.90],
p = 0.07), respectively (Table 3). However, these findings should be interpreted with caution
due to the limited number of patients in the testing cohort. The clinical models in the testing
cohort were characterized by a modest ability to predict both OS (model 1b: iAUC = 0.392
[95% CI = 0.322–0.447]) and PFS (model 2b: iAUC = 0.381 [95% CI = 0.308–0.433]; Table 4).
Application of the models to the training cohort revealed a marginally significant difference
in OS (p = 0.06, log-rank test; Figure 4C) and a statistically significant difference in PFS
(p = 0.04, log-rank test; Figure 5C) for patients at high- versus low-risk. However, no signif-
icant difference was observed in the testing cohort (OS: p = 0.27, log-rank test, Figure 4D;
PFS: p = 0.18, log-rank test, Figure 5D).
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3.4. Combination of Radiomic and Clinical Models

In the testing cohort, multivariate Cox proportional hazard analysis revealed marginally
significant associations of the RadScore with both OS (HR = 2.99 [95% CI: 0.95–9.44],
p = 0.06) and PFS (HR = 2.09 [95% CI: 0.99–4.42], p = 0.05) (Table 3). The predictive perfor-
mance of the combined radiomic–clinical models was successfully validated in the testing
cohort for both OS (model 1c: iAUC = 0.671 [95% CI = 0.637–0.693] and PFS (model 2c:
iAUC = 0.675 [95% CI = 0.641–0.687], Table 4). In both cohorts, combined radiomic–clinical
models were able to stratify patients into low- versus high-risk groups (training cohort
OS (Figure 4E): p = 0.004, log-rank test; testing cohort OS (Figure 4F): p = 0.04, log-rank
test; training cohort PFS (Figure 5E): p < 0.001, log-rank test; testing cohort PFS (Figure 5F):
p = 0.001, log-rank test).

3.5. Comparison of Model Performances

The differences in terms of iAUC for distinct predictive models are reported in Table 5.
In general, radiomic models outperformed clinical models in the prediction of both OS
(model 1a versus model 1b; iAUC difference = 0.188; 95% CI = 0.127–0.251) and PFS
(model 2a versus model 2b; iAUC difference = 0.244; 95% CI = 0.181–0.3107). Com-
pared with clinical models alone, the addition of radiomic signatures significantly im-
proved the ability to predict both OS (model 1c versus model 1b; iAUC increment = 0.279;
95% CI = 0.225–0.334) and PFS (model 2c versus model 2b; iAUC increment = 0.293;
95% CI = 0.232–0.351). Combined radiomic–clinical models were also found to outper-
form radiomic models alone in the prediction of both OS (model 1c versus model 1a;
iAUC increment = 0.091; 95% CI = 0.074–0.108) and PFS (model 2c versus model 2a; iAUC
increment = 0.049; 95% CI = 0.038–0.059).

Table 5. Comparison of different models in the prediction of overall survival and progression-free survival.

Survival Outcome Model 1 Model 2 iAUC Difference (95% CI) p Value

Overall survival Radiomic model Clinical model 0.188 (0.127–0.251) <0.001
Combined radiomic–clinical model Clinical model 0.279 (0.225–0.334) <0.001
Combined radiomic–clinical model Radiomic model 0.091 (0.074–0.108) <0.001

Progression-free
survival Radiomic model Clinical model 0.244 (0.181–0.307) <0.001

Combined radiomic–clinical model Clinical model 0.293 (0.232–0.351) <0.001
Combined radiomic–clinical model Radiomic model 0.049 (0.038–0.059) <0.001

Abbreviations: iAUC—integrated area under the time-dependent receiver operating characteristic curve,
CI—confidence interval. The iAUC difference was calculated as follows: iAUC (model 2)-iAUC (model 1).
The 95% CIs and p values were calculated by applying a total of 1000 bootstrap replicates.

3.6. Construction of Nomograms from Radiomic–Clinical Models

With the goal of devising visual tools for predicting both OS and PFS, nomograms
comprising both clinical factors and radiomic signatures were constructed (Figure 6A,B).
Calibration curves (Figure 6C,D) revealed a good agreement between the predicted and
observed survival endpoints (2- and 3-year OS and PFS). However, the observed outcomes
showed a slight deviation from the predicted curves during the first year of follow-up.
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5 

 Figure 6. Nomograms used for the prediction of overall survival (A) and progression-free survival
(B) in patients with hypopharyngeal cancer who had been treated with primary chemoradiotherapy.
Calibration curves were applied to assess the predictive performance with respect to 1-, 2-, and 3-year
overall survival (C) and progression-free survival (D) in the training cohort. The survival outcomes
predicted by the nomogram are plotted on the x-axis, whereas the observed outcomes are reported
on the y-axis. The gray lines denote ideal nomograms. The vertical bars are the 95% confidence
intervals, whereas unfilled square box markers indicate bootstrap-corrected estimates. Abbreviations:
OS—overall survival; PFS—progression-free survival.

4. Discussion

Using a combination of MRI radiomic signatures and clinical parameters, we were able
to devise and validate prognostic models that successfully predicted OS and PFS in patients
with hypopharyngeal cancer who had undergone CCRT. By applying the LASSO-Cox
machine learning algorithm, a total of 13 radiomic features extracted from fat-saturated
post-contrast T1-weighted MR images were found to be associated with survival outcomes.
Interestingly, the integration of radiomic features improved the predictive capacity of
clinical models, and the combined radiomic–clinical models showed the highest ability
to predict both OS and PFS. On the one hand, our prediction tools can offer a reliable
prognostic assessment suitable for clinical prognostication. On the other hand, the use of
our nomograms has the potential to tailor treatment at the individual level.

Our study confirms and expands previous data on the prognostic utility of radiomic
features in patients with hypopharyngeal cancer [17]. However, prior studies were con-
ducted with heterogeneous samples in terms of disease stage, with the majority of partici-
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pants being treated with surgical excision [17]. In the current investigation, we specifically
focused on patients with advanced-stage hypopharyngeal cancer who had undergone
CCRT. Therefore, a strength of our study lies in the possibility to obtain an accurate survival
prediction in this specific subgroup.

Three first-order and seven second-order MRI radiomic features showed the high-
est discriminative power for prognostic purposes. It is worth noting that the prognostic
features identified in our study reflected the extent of contrast enhancement observed in
post-contrast T1-weighted images as being therefore related to tumor vascularity. There is
ample evidence that angiogenesis has an adverse prognostic significance in several solid
malignancies [18], including head and neck cancer [19–21]. A prior radiomic study con-
ducted on patients with hypopharyngeal cancer who had been treated with chemoradiation
demonstrated that two first-order features derived from post-contrast CT images (wavelet-
LLH_firstorder_Maximum and wavelet-HLL_firstorder_Median) were independently as-
sociated with PFS [22]. Another study reported that wavelet-LHL_firstorder_Maximum
and wavelet-LHL-firstorder_Kurtosis—two features extracted from post-contrast CT
images—successfully predicted PFS in patients with locally advanced hypopharyngeal
cancer who had undergone induction chemotherapy [23]. Finally, Li et al. [24] developed
a CT radiomic signature based on first-order features (i.e., minimum, skewness, and total
energy) to be used in the preoperative phase for predicting early recurrences of hypopha-
ryngeal cancer. Second-order radiomic features—also termed texture features—reflect the
statistical relationships of gray levels within an image and represent a proxy for intratumor
heterogeneity. Aerts et al. [25] have previously shown that, among different CT radiomic
features, those related to tumor heterogeneity had the highest value for predicting survival
in lung cancer or head and neck cancer. This signature was subsequently validated in an
independent cohort of oropharyngeal squamous cell carcinoma, wherein its prognostic
significance was unaffected by the presence of CT artifacts [26].

Clinical decision-making in patients with malignancies is generally guided by the
AJCC staging system. While the TNM stage can be considered a suitable proxy of the
overall disease status, staging variables do not possess a quantitative nature and might
not accurately reflect underlying differences in tumor biology. In this scenario, the use of
radiomic markers has markedly potentiated our capacity to characterize highly diverse
phenotypic tumor characteristics [27]. It can therefore be expected that they would possess
a complementary value to traditional TNM staging for prognostic purposes. A previous
study has shown that radiomic models can predict the risk of progression in hypopharyn-
geal cancer more effectively compared with clinical variables alone [22], an observation in
line with our current data. However, a significant limitation that our investigation shares
with prior studies lies in its retrospective design. This may raise questions about whether
the predictive value of our combined radiomics–clinical models can still be applicable to
the eighth edition of the AJCC TNM Staging Manual [28].

On examining the prognostic value of the nomograms devised in our study, we found
a good agreement between predicted and observed 2- and 3-year OS and PFS; however,
a slight deviation was evident when the outcomes pertaining to the first year were taken
into account. Previous studies have shown that several clinical factors—different from
the oncologic status—may be associated with early treatment failure in patients with
locally advanced head and neck cancer who had completed their CCRT course. These
variables, which include comorbidities [29,30], poor performance status [29,31], low body
mass index [29,31,32], anemia [29,30], malnutrition [29,31], and low total lymphocyte
count [31], are associated with impaired immune defenses and increase patient vulnerability
to infectious complications during the course of treatment schemes. The lack of inclusion
of these parameters in our nomograms may explain their limited ability to predict survival
outcomes during the first year of follow-up.

Our study has several limitations that merit consideration. First, the reliance on
manually selected slices made the extraction of MRI radiomic features labor-intensive,
time-consuming, and prone to intra- and inter-observer variability [33,34]. Future studies
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with deep-learning-based automated segmentation techniques should work to address this
limitation. Second, a certain degree of technical variability and the potential occurrence
of image artifacts are still a concern in the field of radiomics. Previous studies have
shown that image noise and texture may be affected by variations in MRI acquisition
parameters [35–38]. Additionally, head and neck MRI is prone to swallowing-related
motion artifacts. Collectively, these potential confounders may affect the prognostic value
of the extracted radiomic features. Third, we solely focused on features extracted from
post-contrast T1-weighted images, and other MRI sequences were not taken into account.
Future research should include additional MRI sequences or multiple imaging modalities
to examine a higher number of features. Fourth, it is also possible that the small sample
size may have limited the power to detect significant associations and, for that reason,
larger prospective cohort studies are required. Finally, the single-center design might have
limited the external validity of the results. The prognostic value of our tools needs to be
independently tested in larger, longitudinal investigations.

5. Conclusions

In conclusion, we were able to obtain an accurate prediction of survival outcomes
in patients with hypopharyngeal cancer treated with CCRT through combined radiomic–
clinical models and related nomograms. Our results suggest that the extraction of radiomic
features from MR images may improve the prognostic stratification informed by traditional
clinical variables. Integration of clinical and radiomic signatures may have the potential to
tailor treatment at the individual level.

Author Contributions: Conceptualization, T.Y.S., G.L., C.-H.T. and S.-C.C.; methodology, T.Y.S., C.-
H.Y., G.L., C.-Y.L., C.-T.L., C.-H.T., S.-C.C. and C.-P.L.; software, T.Y.S.; validation, T.Y.S. and H.-M.W.;
formal analysis, T.Y.S., C.-P.L. and S.-H.N.; investigation, T.Y.S., C.-Y.L., H.-M.W., S.-C.C. and S.-H.N.;
resources, C.-T.L.; data curation, T.Y.S., H.-M.W. and S.-H.N.; writing—original draft preparation,
T.Y.S.; writing—review and editing, T.Y.S., C.-H.Y., G.L., C.-T.L., C.-P.L. and S.-H.N.; visualization,
C.-H.Y. and S.-H.N.; supervision, C.-T.L. and S.-H.N.; project administration, S.-H.N.; funding
acquisition, S.-H.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Ministry of Science and Technology of Taiwan. Grant numbers:
MOST 109-2314-B-182A-045 and MOST 110-2314-B-182A-090.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the ethics committee of the Chang Gung Memorial Hospital
(IRB no.201901900B0, date of approval: 3 March 2020).

Informed Consent Statement: This retrospective study received a waiver of patient consent.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Glossary

Abbreviation Meaning
AIC Akaike’s information criterion
AJCC American Joint Committee on Cancer
CCRT Concurrent chemoradiotherapy
CI Confidence interval
CT Computed tomography
HR Hazard ratio
iAUC Integrated area under the receiver operating characteristic curve: An integral of

the product of area under the cumulative/dynamic time-dependent receiver
operating characteristic curve and the probability density function of the
time-to-event outcome

ICC Intraclass correlation coefficient
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LASSO Least absolute shrinkage and selection operator: A penalized regression method
method commonly used in machine learning to select a subset of variables

MRI Magnetic resonance imaging
OS Overall survival: The interval between the date of initial pathologic diagnosis and

the date of death or the end of follow-up
PFS Progression-free survival: The interval between the date of initial pathologic

diagnosis and the date of the first sign of progression, death, or time point
of censoring

Appendix A. Concurrent Chemoradiotherapy Protocol

All patients received intensity-modulated radiotherapy using 6-MV photon beams.
The initial prophylactic field included gross tumor with at least 1-cm margins and neck
lymph node at risk for 46-56 Gy, then cone-down boost to the gross tumor area up to 72 Gy.
Concurrent chemotherapy consisted of intravenous cisplatin 50 mg/m2 on day 1, oral
tegafur 800 mg/day and leucovorin 60 mg/day from day 1 to day 14. This regimen was
administered every 14 days.

Appendix B. Image Pre-Processing and Radiomic Features Extraction

Gadolinium-enhanced T1-weighted MRIs in the format of Digital Imaging and Com-
munications in Medicine (DICOM) were exported to a local console through a picture
archiving and communication system (GE Centricity RA1000, GE Healthcare, Barrington,
IL, USA). These images were converted to the Neuroimaging Informatics Technology Ini-
tiative (NIFTI) format for tumor segmentation and image pre-processing. A pre-processing
pipeline was applied to the fat-saturated gadolinium-enhanced T1-weighted MRI to nor-
malize the signal intensity and geometric variations. Low-frequency intensity nonuni-
formity in MRI was first removed using the N4 bias correction function in simpleITK
(version 2.0.2; https://simpleitk.org). Normalization of the intensity of the MRI signal
was performed by centering the image at the mean with the standard deviation. Out-
lier voxels, which were defined as voxels with a signal intensity that differs more than
3 standard deviations from the mean, were removed from the analysis. Normalized MRIs
were then isotropically resampled using B-spline interpolation to acquire a voxel size
of 1 mm × 1 mm ×1 mm. A fixed bin number of 64 was used for gray-level discretiza-
tion. Radiomic features were extracted from the original image and the filtered images,
including the Laplacian of Gaussian (LoG) filter (σ = 0.5, 1.0, 1.5 mm and 2.0 mm) and
the wavelet filter (LLL, LLH, LHL, LHH, HLL, HLH, HHL and HHH with a mother
wavelet of Coiflet1). A total of 1223 radiomic features were extracted, characterizing tumor
shape (14 features), first-order metrics (18 features), texture patterns (75 features), LoG
features (372 = 93×4 features), and wavelet features (744 = 93×8 features). The image
pre-processing and radiomic feature extraction were performed using the PyRadiomics
platform (version 3.0.1; https://www.radiomics.io/pyradiomics.html) implemented in
Python version 3.7.4.

Appendix C. Statistical Analysis in R

The following R packages were used in this study: (1) “stats” package for the Student
t test and chi-square tests, (2) “irr” package for calculating ICC, (3) “survival” package for
building Cox proportional hazards model and Kaplan-Meier analysis, (4) “glmnet” package
for least absolute shrinkage and selection operator (LASSO)-Cox analysis, (5) “survAUC”
package for calculating integrated area under the time-dependent receiver operating charac-
teristic (ROC) curve (iAUC), (6) “boot” and “boot.pval” packages for performing bootstrap-
ping estimates, and (7) “rms” package for nomograms and calibration curves. Survival
curves were plotted using the ggplot2 package for R.

https://simpleitk.org
https://www.radiomics.io/pyradiomics.html
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