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Simple Summary: We train a deep neural network model to identify CD3 expressing cells from
Hoechst stained slides only, without the need for costly immunofluorescence. Using interpretability
techniques to understand what the model has learned, we find that morphological features in the
nuclear chromatin are predictive of CD3 expression.

Abstract: Multiplex immunofluorescence and immunohistochemistry benefit patients by allowing
cancer pathologists to identify proteins expressed on the surface of cells. This enables cell classification,
better understanding of the tumour microenvironment, and more accurate diagnoses, prognoses,
and tailored immunotherapy based on the immune status of individual patients. However, these
techniques are expensive. They are time consuming processes which require complex staining and
imaging techniques by expert technicians. Hoechst staining is far cheaper and easier to perform, but
is not typically used as it binds to DNA rather than to the proteins targeted by immunofluorescence
techniques. In this work we show that through the use of deep learning it is possible to identify an
immune cell subtype without immunofluorescence. We train a deep convolutional neural network
to identify cells expressing the T lymphocyte marker CD3 from Hoechst 33342 stained tissue only.
CD3 expressing cells are often used in key prognostic metrics such as assessment of immune cell
infiltration, and by identifying them without the need for costly immunofluorescence, we present
a promising new approach to cheaper prediction and improvement of patient outcomes. We also
show that by using deep learning interpretability techniques, we can gain insight into the previously
unknown morphological features which make this possible.

Keywords: deep learning; computer vision; lymphocyte subsets; image classification; imaging

1. Introduction

Among patients with cancers of the same stage, clinical outcomes vary widely [1]. This
is thought to be in large part due to the complex interaction between tumour cells and
the immune response of individual patients, as the proportion, location, and sub-type of
lymphocytes present in the tissue has been shown to have important implications for patient
prognosis [1,2]. There exist proprietary methods to assess immune cell infiltration, which
formally quantify CD3+ and CD8+ T cell lymphocytes both in the centre of tumour and in
the invasive margin, as proposed by Galon et al. [3]. Combining their evaluation with T-
and B-score (CD8+ T cell and CD20+ B cell) as per Mlecnik et al. had significant predictive
power for colorectal cancer patient survival [2,4].

Compared to to the latest guidelines of the American Joint Committee on Cancer/Union
for International Cancer Control (AJCC/UICC) tumour-node-metastasis (TNM) classification,
immune cell infiltration evaluation alone has shown superior prognostic value in international
studies of stage I–IV colon cancer patients. It also has life-saving applications in clinical
decision-making [1,3,5–9]. However, in order to identify the cells necessary to calculate these
valuable metrics, either multiple immunohistochemistry or multiplexed immunofluorescence
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are required—both of which are time consuming and expensive protocols [4,10]. Using
contemporary equipment, three simultaneous rounds of immunohistochemistry takes around
three hours and costs approximately $20 in reagents, whilst multiplex immunofluorescence
requires 9 h and the associated reagents cost upward of $70 for a single slide.

In the present work the first step is taken towards decreasing the cost of identifying
immune cell subtypes. We show that by using deep learning it is possible to identify
CD3 expressing lymphocytes from a common and inexpensive stain. Hoechst and DAPI
(popular blue fluorescent, nuclear-specific dyes [11–13] staining are far cheaper and easier
to perform, costing pennies and requiring just ten minutes per slide. DAPI has better
photostability, but since the slides could be imaged immediately in this work Hoechst 33342
is used due to its superior signal-to-noise (genuine DNA stain/autofluorescence) ratio.

Deep learning techniques are increasingly used in digital pathology to assist human
experts with a range of diagnostic and prognostic tasks [14–16], however, few attempts have
been made to tackle the problem of the high-cost of immunofluorescence with machine
learning. The main existing approach is virtual staining using GANS (Generative Adver-
sarial Networks) [17,18], in which a model is trained to generate immunofluorescence style
stains based unstained (or more cheaply stained) tissue. These virtual stains can then be
used for diagnostic or prognostic purposes, either by an automated system or by a human.
In this work, we skip the virtual staining step and go straight from Hoechst stained image
to classification. For image classification tasks CNNs (Convolutional Neural Networks) are
most widely used [19], as we do herein.

The novelty of our approach is therefore twofold: firstly, we show that it is possible to
identify CD3 expressing lymphocytes from Hoechst stained tissue; and secondly, we do
this without using the interim method of virtual staining.

Our methodology is as follows: we image each tissue section with both Hoechst and
immunofluorescence stains; identify which cells express CD3 using an intensity-based clas-
sifier on the immunofluorescence images; and use those classifications to label the same cells
in the Hoechst-stained images. We then use these Hoechst-image/immunofluorescence-
classification pairs to train a deep neural network to classify CD3 expressing cells, using
the Hoechst images only as input. In this way, we force the network to find patterns
in the Hoechst-stained cells that correspond to the correct immunofluorescence labels,
without ever being exposed to the actual immunofluorescence images.

2. Materials and Methods

The data in this study comprised thirty WSIs taken from cancer biopsies. The slides were
provided by NHS Lothian and were deidentified to preserve patients’ anonymity. The thirty
slides were randomly selected from three larger cohorts of consenting patients, and each
slide was from a different patient. Ten slides were from lung cancer patients, ten from colon
cancer patients, and ten from kidney cancer patients. These were imaged using Hoechst 33342,
and also using immunofluorescence targeting CD3 expressing immune cells, with a Zeiss Zen
Axioscan scanner. An established intensity based classification technique [20] was then used
to identify CD3 expression and label these cells in the immunofluoresence images, the results
of which were quality controlled by direct visual inspection to ensure label accuracy. A cell
classification dataset was then generated by extracting individual images of each cell and
pairing them with the immunofluorescence-generated labels.

2.1. Immunofluorescence (IF) Protocol

Leica BOND RX automated immunostainer (Leica Microsystems, Milton Keynes, UK)
was utilised to perform mIF. The sections were dewaxed at 72 ◦C using BOND dewax
solution (Leica, AR9222) and rehydrated in absolute alcohol and deionised water, respectively.
The sections were treated with BOND epitope retrieval 1 (ER1) buffer (Leica, AR9961) for
20 min at 100 ◦C to unmask the epitopes. The endogenous peroxidase was blocked with
peroxide block (Leica, DS9800), followed by serum free protein block (Agilent, x090930-2).
Then the sections were incubated with the primary antibody (CD3, Agilent, A045229-2, 1:70
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dilution), followed by biotinylated anti-rabbit secondary antibodies (Thermo Fisher, 65-6140),
which was visualised by Alexa flour 750 conjugated streptavidin (Thermo Fisher, S21384). Cell
nuclei were counterstained by Hoechst 33342 (Thermo Fisher, H3570, 1:100) and the sections
were mounted with prolong gold antifade mountant (Thermo Fisher, P36930).

2.2. Image Acquisition and Analysis

Zeiss Axioscan z1 was used to capture fluorescent images at 20× object magnification.
Two different fluorescent channels, Hoechst3334 and AF750 were simultaneously used to
capture individual channel images under 20× object magnification. The exposure time of the
channels were 8 and 800 ms, respectively. The image was generated in CZI (Carl Zeiss Image)
format. The fluorescent images were opened in QuPath v.0.2.3 [21]. StarDist [22] was used
to segment cell nuclei using StarDist2D builder. The probability threshold of cell detection,
pixel size and the cell expansion was 0.6, 0.2270 and 1.0, respectively. The object classifier was
utilised to classify CD3 cells with an intensity threshold of 2200 in the AF750 channel.

The total number of labelled cells present across all slides was 146,883,654. As shown
in Figure 1 these were unequally distributed across the slides, ranging from 16,991 to
723,458 labelled cells per slide. Of these cells, only 21,018,870 expressed CD3—just 14.3%—
and these too were unequally distributed, ranging from 2166 to 122,929.
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Figure 1. Cell counts per slide. Colon and lung slides (shown in yellow and green respectively) formed the
training and validation set. Kidney cancer slides (shown in blue) exclusively formed the holdout test set.

As shown in Table 1, the nucleus and cell measurement features varied to a large
degree. To test whether these simple morphological features alone had predictive power, we
attempted to train a number of different statistical and neural network binary classification
models to discriminate between CD3 cells and an equal number of randomly selected
other cells, based on nucleus area, length, circularity, maximum and minimum diameter,
and solidity. These included a simple linear regression model, and five- and ten-layer neural
networks with ReLU activations. These were trained on a variety of hyperparameters using
grid search, but it was not possible to reach better than chance accuracy, as there is not
enough information in the cell measurements alone to identify CD3 expressing cells. We
then turned to more complex convolutional neural networks to enable direct representation
learning from images. Herein we describe the success found using a standard wide resnet50.
(Other architectures of similar type and size performed comparably).

To create a balanced dataset, from the Hoechst-stained slides all CD3 expressing cells
and an equal number of randomly selected non-CD3 expressing cells were exported at
full resolution. Individual cells were isolated by masking out the background such that
each sample contained one cell only. Each of these single-cell images was of dimension
64 × 64. Each cell image was normalised individually prior to training. Normalisation
was used instead of standardisation to account for variability in pixel value range between
slides. From the thirty slides, all ten kidney cancer slides were held out as test set. Two
slides were selected randomly from each of the remaining lung and colon cancer cohorts
for use in validation, and the remaining eight from each were used for training. Due to
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differing numbers of patches available per slide, this provided a total of 1,159,562, 485,206
and 690,662 total cell images in the training, validation and test set, respectively.

Table 1. Cell and nucleus statistics for all data.

Mean Std Min 25% 50% 75% Max

Detection probability 0.81 0.07 0.60 0.77 0.82 0.86 1.00

Nucleus: Area µm2 29.70 21.23 6.00 16.20 24.33 35.83 1084.42

Nucleus: Length µm 19.74 6.40 8.84 15.28 18.58 22.84 252.07

Nucleus: Circularity 0.88 0.10 0.15 0.84 0.91 0.95 0.99

Nucleus: Solidity 0.99 0.03 0.32 0.99 1.00 1.00 1.00

Nucleus: Max diameter µm 7.39 2.57 2.95 5.59 6.86 8.65 60.04

Nucleus: Min diameter µm 4.90 1.65 1.23 3.76 4.67 5.71 47.91

Cell: Area µm2 48.21 26.95 6.28 30.36 41.97 57.66 1200.90

Cell: Length µm 25.35 6.52 9.56 20.76 24.23 28.58 258.87

Cell: Circularity 0.89 0.08 0.16 0.85 0.91 0.95 0.99

Cell: Solidity 0.98 0.03 0.39 0.98 0.99 1.00 1.00

Cell: Max diameter µm 9.22 2.58 3.56 7.42 8.70 10.50 62.15

Cell: Min diameter µm 6.56 1.71 1.84 5.35 6.33 7.43 48.78

Nucleus/Cell area ratio 0.58 0.09 0.27 0.52 0.58 0.64 1.00

2.3. Model Architecture and Training

All computation was performed using eight NVIDIA Tesla V100 GPUs.
The classification model (a standard torchvision WideResnet50) was trained for up

to 100 epochs using Adam optimisation [23], with a batch size of 512 and a learning rate
of 0.000001. Early stopping was performed to limit overfit, with training halted if no
decrease in validation loss was observed for 10 epochs—this resulted in the model being
trained for 34 epochs in total. In order to directly optimise for a balance of precision and
recall, we used the F1 score as the loss function, such that:

L(ρ, τ) = 1 − 1
C
(

C

∑
c=0

2 τcρc+ε
τcρc+(1−τc)ρc+ε

τcρc+ε
τcρc+τc(1−ρc)+ε

τcρc+ε
τcρc+((1−τc)ρc)+ε

+ τcρc+ε
τcρc+τc(1−ρc)+ε

) (1)

is minimised, where τ is the target class in one-hot form (e.g., a CD3 expressing cell label is
encoded as [0, 1]) and ρ is the softmaxed model output. Empirically we found that using
this F1 loss instead of the more usual cross entropy resulted in an increase in accuracy of
around 7%. This protocol was designed after significant experimentation, considering a
range of architectures and hyperparameters. Both other custom built models and pretrained
ones available in the Pytorch model zoo provided either no significant increase proportional
to computation cost, or a decrease in model performance.

3. Results

Table 2 shows the performance of the model according to these metrics. The model
achieved over 80% precision, recall and F1 score on the test set, showing excellent gener-
alisation to unseen slides. Moreover, since the test slides were from kidney cancer slides
and the training and validation sets from only lung and colon cancer slides, this shows that
the ability to identify CD3 expressing cells from morphological features made visible by
Hoechst staining is not limited to lung and colon cancer patients, and can be generalised
from them to patients with other cancers. Figure 2 shows a number of example cells from
the test set, along with their ground-truth classification and the model’s prediction. Figure 3
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shows the confusion matrices for training, validation and test sets, demonstrating robust
and generalisable classification ability with little evidence of overfit.
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Figure 2. Example cell samples and model predictions from the test set.
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Figure 3. Confusion matrices for training, validation and test sets, along with Receiver Operator
Characteristic (ROC) curve from test set only.
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Table 2. Classification performance on training, validation and test data.

F1 Precision Recall Accuracy

Training 0.802 0.806 0.803 0.802
Validation 0.773 0793 0.776 0.776

Test 0.805 0.807 0.805 0.805

Inspection of the dataset and statistics in the previous section (see Figure 4) shows
that CD3 expressing cells are on average smaller, and exhibit a higher degree of nuclear
solidity than other cells in Hoechst imaging. Since each cell image was individually
normalised prior to training and inference, any relative difference in intensity between
cells of different types would be mitigated to a large extent. However, most of these
differences in distribution would remain even after normalisation, so to explore whether
this higher solidity and difference in size is used by the classification model in preference
to morphological features, training and validation were repeated using the same slides
at 2× lower magnification level. This preserves shape, relative size and relative intensity
but obscures fine-grained features at a cellular level. On this training data the model
performance on validation was far lower, indicating that small features visible at the
highest magnification level were necessary to achieve these results.

µm²

µm²

Figure 4. Cell feature box plots for CD3-expressing and ’Other’ cells in the dataset.

4. Discussion

In this section we employ Hierarchical Perturbation (HiPe) [24] and standard iterative
perturbation [25] to understand how the model is able to identify CD3 expressing lym-
phocytes. These methods are widely used for deep learning interpretability as they offer
intuitive visual interpretations of which regions in the input were more or less important
in determining the model’s output. Both work by perturbing regions of the input and
using the change in the model’s output due to that perturbation to build up a saliency
map. Iterative perturbation does this sequentially, by passing a perturbation kernel of fixed
size k × k over the input. HiPe does this more dynamically, beginning by perturbing large,
overlapping regions and inspecting the relative difference in saliency between those regions.
All regions of the saliency map which exceed a threshold (the mid-range, in the standard
implementation) are split into smaller overlapping regions, which are then each perturbed,
and the saliency map and threshold updated in turn until either the minimum perturbation
size is reached, or no region remains above the saliency threshold. HiPe is typically much
faster than standard iterative perturbation, as by ignoring regions of relative unimportance
the number of operations required is reduced. It also has the benefit of requiring no kernel
size to be specified, as (unlike iterative perturbation) it is capable of identifying salient
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features of any dimension. HiPe was used in preference to other input saliency based
explanatory techniques as it is much quicker than similar perturbation-based saliency
methods, and is more precise than gradient-based methods which are often indistinct.

Hierarchical Perturbation was used to generate saliency maps for CD3 classified cells as
shown in Figure 5.

INPUT HiPe HiPe (max depth) ItP (k = 2) ItP (k = 1)

Figure 5. Saliency maps generated by Hierarchical Perturbation (HiPe) on CD3 expressing cells, at both all
depths and maximum depth only, plus saliency maps generated by standard Iterative Perturbation (ItP)
with kernel sizes of 1 and 2.

The standard implementation of HiPe was used on the softmaxed output of the model,
with “fade” perturbation, such that perturbed portions are replaced with zero input. Addition-
ally, the HiPe saliency maps for each step of the process (i.e., at each kernel size) were retained
in order to isolate the smallest salient features. Input saliency based methods like HiPe explicitly
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show which areas of the input image were more or less important in determining the output for
each class. For comparison we also include standard iterative perturbation saliency maps with
kernel sizes of 2 × 2 and 1 × 1, as the extra computational cost is not too onerous for these small
cell images. Inspection of the saliency maps shown in Figure 5 shows that larger salient regions
comprised the cells themselves, as would be expected—but more interestingly, that the most
salient regions were much smaller, appearing to cluster in the nuclei of the salient cells. We note
also that the outer edges of cells do not appear salient at all, indicating that the model did not
learn to use the circumference, circularity or size of the cells to make predictions, as suspected
based on our previous attempt to train a tabular classifier model from these measurements. This
supports the hypothesis that the model is using morphological features of the chromatin made
visible by Hoechst 33342 staining to perform the classification.

5. Conclusions

In this work we demonstrate that it is possible to identify cells expressing CD3 using
Hoechst staining only. Moreover, we show that with interpretability techniques, neural
networks can become valuable tools for discovery as well as for automation: using saliency
mapping we visualise which features in the input the model is using to make correct
classifications, and find that these saliency maps highlight the nuclear chromatin within
the cells, indicating that the chromatin texture and morphology made visible by Hoechst
staining is predictive of CD3 expression.

Future work will include exploring semi-supervised and unsupervised approaches to
classification via clustering to reduce labelling burden when training new models, alongside
extending and applying this approach to other cancers and proteins. It is our hope that the
application of proven prognostic metrics (such as immune cell infiltration evaluation) to
slides labelled using our method will drastically reduce the cost of immune profiling and
thereby allow more patients to benefit.
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