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Simple Summary: Glioblastoma is the most lethal form of brain cancer in adults. No new successful
treatments have been developed in 30 years and survival rates have not improved, primarily because
of a lack of effective drug treatments. Up to 60% of glioblastoma tumours have increased activity
of a growth factor called epidermal growth factor receptor, which drives tumour growth. However,
targeted therapies against the epidermal growth factor receptor have failed in clinical trials. A key
reason for this is cell plasticity, a trait of brain cells that allow them to change their function in
response to their environment. Tumour cells use plasticity to evade anti-cancer drugs. A group of
genes called anoctamins may be involved in promoting tumour cell plasticity, which are believed to
regulate cancer cell behaviour. This review summarises how anoctamins may regulate growth factor
signalling and discusses a novel theory on how anoctamins may contribute to treatment resistance
in glioblastoma.

Abstract: Glioblastoma is the most common form of high-grade glioma in adults and has a poor
survival rate with very limited treatment options. There have been no significant advancements
in glioblastoma treatment in over 30 years. Epidermal growth factor receptor is upregulated in
most glioblastoma tumours and, therefore, has been a drug target in recent targeted therapy clinical
trials. However, while many inhibitors and antibodies for epidermal growth factor receptor have
demonstrated promising anti-tumour effects in preclinical models, they have failed to improve
outcomes for glioblastoma patients in clinical trials. This is likely due to the highly plastic nature of
glioblastoma tumours, which results in therapeutic resistance. Ion channels are instrumental in the
development of many cancers and may regulate cellular plasticity in glioblastoma. This review will
explore the potential involvement of a class of calcium-activated chloride channels called anoctamins
in brain cancer. We will also discuss the integrated role of calcium channels and anoctamins in
regulating calcium-mediated signalling pathways, such as epidermal growth factor signalling, to
promote brain cancer cell growth and migration.

Keywords: glioblastoma; high-grade glioma; EGFR; anoctamins; ion channels; calcium signalling

1. Introduction

Gliomas are the most common primary malignant brain tumour, with the highest
incidence rates in countries with higher socioeconomic status, including Australia. Sev-
eral studies have reported Australia having the highest age-adjusted glioma incidence
rates [1,2]. Glioblastoma multiforme (GBM), a lethal, grade IV astrocytic glioma, is the
most common form of malignant glioma in adults [3–5]. In Australia, the incidence of
GBM has increased, reaching an average of 3.4 cases per 100,000 person years [6]. GBM
prognosis is one of the worst among all human cancers. The median survival time of GBM
patients is usually less than two years. With treatment, the 2-year survival rate ranges
from 20–35%, and the 5-year survival rate is approximately 10%, depending on patient
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age and therapies used [7–11]. The standard first-line treatment for newly diagnosed GBM
patients is surgical resection followed by radiation therapy plus concurrent and adjuvant
temozolomide (TMZ) treatment [11–13]. Although post-surgical administration of TMZ
is important for increasing the overall survival of newly diagnosed GBM patients [14,15],
the use of alternating electric fields to disrupt tumour cell mitosis as an adjuvant therapy
in combination with TMZ may further improve survival [16–18]. Even still, tumour re-
occurrence often occurs within a year due to the highly invasive nature of GBM and the
infiltrating tumour cells within the surrounding tissue. There is no standard approach
for second-line treatment in recurrent GBM, and the treatment course is determined on
a case-by-case basis. Treatment options include reirradiation, systemic therapies, and/or
reoperation, in which the extent of resection at reoperation becomes a significant prognostic
factor in patient survival [19]. However, even with optimal treatment practices, GBM
remains one of the deadliest diagnoses in modern-day oncology.

Most GBM tumours are isocitrate dehydrogenase (IDH) wild-type, which is often used
to distinguish them from grade II and grade III oligodendrogliomas and other astrocy-
tomas with mutated IDH. The presence of wild-type IDH alongside other specific genetic
alterations, such as chromosomal aberrations (gain of 7p and loss of 10q), telomerase
reverse transcriptase mutation, and epidermal growth factor receptor (EGFR) amplifica-
tion/mutation, are most commonly present in grade IV GBM [20]. EGFR is amplified in up
to 60% of GBM cases, with most of these tumours also harbouring EGFR deletion and point
mutations [21,22]. EGFR status can not only be used diagnostically, but also as a potential
therapeutic target in GBM. Despite the extensive research that has been conducted on the
use of small molecule inhibitors for EGFR and relevant downstream signalling pathways,
little evidence supports improved GBM patient outcomes, compared with standard TMZ
treatment [20,23,24]. Therefore, there is an unmet clinical need for improved therapeutics,
particularly in patient-specific treatment, to provide the best possible patient outcomes and
overall survival.

Active research aims to understand the mechanisms behind resistance to EGFR-
targeted inhibition by investigating the dynamic interrelationship between EGFR sig-
nalling and other tumorigenic pathways. Although still in the early stages of investigation,
one novel avenue is the role of ion channels in tumour cell signalling. This review will
summarise the role of EGFR in cancer cell biology and the current challenges with EGFR-
targeted therapy. Furthermore, this review will explore the role of calcium-mediated ion
channels in tumorigenesis and discuss whether the link between EGFR and ion chan-
nel signalling could provide an opportunity to develop new targeted therapies for GBM
patients.

2. EGFR Signalling and Variant Expression in GBM

EGFR (ErbB-1/HER-1), along with ErbB-2 (HER-2), ErbB-3 (HER-3), and ErbB-4
(HER4), belong to the family of ErbB receptor tyrosine kinases [25,26]. ErbB proteins con-
tain a conserved intracellular domain, which includes the tyrosine kinase domain, a single
pass hydrophobic transmembrane domain, and a less conserved extracellular domain
responsible for ligand binding [27]. EGFR binds primarily to EGF, transforming growth
factor α, and amphiregulin. Other ligands, such as betacellulin, heparin-binding growth
factor, and epiregulin, may bind to both EGFR and ErbB-4 receptors [26]. Ligand binding
stimulates receptor homo- and heterodimerisation. ErbB-2 is the preferred receptor for
heterodimerisation because it primarily functions as a co-receptor and is incapable of ligand
binding [27]. Dimerisation activates and phosphorylates the tyrosine kinase domains on the
intracellular tail, providing a docking site for signalling proteins containing Src homology
2 domains or phosphotyrosine binding domains [25,26]. The main downstream signalling
proteins include growth factor receptor-bound protein 2/son of sevenless (Grb2/Sos), phos-
phoinositide phospholipase C (PLC), phosphoinositide 3-kinase (PI3K), and janus kinase
(JAK). The Grb2/Sos complex activates the Ras/Raf/MEK/ERK signalling cascade. PLC
metabolises phosphoinositol complexes to form inositol 1,4,5-trisphosphate (IP3), which
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stimulates endoplasmic reticulum (ER) calcium store release and activates protein kinase
C (PKC). PKC is well known to be involved in promoting GBM cell migration and inva-
sion [28–30]. PI3K inhibits apoptosis and promotes cell survival by activating protein kinase
B (Akt) signalling through phosphatidylinositol 4,5-bisphosphate/phosphatidylinositol-
3,4,5-triphosphate (PIP2/PIP3) formation. JAK interacts with EGFR to phosphorylate and
activate STAT transcription factor proteins. The roles of these pathways in regulating cancer
cell proliferation, apoptosis, and cell stemness are well established and have been covered
extensively in other reviews [31–33].

Up to 60% of GBM tumours have EGFR amplification and/or mutation [21,22,34]. A
large number of the EGFR variants found in GBM are characterised by a deletion in the
extracellular or intracellular domain [34]. The most common EGFR deletion is EGFRvIII,
which lacks exons 2–7 in the extracellular domain and is found in as much as 66% of
GBM tumours with amplified EGFR [22,35–42]. While EGFRvIII is incapable of ligand
binding, both EGFRvIII and another variant, EGFRvII (exon 14–15 deletion), are constitu-
tively active [43]. Other EGFR mutants have been identified, including deletions in the
cytoplasmic tail (exon 25–27 deletion and exon 25–28 deletion), EGFR genomic rearrange-
ments, and extracellular domain point mutations, although these variants are expressed at
lower frequencies [21,35]. These variants provide a unique oncogenic advantage to tumour
cell signalling and GBM survival [34]. However, EGFRvIII expression remains the most
common and problematic EGFR mutation in GBM.

Although EGFRvIII expression is specific to tumour cells and is not found in healthy
tissue, its expression is heterogenous within the GBM tumour, and can be lost upon GBM
recurrence [43–46]. This heterogeneity can be attributed to several factors. First, EGFRvIII-
expressing cells drive the growth of EGFR amplified cells through secretion of cytokines
and growth factors, thus there is not a strong selection for EGFRvIII cells in the whole
tumour [44]. Second, development of the EGFRvIII mutation is a late event, so many other
clones are already established before its appearance [44]. Finally, EGFR amplicons and the
EGFRvIII variant may also be found on extrachromosomal double minute DNA fragments,
which may be reversibly lost as a mechanism of therapeutic resistance [47,48]. Unequal
segregation of extrachromosomal double minute DNA fragments containing EGFRvIII
may further contribute to the heterogenous expression within the tumour. Collectively,
these unique and dynamic expression patterns make EGFR-targeted therapy in GBM a
challenging task.

3. EGFR Inhibition in GBM–Clinical Trials and Limitations
3.1. EGFR Small Molecule Inhibitors

Several EGFR-targeting drugs, including small molecule inhibitors, antibodies, and
vaccines, have been trialled in newly diagnosed and recurrent GBM patients, but with
very limited success (Table 1) [31,49]. First-generation small molecule EGFR inhibitors
(gefitinib, erlotinib, and lapatinib) block the ATP site of the tyrosine kinase domain and
have reasonable tolerability in GBM patients, but do not increase overall survival [50–63].
Significant limitations of these first-generation inhibitors are their limited ability to maintain
occupancy of the ATP-binding site on EGFR and their lower affinity for mutant forms
such as EGFRvIII [64]. The second-generation inhibitors, afatinib and dacomitinib, were
designed to irreversibly bind to the kinase domain of both EGFR and other ErbB family
members but also failed to improve clinical outcomes as a single agent therapy in recurrent
GBM patients [65–67]. A third-generation EGFR inhibitor, osimertinib, is the newest FDA-
approved small molecule EGFR inhibitor and binds to the cysteine 757 residue in the ATP
pocket of EGFR [68]. Promising preclinical studies show that osimertinib can efficiently
cross the blood–brain barrier and inhibit both wildtype EGFR and EGFRvIII [69,70]. A case
study of a woman with multifocal GBM demonstrated a complete response of one of the
tumour sites to osimertinib treatment; however, the disease progressed at the other tumour
site, likely due to the heterogeneous nature of the patient’s EGFR mutation status [71]. A
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phase II clinical trial of osimertinib is currently underway for patients with recurrent GBM
(NCT03732352).

Table 1. EGFR-targeted therapy in GBM clinical trials.

Drug Class Compound Trial Patients Intended
Therapy Survival Outcomes Other Comments Reference

1st generation
EGFR SMI

Gefitinib

I/II ND Combination
with RT

OS: 11.5 months; no OS
benefit vs. RT alone.

Younger age correlates with
better outcome; EGFR

expression no prognostic
value for treatment.

[53]

II ND Adjuvant
(post-RT)

No difference in OS/PFS;
only patients with AE

demonstrated
improved OS.

Clinical outcomes not
affected by EGFR status. [50]

II Recurrent Monotherapy
EFS: 17 weeks; OS: 39.4
weeks; 1-year survival

probability: 35.6%.

Well tolerated; clinical
outcomes not affected by

EGFR status.
[51]

II Recurrent Monotherapy

17.9% patients showed
disease stabilisation; OS:

24.6 weeks; PFS(6): 14.3%;
PFS(12): 7.1%.

Limited activity;
EGFR status & p-Akt

expression not predictive of
drug activity.

[52]

Erlotinib

I ND Combination
with RT

TTP: 26 weeks; OS:
55 weeks; progression in

84% of patients.
MTD not reached. [60]

I/II ND
Combination

with RT
and TMZ

OS: 15.3 months; no
benefit in OS vs.
TMZ controls.

AE (grade 3/4);
EGFR/PTEN/p53 status not

predictive of survival.
[55]

I/II Recurrent

Combination
with

temsirolimus
(mTor inhibitor)

PFS6: 13%.

MTD: 15 mg temsirolium
weekly + 150 mg erlotinib

daily; MTD lower than
expected due to increased
toxicity; EGFR status not

correlated with PFS.

[57]

I/II Recurrent Monotherapy

PFS: 1.9 months; OS:
6.9 months; all patients

showed disease
progression whilst
receiving treatment

90% patients with severe AE. [61]

II ND
Combination

with RT
and TMZ

PFS: 2.8 months; OS:
8.6 months; 4 (11.1%)

treatment-related deaths.

Not efficacious with
unacceptable toxicity; trial
terminated after accrual of

27 patients.

[54]

II ND

Combination
with RT, TMZ,

and
bevacizumab

(VEGF inhibitor)

OS: 19.8 months; PFS:
13.5 months.

Well tolerated; improved
PFS but not OS. [63]

II Recurrent Monotherapy PFS(6): 11.4%
(control 24%).

Well tolerated; EGFR and
pAkt status not correlated

with outcomes.
[56]

II Recurrent Monotherapy
OR: 6.3%, response

duration: 7 months, 6PFS:
20%; OS: 9.7 months.

Outcomes not related to
EGFR

amplification/EIAED status.
[59]

II Recurrent Monotherapy PFS(6): 3%; PFS: 2 months;
OS at 12 months: 57%.

1◦ toxicity dermatologic; no
effect on EGFR signalling;
rash development in cycle
1 correlated with survival.

[62]

Lapatinib I/II Recurrent
Combination

with pazopanib
(antiangiogenic)

MTR not reached; PFS6:
0%–PTEN/EGFRvIII-

positive,
15%–PTEN/EGFRvIII-

negative.

Early termination from poor
survival; PK data

determined exposure to
lapatinib subtherapeutic.

[58]

2nd
generation
EGFR SMI

Afatinib I/II Recurrent

Monotherapy
compared to
combination
with TMZ

PFS6: 3% MT, 10% with
TMZ; 1 partial response
with MT, 2 with TMZ.

MTD: 40mg/day; PFS longer
in EGFRvIII-positive

tumours vs.
EGFRvIII-negative tumours.

[65]

Dacomitinib
II Recurrent Monotherapy

PFS6: 10.6%; PFS:
2.7 months; OS:

7.4 months; 1 complete
response; 2

(4.1%) responses.

[66]
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Table 1. Cont.

Drug Class Compound Trial Patients Intended
Therapy Survival Outcomes Other Comments Reference

II
EGFR

gene am-
plification

Monotherapy
PFS12: 8.9%; 14.3% of Px

experienced
clinical benefit.

EGFRvIII/EGFR ECD
missense mutation not

associated with
clinical benefit.

[67]

3rd generation
EGFR SMI Osimertinib II

EGFR
gene am-

plification
Monotherapy No results published. NCT03732352

Anti-EGFR
antibodies

Cetuximab
II Recurrent

Combination
bevacizumab

and irinotecan
(chemotherapy)

PFS6: 30%; OS: 29 weeks;
efficacy not superior

versus beva-
cizumab/irinotecan alone.

RR: 2 Px complete, 9 partial;
well tolerated except for

skin toxicity.
[72]

II Recurrent Monotherapy
TTP: 19.9 months;

PFS < 6 months; OS:
5 months.

No significant correlation
between response, survival,

EGFR amplification.
[73]

Nimotuzumab

I/II Malignant
gliomas

Combination
with

radiochemother-
apy

OS: 10.4 months (control
10.5 months); 1 year
survival rates: 81.3%

(69.1%); RR: 7.0% (52.2%).

Differences not significant;
trend towards improved

treatment efficacy.
[74]

II ND
Combination

with RT
and TMZ

PFS: 10 months; OS:
15.9 months; PFS6: 69.2%.

No correlation between
efficacy & EGFR expression;
survival similar to historical

data of standard therapy.

[75]

III ND

Combination
with

radiochemother-
apy

PFS12: 25.6% (control
20.3%); PFS; 5.6 months

(4.0 months); OS:
19.5 months with residual

tumour,
23.3 months without.

WT; EGFR amplification did
not correlate with efficacy. [76]

Depatux-m

I ND;
recurrent

Monotherapy
compared to
combination
with TMZ

PFS6: 30.8%; OS:
10.7 months.

MTD: 1.5 mg/kg with TMZ,
not reached as MT; RP2D:

1.25 mg/kg.
[77]

II
Recurrent;
EGFR am-
plification

Monotherapy
compared to
combination
with TMZ

PFS: 1.9 months
(Depatux-m) vs.

2.7 months (Depatux-m +
TMZ); OS: 7.9 months vs.

9.6 months.

[78]

Observational Recurrent Combination
with TMZ

OS: 9.04 months;
OS(12): 37%.

MGMT methylation status
only factor significantly
associated with survival;

moderate,
manageable toxicity.

[79]

ABT-414 II ND
Combination
with RT and

TMZ
No results published. NCT02573324

EGFRvIII
peptide
vaccine

Rindopepimut

II ND Combination
with TMZ

PFS(6): 66%; OS:
21.8 months; OS(36): 26%.

Well tolerated; EGFRvIII
eliminated in 4/6 (67%) of

tumour samples after
>3 months therapy.

[80]

III
ND;

EGFRvIII
mutant

Combination
with TMZ

No significant difference
in OS; OS: 20.1 months vs.

20.0 months (control).
[81]

CAR T cell
therapy NA

I
Recurrent;
EGFRvII
mutant

Monotherapy PFS: 1.3 months; OS:
6.9 months.

Persistence of CAR+ cells
correlated with dose but no

objective responses.
[82]

I Recurrent Monotherapy No results published. NCT03618381

AE, adverse effect; BCNU, carmustine; CAR, chimeric antigen receptor; CO, clinical outcomes; CT, chemotherapy;
DE, dose escalation; DLT, dose limiting toxicity; ECD, extracellular domain; EGFR, epidermal growth factor
receptor; EIAC, enzyme-inducing anticonvulsant; MGMT, O6-methylguanine-DNA-methyltransferase; MT,
monotherapy; MTD, maximum tolerated dose; mTOR, mammalian target of rapamycin; MTR, maximum treatment
regimen; NA, not available; ND, newly diagnosed; OR, overall response; OS, average overall survival (months);
OS(12/36), overall survival at 12 or 36 months (% of patients); p-Akt, phospho-protein kinase B; PEP, primary
end point; PFS, average progression free survival; PFS(6/12), progression free survival at 6 or 12 months; PK,
pharmacokinetic; PTEN, phosphate and tensin homolog; Px, patient; RP2D, recommended phase 2 dose; RR,
response rate; RT, radiotherapy; SMI, small molecule inhibitor; TMZ, temozolomide; TTP, time to progression;
VEGF, vascular endothelial growth factor; WT, well tolerated.
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3.2. Anti-EGFR Antibodies and Antibody-Drug Conjugates

FDA-approved monoclonal anti-EGFR antibodies, including cetuximab, panitumumab,
and nimotuzumab, bind to the extracellular L2 domain of the EGFR ligand binding site,
thereby preventing ligand binding and receptor dimerisation. Although these antibodies
have shown success in other cancer types, to date, they have shown little efficacy in glioma
patients [83]. Cetuximab has failed to improve outcomes in EGFR-expressing GBM patients
compared with non-expressing patients [72,73]. Furthermore, a preclinical study has shown
that cetuximab inhibits phosphorylation of wild-type EGFR and causes internalisation of
EGFRvIII but does not inhibit EGFRvIII activity. Instead, it causes increased EGFRvIII
phosphorylation and downstream signalling, thus leading to drug resistance [84]. Sim-
ilarly, clinical trials have shown that nimotuzumab treatment is well tolerated and may
improve survival outcomes in newly diagnosed GBM patients, but these survival rates
were not significantly higher than the control groups treated with standard radiochemother-
apy alone [74–76]. Additionally, nimotuzumab has been trialled in paediatric high-grade
glioma (HGG) as a tolerable and potential treatment option for newly diagnosed or re-
lapsed/progressing HGG patients, but with no significant improvements in HGG patient
survival [85,86]. A preclinical study demonstrated that of all the clinically approved anti-
EGFR antibodies, panitumumab was the only one capable of neutralising both EGFR and
EGFRvIII in vitro and in vivo [87].

Other antibody agents have been developed with increased specificity in targeting
EGFR and EGFRvIII, the latter being nonresponsive to the antibodies described above due
to the deleted L2 domain. Depatuxizumab mafodotin (Depatux-M) is an antibody-drug
conjugate derived from the monoclonal antibody mAb 806, which selectively targets EGFR
amplification and EGFRvIII specifically in GBM tissue [88]. The antibody is conjugated to
monomethyl auristatin F, a cytotoxin that inhibits microtubule function and results in cell
cycle arrest and apoptosis [77]. In a recent phase II clinical trial (Intellance2), Depatux-M
and TMZ combination treatment significantly increased 2-year survival rates in a subset of
GBM patients who relapsed 16 weeks after completion of TMZ treatment compared with
those treated with Depatux-M alone or TMZ alone. However, the primary endpoint of
improved overall survival for the entire patient cohort was not reached, despite a trend
towards increased survival in the Depatux-M plus TMZ-treated patients [78]. Another
single-arm multicentre observational study of recurrent GBM patients showed similar
survival outcomes in patients treated with Depatux-M plus TMZ [79]. A phase II trial
(Intellance1) is currently underway to determine the efficacy of Depatux-M in newly
diagnosed GBM patients (NCT02573324).

3.3. Other EGFR-Targeted Agents

Rindopepimut is a vaccine consisting of an EGFRvIII peptide sequence designed to ac-
tivate a specific immune response towards EGFRvIII-expressing tumour cells [89]. A phase
II clinical trial showed promising results with loss of EGFRvIII expression in most newly di-
agnosed GBM patients treated with rindopepimut alongside standard radiochemotherapy
treatment [80]. However, in the phase III clinical trial, there was no significant difference
in overall survival of newly diagnosed GBM patients treated with the vaccine and TMZ
compared with those treated with the vehicle control and TMZ [81].

Chimeric antigen receptor (CAR) T cells have also been investigated for their potential
benefit in GBM, particularly in targeting EGFRvIII, which is known to be a tumour-specific
epitope. Although preclinical studies demonstrated this was a promising approach [90,91],
in a pilot study of 10 GBM patients treated with EGFRvIII-targeting CAR T cells, no
objective responses were met [82]. A new clinical trial is currently underway combining
CAR T cell therapy with mAb806 to target amplified EGFR and EGFRvIII with more
tumour specificity. This trial is currently recruiting children and young adults with various
non-central nervous system solid tumours to evaluate this therapy’s tumour-specific and
non-specific off-target effects (NCT03618381). Once maximum tolerated doses and safety
profiles are established, this therapy may move to future GBM clinical trials.
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4. The Role of EGFR in Cancer Cell Growth, Invasion, and Survival in GBM

Despite these extensive attempts to improve survival outcomes for GBM patients
with EGFR-expressing tumours, there is little clinical evidence supporting the benefit of
EGFR-targeted therapies in GBM treatment. The heterogenous nature of GBM certainly
contributes to the treatment difficulties [92]. Other genetic aberrations in genes such as
platelet-derived growth factor receptor, cyclin dependent kinase 4, and neurofibromin
are also involved in regulating progenitor and mesenchymal-like cell states within the
heterogenous tumour [93]. In fact, GBM tumours can be derived from a heterogenous
mix of these different cell states, demonstrating the highly plastic nature of GBM cancer
cells [93]. More specifically, high EGFR expression is related to maintaining a highly
proliferative, astrocytic-like state in GBM tumour cells [93]. In this regard, one of the main
reasons for therapeutic resistance in GBM is due to the proliferative and highly invasive
nature of GBM tumours, which can be attributed to cellular plasticity and the dynamic
changes in expression and signalling of EGFR.

EGFR and Cell Migration and Invasion: Extracellular Matrix Remodelling and Intracellular Signalling

The earliest steps in growth factor-mediated cell migration involve the co-localisation
of integrins with EGFR at focal adhesions upon growth factor stimulation [94]. Integrins
are membrane bound adhesion molecules that bind to the extracellular matrix (ECM) and
are required for cell migration. Co-localisation of integrins and EGFR at the focal adhesion
site is followed by recruitment of the focal adhesion kinase (FAK)-Src complex to facilitate
downstream signalling for cell migration, especially by activating the Rho GTPase family,
which regulates actin for cytoskeleton remodelling required for cell migration, adhesion,
and polarity [95,96]. Of course, EGFRvIII may also act as a scaffold to activate FAK to
promote glioma cell migration [97–99]. Additionally, the signalling cascades associated
with FAK-mediated cell migration and EGFR cell signalling significantly overlap, as FAK
may also activate the Ras/ERK and PI3K/Akt cascades [94,100,101], demonstrating the
complexity of EGFR signalling in cancer cells depending on the context of activation and
localisation on the cell itself.

Cell migration is required for GBM cells to invade through the ECM and infiltrate
through the surrounding tissue. It has been well characterised that EGFR and FAK acti-
vation promote cell invasion through increased expression of matrix metalloproteinases
(MMP), particularly MMP-2 (gelatinase-A) and MMP-9 (gelatinase-B) [99,102–104], as well
as other proteases [105], which are proteolytic enzymes that degrade proteins within the
ECM to facilitate tumour cell migration and invasion. GBM tumours are frequently found
to have upregulation of MMP-2 and MMP-9 [106–109]. Indeed, active MMP-9 expression
can occur in up to 73% of EGFR amplified tumours and is strongly correlated with EGFRvIII
expression, with MMP-9 expression occurring in up to 83% of EGFRvIII-expressing tu-
mours [110]. The precise signalling pathways involved in EGFR/FAK-mediated cell
invasion are unclear, as it appears that all the main downstream effectors, including
ERK [111–113], Akt [104,114], and STAT [99,103,115], may play a role in activating MMP
expression. A recent study demonstrated that EGF-mediated activation of MMP-9 oc-
curred through increased PI3K/Akt, ERK1/2, and STAT3/STAT5 signalling in glioma cells,
leading to NF-κB localisation to the promoter of the MMP-9 gene and promoting GBM
migration and invasion in vitro [116]. Furthermore, EGFRvIII has been shown to be critical
for activation of FAK through the JAK2/STAT3 axis required for MMP-2/9 expression and
GBM cell invasion [97,99].

However, the signalling cascades associated with EGFR activation and tumour cell
growth and invasion are complex and have yet to be fully elucidated. For example, there
are apparent differences in the downstream signalling pathways of EGFR and EGFRvIII
in GBM cells. Lorimer and Lavictoire elegantly demonstrated that EGFRvIII promoted
constitutive phosphorylation of ERK and Akt, and that this activity was dependent on
P13K kinase activity [117]. Furthermore, inhibition of PLC also blocked ERK phospho-
rylation by EGFRvIII. In contrast, EGF-mediated activation of wild-type EGFR resulted
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in phosphorylation of ERK and Akt even in the presence of P13K inhibitors and PLC
inhibitors, suggesting that wild-type EGFR utilises different kinase signalling cascades
to EGFRvIII [117]. Notably, EGFRvIII-expressing glioma cells may promote increased
expression of PKC [28], the downstream effector enzyme of PLC, which is known to be a
modulator of the ERK signalling cascade and is involved in glioma cell migration [118,119].
This is also supported by proteomics data which has shown that EGFRvIII-expressing
glioma cells secrete greater numbers and levels of invasion-promoting proteins compared
to wild-type EGFR glioma cells, such as increased expression of MMP-2 and the protease
cathepsin B [120], both of which are responsible for ECM remodelling and cell invasion.
It is clear that GBM cell proliferation, migration, and invasion can be achieved through
multiple signalling cascades, activated by kinase activity of wild-type EGFR, EGFRvIII,
or both, highlighting the multifarious nature of EGFR signalling in GBM, which makes
targeting EGFR as an anti-tumour strategy challenging for translation into clinical benefit.

To further complicate the dynamics of EGFR in cancer cell biology, EGFR has a variety
of kinase-independent (KID) pro-survival roles in cancer cells [121]. The ability of EGFR
to stabilise the sodium/glucose cotransporter 1 (SGLT1) to maintain glucose levels and
prevent autophagy death in a KID manner, was the first detailed study describing this
phenomenon [122]. Similar KID interactions with fatty acid synthase (FASN) and PUMA
all promote pro-survival in cancer cells [121]. KID-EGFR activity may also result from
dimerisation with other ErbB family members or through the cross-talk of other kinases,
such as the mammalian target of rapamycin (mTORC2) [121,123]. The KID activity of EGFR
is another possible mechanism by which EGFR inhibitors are less efficacious than expected
in a range of tumours.

One aspect of tumour biology that may also drive therapeutic resistance in GBM is
cellular plasticity [92]. Maintaining ionic currents is essential for cellular signalling in
normal astrocyte function and EGFR-amplified tumours. This mechanism could regulate
cancer cell plasticity. Thus, EGFR+ astrocyte-like GBM is likely to have dysregulated ion
channel expression that mirrors the highly proliferative state of the astrocyte-like cells. Ion
channels regulate cell proliferation, cell migration, and tumour invasion by controlling the
movement of important ions, such as calcium, potassium, and chloride, that act as signals
for cellular pathways and cell volume regulation [124,125]. Calcium waves, known to
modulate astrocyte processes and contribute to neuronal plasticity [126], may be especially
important in astrocytic-like GBM. Calcium waves, along with EGFR signalling, which is also
dependent on calcium signalling, may support tumour cell proliferation, migration, and
invasion. However, the physiological mechanisms of how ion channels contribute to GBM
progression remains a relatively unexplored research avenue. The remainder of this review
will focus on a few classes of ion channels involved with calcium signalling, including a
family of calcium-activated chloride channels (CaCC) called anoctamins (ANOs), which
have been implicated in cancer pathogenesis in recent years.

5. ANOs in Cancer

The ANO family contains 10 protein members, ANO1–ANO10 (TMEM16A–
TMEM16K) [127,128]. ANO1 and ANO2 are well studied and have been shown to have
calcium-dependent chloride ion channel activity [129–132]. However, other members of
the ANO family are less well characterised and may have other functions. The activ-
ity and selectivity of ANOs largely depend on intracellular Ca2+ concentrations and on
the proliferative state of the cell. For example, proliferating cells may have increased
expression of ANO1, ANO6, and ANO10 [127]. Several recent studies have shown that
ANO1 (TMEM16A) is overexpressed in many cancer types such as breast cancer, head and
neck squamous cell carcinoma (HNSCC), prostate cancer, colorectal cancer, and glioma
(Table 2) [133].
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Table 2. ANOs in cancer.

ANO Role Cancer Type Comments/Mechanism Reference

ANO1

Proliferation

OSCC OE; PS; promotes MVA pathway. [134]

Breast
OE; upregulates EGFR/HER2

expression; activates EGFR and
CAMK signalling.

[135,136]

Glioma OE; upregulates NF-κB pathway. [137]

Colorectal OE. [138]

HNSCC OE; PS; binds and stabilises EGFR. [139]

Metastasis

Gastrointestinal OE; PS. [140]

HNSCC
UE; switch between proliferation and
metastasis; dependent on promoter

methylation status.
[141]

Invasion, migration Glioblastoma
OE; binds and stabilises EGFRvIII;

activates MAPK/PI3K
signalling pathways.

[142]

ANO5

Proliferation Pancreatic OE; PS. [143]

Migration Thyroid UE; activates JAK/STAT3 pathway. [144]

Proliferation, migration Osteosarcoma OE; promotes NELL1/2 degradation. [145]

ANO6 Proliferation, invasion Glioma OE; PS; via ERK activation. [146]

ANO7 Differentiation Prostate UE; PS; interacts with
PTEN/Akt pathway. [147]

ANO9 Proliferation

Pancreatic OE; PS; activates ERK/EGFR signalling. [148]

Colorectal
carcinoma UE; PS; inhibits ANO1 activity. [149]

Akt, protein kinase B; CAMK, calmodulin-dependent protein kinase; EGFR, epidermal growth factor receptor;
HER2, human epidermal growth factor receptor 2; HNSCC, squamous cell carcinoma of the head and neck;
JAK, Janus kinase; MAPK, mitogen-activated protein kinase; MVA, mevalonate acid; NELL, Nel-like proteins;
NF-κB, nuclear factor kappa B; OE, overexpressed; OSCC, oral squamous cell carcinoma; PI3K, phosphoinositide
3-kinase; PS, correlated with poorer survival; PTEN, phosphatase and tensin homolog; STAT, signal transducer
and activator of transcription; UE, under-expressed.

5.1. ANOs and Cell Migration: Regulators of Cell Volume

ANOs may regulate cancer cell volume changes by increasing chloride efflux and caus-
ing cell shrinkage during cancer cell migration [150,151]. Increasing evidence demonstrates
the pivotal role of ion channels, particularly Cl− channels, in the invasion and migration
of glioma cells [152]. Cells must adapt their shape and volume when migrating through
narrow pores. This is achieved through net ion uptake and efflux and local regulated
volume decrease (RVD) [153,154]. Several ANO paralogues are activated during hypoos-
motic cell swelling, stimulating Cl− conductance and RVD [151,155]. The membranous
ion channels and proteins involved in osmotic water flux often display altered activity or
expression in metastatic cancer cells [156]. For example, ANO1 expression is required to
initiate swelling-activated whole-cell currents in colonic epithelium and salivary acinar cells
in vivo [151]. Furthermore, ANO1-generated Cl− efflux accompanies potassium (K+) efflux
and collectively drives the osmotically-determined H2O efflux necessary for RVD [157].
Additionally, knockdown of endogenous ANO6, ANO8, and ANO10 in vitro also reduces
volume-regulated chloride currents, demonstrating the potential involvement of other
ANOs in cell volume regulation [151].

5.2. ANO1 in Glioma

ANO1 is expressed in glioma cancer cell lines and patient glioma tissues, and ex-
pression correlates with a high pathological grade [133,137,142,158,159]. Furthermore,



Cancers 2022, 14, 5932 10 of 29

several studies have shown that ANO1 knockdown reduces cell proliferation, migration,
and invasion of glioma cells in vitro, suggesting a critical role in brain cancer cell func-
tion [137,142,159]. Although the precise mechanisms of ANO1 in glioma progression
remain unclear, it was first suggested that ANO1 expression is associated with activation of
the nuclear factor-κB (NF-κB) signalling pathway [137]. More recently it has been shown
that ANO1 directly interacts with and stabilises EGFRvIII in glioma cells [142]. Importantly,
the oncogenic function and constitutive activity of EGFRvIII is largely dependent on its
stability within the plasma membrane, as determined by its ability to continuously trans-
phosphorylate itself and resist internalization and degradation [160–162]. Furthermore,
inhibition of ANO1, through knockdown or drug inhibition, reduces the expression of
EGFRvIII, NOTCH1, and other cancer stem cell markers [142]. ANO1 has also been shown
to mediate EGFR signalling in HNSCC and breast cancer cells [136,139]. This evidence
suggests that ANO1 expression may play a significant role in promoting the activation of
various cell surface receptors on cancer cells that are required for intracellular signalling
and cell growth. However, it has yet to be determined whether ANO1 also binds with
NOTCH receptors in a similar manner to EGFR in glioma.

5.3. Other ANOs in Cancer

ANO6 is believed to act both as a lipid scramblase and a nonselective ion chan-
nel [128,163]. ANO6 is involved in regulating cell viability and apoptosis via calcium-
mediated lipid scrambling and externalisation of phosphatidylserine [163–166]. ANO6
knockdown impairs cell migration in Ehrlich-Lettre ascites cells along with ANO1 [167].
ANO6 also supports calcium-mediated RVD [165], which plays a coordinated role in cell
migration and proliferation [168,169]. A recent study showed that ANO6 is increased in
human glioma tissue and that high ANO6 expression is associated with worsened survival
(Table 2) [146]. Furthermore, ANO6 knockdown reduces glioma cell viability, proliferation,
and invasion by inhibiting ERK signalling [146]. However, it remains unclear whether
ANO6 regulates glioma cell progression via ion current activity, scramblase activity, or a
combination of these effects in synergy with other ANO proteins such as ANO1.

ANO9 has been studied for its role in pancreatic cancer where, like ANO1, it binds
to and activates EGFR and downstream ERK signalling (Table 2) [148]. EGFR forms com-
plexes with both ANO1 and ANO9, but EGFR preferentially binds to ANO9 in much higher
quantities than ANO1 [148]. Consequently, ANO9 promotes pancreatic cancer cell prolif-
eration in vitro and in vivo [148]. Furthermore, ANO9 knockdown sensitises pancreatic
cancer cells to EGFR-targeted treatment with erlotinib [148]. Similarly, ANO5 has also
been studied for its role in proliferation and migration in pancreatic cancer [143], thyroid
cancer [144], and osteosarcoma [145] models in vitro, and ANO7 has been associated with
poor prognosis in prostate cancer [147] (Table 2). This suggests that other ANOs besides
ANO1 may play similar roles in cancer cell progression. However, ANO pathways in brain
cancer are still largely unexplored.

6. ANO-Targeted Therapy in Cancer

ANO1 has become a therapeutic target of interest, and several small molecule in-
hibitors have been shown to reduce ANO1 activity (Table 3). For example, CaCCinh-A01 is
a non-selective CaCC inhibitor that reduces ANO1 current activity, causes ANO1 protein
degradation, and inhibits cell proliferation and invasion [142]. CaCCinh-A01 also inhibits
the growth of HNSCC cells by reducing EGFR activity and sensitises the cancer cells to
EGFR-targeted therapy [139,170]. Similarly, another CaCC inhibitor, diethylstilbestrol
(DES), also inhibits ANO1 and ANO2, reduces EGFR activation, and decreases non-small
cell lung cancer (NSCLC) cell migration [171]. However, considering that CaCCinh-A01
and DES are non-selective CaCC inhibitors, it cannot be concluded that the reduced EGFR
signalling and anti-cancer effects are due to reduced ANO1 current activity. It has yet to be
explored whether CaCC inhibitors alongside EGFR-targeted therapy would be a promising
combination therapy in glioma.
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Table 3. ANO inhibitors in cancer.

Compound ANO Target Condition Effect of Inhibition Reference

CaCCinh-AN01 ANO1
ANO2

Prostate cancer Inhibited proliferation and induced apoptosis [172]
Colon cancer

GBM
Suppressed GSC activities, reduced expression of
stemness-related factors, and reduced EGFRvII

signalling
[142]

HNSCC Reduced cell viability via reduced EGFR activity and
sensitised cells to EGFR-targeted therapy [139,170]

DES ANO1
ANO2 NSCLC Inhibited cell viability and migration through

reduced activation of EGFR [171]

3n ANO1
ANO2 Prostate cancer Reduced cancer cell viability and induced apoptosis

via caspase 3 activation and PARP cleavage [173]

2-aminothiophene-3-
carboxamide ANO1 GBM Suppressed proliferation, migration, and invasion of

GBM cells [174]

Cepharanthine
ANO1
ANO2
ANO6

Lung adenocarcinoma Inhibited cell proliferation and migration, induced
apoptosis, and reduced tumour growth [175]

NFA
ANO1
ANO2
ANO6

Hepatoma Blocked cell cycle progression and decreased
intracellular Ca2+ [176]

NPC Inhibited proliferation, migration, and invasion
through reduced ERK [177]

NPPB
ANO1
ANO2
ANO6

Glioma NPPB conjugated to TMZ inhibited cell proliferation,
migration, and invasion [178]

OSCC Induced EMT via Wnt/ß-catenin signalling [179]

Niclosamide ANO1
ANO6 GBM Reduced GBM malignancy via reduced Wnt, Notch,

mTOR, and NF-κB signalling [180–182]

Gallotannin ANO1
ANO2

GBM Inhibited cell proliferation [183]

Colorectal cancer

Inhibited lung metastasis; regulated
PI3K/Akt/mTOR, AMPK signalling pathways;

downregulated mesenchymal marker expression;
induced senescence

[184–186]

Breast cancer Inhibited proliferation via increased Chk2
phosphorylation [187]

Prostate cancer Induced apoptosis via reduced Mcl-1 signalling and
activation of procaspase 9/3 expression [188]

Liver cancer Reduce cell viability via increased SIRT1, mTOR, and
activated AMPK [189]

Akt, protein kinase B; AMPK, AMP-activated protein kinase; Chk2, checkpoint kinase 2; DES, Diethylstilbestrol;
EGFR, epidermal growth factor receptor; EMT, epithelial to mesenchymal transition; GBM, glioblastoma; GSC,
glioma stem cells; HNSCC, head and neck squamous cell carcinoma; Mcl-1, myeloid cell leukemia 1; mTOR,
mammalian target of rapamycin; NF-κB, nuclear factor kappa B; NPC, nasopharyngeal carcinoma; NPPB, 5-nitro-
2-(3-phenylpropylamino) benzoic acid; NSCLC, non-small cell lung cancer; OSCC, oral squamous cell carcinoma;
PARP, polyadenoside diphosphate-ribose polymerase; PI3K, phosphoinositide 3-kinase; SIRT1, sirtuin 1; TMZ,
temozolomide; Wnt, wingless-related integration site; 3n, (E)-1-(7,7-dimethyl-7H-furo [2,3-f]chromen-2-yl)-3-(1H-
pyrrol-2-yl)prop-2-en-1-one.

More recent studies have assessed the effects of more specific ANO1 inhibitors. Seo and
colleagues identified ‘3n’, a compound derived from a 2,2-dimethyl-2G-chromene motif,
that had increased selectivity for inhibiting ANO1, with only weak inhibition of ANO2 [173].
Furthermore, this study showed that 3n induced apoptotic cell death in prostate cancer cells
in vitro [173]. Another study identified two compounds derived from 2-aminothiophene-
3-carboxamide that inhibit ANO1 current activity to a similar extent to CaCCinh-A01 but
without suppressing the activity of other chloride channels [174]. These two compounds,
(6-(tert-Butyl)-2-pivalamido-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxamide and
2-(3-(4-Chlorobenzoyl)thioureido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxamide),
proved to be effective anti-glioma agents and had more potent effects on reducing glioma
cell proliferation, migration, and invasion than CaCCinh-A01 [174]. In addition, when the
former compound was combined with TMZ, glioma cell proliferation was significantly
reduced compared with either treatment alone, demonstrating the potential for ANO
inhibition as a novel avenue for targeted therapy in GBM [174].



Cancers 2022, 14, 5932 12 of 29

Several other generic CaCC inhibitors have been identified, such as cepharanthine,
niclosamide, tannic acid, niflumic acid (NFA), and 5-nitro-2-(3 phenylpropylalanine) ben-
zoate (NPPB) (Table 3). The ability of these inhibitors to block chloride ion currents
has been explored [190–192]. However, these inhibitors often lack specificity. NFA and
NPPB are more traditional CaCC inhibitors that may inhibit a range of chloride channels,
including ANO1, ANO2, and ANO6, as well as other ion channels, including cation chan-
nels [193–198]. Both have anti-proliferative activities in cancer models in vitro [176–178],
although this cannot be attributed to ANO inhibition alone. Cepharanthine is more selective
for ANO1, but also inhibits ANO2 channel activity and weakly inhibits ANO6 activity [175].
Cepharanthine reduces lung adenocarcinoma growth in vitro and in vivo [175]. Tannic
acid is slightly more specific for ANO1/ANO2 and is a strong inhibitor of both ANO1
and ANO2 currents [190], but may only indirectly reduce ANO6 currents without any
effect on scramblase activity [195,199]. Nonetheless, gallotannin induced apoptosis and cell
cycle arrest in preclinical studies of colon, breast, prostate, and liver cancer cells [184–189].
More recently, enriched gallotannin, extracted directly from the gall of the Quercus infectoria
plant, showed comparable cytotoxic effects on GBM cell viability to traditional TMZ, but
with more potent antioxidant properties [183]. Furthermore, commercially available syn-
thetic gallotannin was significantly less effective at reducing GBM cell viability, suggesting
that the naturally bioactive compound derived directly from the plant itself has superior
cytotoxic effects on cancer growth [183]. This phenomenon remains to be explored in
other aspects of GBM pathogenesis, such as migration and invasion, cell signalling, and
tumour growth in in vivo preclinical models. There are no currently registered clinical
trials investigating gallotannin as a treatment for any human cancers. Furthermore, no
studies have explored whether the antineoplastic effects of gallotannin in cancer cells are
related to ANO channel function. Interestingly, one study has shown that gallic acid, the
polyphenol monomer that is found in gallotannin, may inhibit EGFR signalling and MMP-9
activation in breast cancer cells [200]. Thus, gallotannin may also have an inhibitory effect
on the signalling pathways associated with cancer cell migration and invasion, although
this remains to be fully elucidated.

Niclosamide, an oral FDA-approved drug that has been used to treat parasitic in-
fections for many decades, is a potent ANO1 inhibitor, and also inhibits ANO6 cur-
rents [192,201–203]. More recently, this compound has been repurposed for other medical
conditions, such as cancer, as it inhibits multiple tumour cell signalling pathways in a wide
range of human cancer cells, including GBM cells [180,182,204]. Niclosamide has been eval-
uated in a phase I clinical trial for its safety in combination with traditional enzalutamide
therapy in prostate cancer patients (NCT02532114). However, as determined by preclinical
studies, the maximum tolerated dose did not result in plasma concentrations reaching the
optimal effective concentration for drug efficacy, suggesting that niclosamide has poor oral
bioavailability [205]. Increasing niclosamide dose resulted in significant toxicities, and this
combination treatment was not investigated further as a prostate cancer treatment [205].
However, a more recent phase 1b clinical trial showed that a newly formulated niclosamide
compound has increased bioavailability in prostate cancer patients [206]. The encapsulated
niclosamide (PDMX1001) showed no dose-limiting toxicities and patients were able to
reach the therapeutic plasma concentration with tolerable adverse events as part of a drug
combination cocktail with abiraterone acetate and prednisone [206]. This therapeutic com-
bination is now being investigated in a phase II clinical trial (NCT02807805). PDMX1001 is
also being trialled with the traditional enzalutamide treatment (NCT03123978) to determine
whether the change in formulation or drug combination improved the bioavailability and
toxicity profiles of niclosamide. Niclosamide has also briefly been tested in several patients
with metastatic colorectal cancer in the NIKOLO trial. Preliminary results showed that
high plasma levels of niclosamide was achievable with no dose-limiting toxicities in pa-
tients [207]. The NIKOLO trial has moved into a phase II clinical assessment for metastatic
colorectal cancer (NCT02519582); however, the status of this study remains unknown.
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Despite the promising preclinical evidence suggesting that niclosamide has antineoplastic
activity in cancer cells, it has yet to be explored further in other clinical settings.

Preclinical studies have shown that GBM cells exposed to niclosamide simultane-
ously downregulate multiple cancer cell signalling pathways, including NOTCH, mTOR,
MAPK/ERK, and Akt-dependent signalling, leading to reduced cancer cell proliferation,
viability, and migration [180,182]. Interestingly, niclosamide inhibited NF-κB signalling
only in primary GBM cell lines that had a heterozygous deletion of the NFKBIA locus
(NFKBIA+/−) [180]. NFKBIA deletion is often associated with EGFR amplification in
GBM patients and is associated with poor survival outcomes [208]. These results sug-
gest that niclosamide may be an effective therapeutic compound to use in synergy with
EGFR-targeted therapy for GBM patients with EGFR amplification and NFKBIA deletion.
Similarly, niclosamide treatment combined with TMZ reduced GBM tumoursphere viabil-
ity, stemness, and invasion [181]. However, like gallotannin, no studies have investigated
whether the effect of niclosamide on blocking oncogenic signalling pathways is related
to inhibited CaCC ion channel activity or another signalling mechanism. This intriguing
area of research warrants further investigation to determine how ion channel function may
relate to cell signalling pathways in cancer development and progression.

7. Calcium Channels and Their Relevance to ANO and EGFR-Related Signalling

The evidence linking ANO function to EGFR signalling in GBM is still in its infancy.
The underlying mechanisms by which these two proteins act in synergy to maintain
cellular plasticity in high grade gliomas has yet to be fully elucidated. What is known,
however, is that intracellular calcium levels are critical, not only to normal cellular function,
but also as significant secondary messengers for various oncogenic pathways. Calcium
concentration largely influences the balance between a proliferative versus apoptotic state.
Published data also suggests that EGFR-mediated calcium signalling is involved in drug
resistance in cancer. In NSCLC cells, EGF signalling caused Ca2+ oscillations in non-
resistant cells, whereas drug-resistant cells had lower ER calcium stores and increased
extracellular Ca2+ influx [209]. Furthermore, restricting extracellular Ca2+ can induce
drug sensitivity in NSCLC cells [209]. Considering what is known about increased EGFR
and ANO expression in cancer, particularly in gliomas, further investigation into how
calcium signalling may contribute to drug resistance and cellular plasticity in brain tumour
progression is warranted. It would not be surprising if ion channels, such as ANOs, which
are regulated by calcium, also contribute to drug resistance and cancer cell proliferation.
Another more notable factor that should be considered is the underlying roles of other intra-
membrane proteins that regulate flow of free Ca2+ between organelles and the cytoplasm,
such as inositol 1,4,5-triphosphate receptor (IP3R) and transient receptor potential (TRP)
channels. IP3R regulates the release of ER calcium stores, while TRP channels are primarily
involved in Ca2+ influx through the plasma membrane [210]. Therefore, these channels
may directly contribute to the activation of ANOs.

7.1. IP3R

IP3R is involved in the release of ER calcium stores into the cytosol and may be
activated by a variety of stimuli; however, the most effective activation results from the
presence of Ca2+ and IP3. This dual messenger system is particularly significant in neuronal
cells, where even small increases in IP3 can increase the Ca2+ sensitivity of IP3R and may
contribute to localised waves of Ca2+ signalling and cellular plasticity [211]. Furthermore,
IP3R is not distributed evenly along the ER and may be found in clusters within the ER near
the plasma membrane, generating “Ca2+ signalling microdomains” within the cell [212,213].
IP3R may also bind to plasma membrane proteins to tether the ER to the plasma membrane
for localised calcium signalling.

ANOs are considered to act as membrane-bound ion channels activated by localised
calcium signals. In nociceptive dorsal root ganglia neurons, ANO1 localises within lipid
rafts in the plasma membrane and binds to IP3R to tether the plasma membrane to the
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ER. This creates an ANO1-specific microdomain and allows ANO1 activation via localised
release of ER calcium [214]. Lipid rafts often provide signalling platforms for growth factor
receptors, such as EGFR, in tumour development [215]. This is particularly relevant for
EGFR signalling, which produces IP3 signals for ER calcium release and regulation of
cancer cell growth. Further studies in other cell types have verified that interaction with
IP3R activates ANO1 through IP3R-mediated calcium release [216,217].

7.2. TRP Channels

TRP channels are a superfamily of 30 cationic cell membrane channels that are perme-
able to Ca2+ and directly activate intracellular Ca2+ signalling [210]. TRPC (TRP canonical)
and TRPV (TRP vanilloid) are the two TRP channel subfamilies most commonly impli-
cated in GBM [218]. A more comprehensive overview of TRP channels in brain cancer has
been recently published; thus, this review will not cover this topic in great detail [218].
However, it is noteworthy that some of the TRP channels that have been investigated in
GBM may play other unknown roles in EGFR/ANO signalling. For example, TRPV1 has
been extensively studied for its role in regulating the balance between proliferation and
apoptosis in various cancer cell lines; however, the evidence for it being pro-apoptotic or
pro-proliferative is somewhat inconsistent [219]. Several studies have shown that TRPV1
binds and interacts with EGFR but it is unclear whether this interaction causes EGFR degra-
dation and promotes apoptosis [220,221] or results in EGFR transactivation and promotes
cell proliferation [222]. The role of TRPV1 in inducing apoptosis versus proliferation is
likely dependent on the presence or absence of active EGFR and may also largely depend
on the cell type. Most published data suggests that TRPV1 suppresses EGFR signalling in
cancer cells and, therefore, has anti-tumorigenic effects [221,223,224]. In GBM specifically,
TRPV1 loss correlates with higher tumour grade and shorter survival in patients [225,226].
Furthermore, TRPV1 upregulation and activation has a protective effect in glioma cell lines
and induces apoptosis through increased intracellular calcium signalling [225,227,228]. In-
terestingly, TRPV1 is a known binding partner of ANO1 in the context of pain-enhancement
mechanisms in neurons [229,230]. Whether TPV1/ANO1 interactions exist in a functional
manner in GBM has yet to be determined.

In contrast, TRPV4 and TRPC1 are other TRP channels that have consistently been
shown to play a pro-tumorigenic role in brain cancer. TRPV4 is upregulated in glioma,
positively correlates with tumour grade in glioma patients, and is associated with a worse
prognosis [231–233]. TRPV4 is another potential binding partner for EGFR [210,234,235],
ANO1 [236,237], and IP3R [237], although this has yet to be demonstrated in brain cancer
cells. Nonetheless, it has been shown that TRPV4 promotes glioma cell migration and inva-
sion through Akt signalling and regulating the formation of cellular protrusions [231,233].
It could be postulated that while TRPV4 is important for the cytoskeletal changes associated
with cell migration, an interaction with ANO1 might be critical in regulating cell volume
changes to support glioma cell invasion. Furthermore, cancer cells with high TRPV4 ex-
pression are more sensitive to EGFR-targeted therapy, further suggesting that EGFR and
TRPV4 expression may be functionally linked [238]. Similar to TRPV4, TRPC1 is also
increased in GBM patients [239] and is involved in glioma cell proliferation [240,241] and
migration via regulating chemotaxis at the leading edge of migratory glioma cells [242,243].
TRPC1 activation in response to EGF-induced chemotaxis regulates Cl− channel activity in
glioma cells in a calcium-dependent manner [243]. Although the effects of TRPC1 on ANO
channels have not been investigated, it is possible that TRPC1 may also regulate or interact
with calcium-activated chloride channels, such as ANOs. TRPC1 has also been shown to
activate EGFR in NSCLC cells [244] but no studies have investigated its interactions with
EGFR in GBM.

TRP channels have strong implications in cancer cell migration and invasion, partic-
ularly TRPM7, which is a member of the melastatin-related TRP family, and it has been
found to be upregulated in GBM [239,245]. TRPM7 is one of the most highly characterised
TRP channels, and it is known to have mechanosensory signalling abilities and kinase
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activity that regulates cellular contractility and motility [246]. Activation of TRPM7 and
Ca2+ influx in GBM cells was associated with increased cell migration and invasion via
activation of Akt [245], ERK1/2 [245,247] and JAK2/STAT3 [248] and increased MMP-2
expression [245,247]. It has been speculated that TRPM7 may phosphorylate and acti-
vate PLC to facilitate this downstream signalling cascade [245,249]. This observation
raises the question if calcium-mediated PLC phosphorylation and activation can sustain
intracellular signalling in an EGFR-independent manner. One study has identified that
EGF increased expression and phosphorylation of TRPM7 in vascular smooth muscle cells,
and that TRPM7 directly interacted with EGFR in a Src-dependent manner to promote
cell migration [250]. There has yet to be any studies investigating the direct binding of
TRPM7 and EGFR in cancer cells, nor is there any evidence of TRPM7 interacting with
ANOs. Nonetheless, this highlights the significant knowledge gaps in our understanding
of the cross talk between EGFR and ion channels for continued tumour progression.

7.3. Lipid Rafts Containing EGFR, ANOs, and Other Calcium Channels May Be Key to Cell
Invasion, Cellular Plasticity, and Drug Resistance in GBM

Lipid rafts are localised regions within the plasma membrane of a cell that are enriched
in cholesterol and sphingolipids and are often hyperactivated in cancer. Lipid rafts harbour
various signalling proteins and ion channels known to be involved in proliferation and
migration in cancer cells [251]. Several studies have demonstrated that EGFR is often lo-
calised within lipid rafts in cancer, including in GBM [215,252–254]. In fact, the cholesterol
levels in the lipid raft are important for regulating EGFR activity [215,255,256] and cancer
cells are more sensitive to EGFR-targeted therapy upon cholesterol depletion from lipid
rafts due to increased phosphorylation levels [252,253]. Caveolae are lipid raft regions
of the plasma membrane that, upon caveolin-1 integration, invaginate into flask-shaped
membrane organelles. Similar to lipid rafts, caveolae may also serve as signalling platforms,
particularly for EGFR [257], and they are also involved in activating clathrin-independent
endocytosis upon phosphorylation of caveolin-1 [123,257]. There is controversial evidence
on whether or not EGFR is concentrated within caveolae [254,256,258–260]. However, it
is proposed that caveolin-1 binds to EGFR in caveolae after EGF stimulation, rendering
it inactive, followed by internalisation of EGFR via endocytosis [254,258,261]. Notably, it
has been shown that EGF-stimulated phosphorylation and activation of wild-type EGFR
led to binding of caveolin-1 and dissociation from caveolae in GBM cells [254]. Further-
more, wild-type EGFR and caveolin-1 colocalised within lipid rafts, but EGFRvIII did
not [254]. As EGFRvIII is constitutively phosphorylated, this observation is in parallel
with other work that has demonstrated that depletion of lipids from lipid rafts increases
EGFR phosphorylation [252,254,255,262]. Considering that EGFRvIII is constitutively phos-
phorylated in a ligand-independent manner, its localisation may not be specific to lipid
rafts; rather, its stabilisation within the membrane [160], perhaps by ANO1 [142], is more
significant to retain its oncogenic function. Interestingly, when GBM cells were treated
with an EGFR inhibitor, caveolin-1 expression increased in both the wild-type EGFR and
EGFRvIII-expressing cells. Thus, caveolin-1 interaction may be one mechanism in which
EGFR-targeted therapies inhibit kinase activity, however, GBM cell survival is likely to
continue due to stabilisation of EGFR expression and the presence of a now inactive, KID-
EGFR. This is supported by previous work which demonstrated that EGFR inhibitors do
not cause EGFR degradation [87].

Similarly, ANOs and TRP channels are also found in lipid rafts, often linked with recep-
tor proteins such as EGFR as part of ion channel complexes in cancer cells, and function as
a means of localising intracellular calcium signals [214,215,263,264]. Calcium signalling is
imperative to tumour cell migration and invasion, where transient Ca2+ oscillations, waves,
or flickers activate Ca2+-dependent effectors responsible for focal adhesion assembly and
disassembly in the leading edge and retracting edge of the cell, respectively [265,266]. Mi-
grating cancer cells exhibit this rear-to-front calcium gradient to support this phenomenon
known as focal adhesion turnover [267]. Of course, tethering of the plasma membrane to the
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ER through ANO/IP3R interactions would also contribute to localised calcium signalling
at the lipid raft junction [214,268]. Linking these concepts and evidence together, it is
apparent that ANOs, particularly ANO1, may bridge the link between EGFR signalling and
calcium signalling to regulate cancer cell proliferation, migration, and invasion (Figure 1).
As observed with the SGLT1 transporter, we propose that EGFR may interact with ANOs,
and other calcium channels, in both a kinase-dependent and KID manner to support their
dynamic functions in regulating cell migration and invasion. Such a function would be
impervious to the activity of EGFR inhibitors, thus, contributing to resistance to EGFR
targeting drugs. In this speculative theory, the EGFR-ANO-TRP complex localised within
lipid rafts may serve to stabilise wild-type EGFR or EGFRvIII expression and prevent
internalisation. Such an interaction would allow sustained phosphorylation-dependent
signalling through EGFR/EGFRvIII to enhance activation of cell migration and invasion
pathways supported by localised calcium signalling and VRD through ANO-mediated
Cl− currents required for cell migration. Alternatively, these complexes may also serve
to stabilise KID-EGFR expression within the membrane as a pro-survival mechanism. Re-
modelling of calcium signalling by altered expression of these key ion channels is likely to
be the driving force behind cell migration and invasion in GBM and it would play a large
contributing factor to drug resistance [246,269], particularly in EGFR-targeted therapies, as
we have described that these calcium-dependent ion channels and regulators may them-
selves activate the signalling cascades associated with RTK activity. Although the papers
discussed thus far have identified individual binding interactions between ANO1, EGFR,
IP3R, and TRP channels, it is likely that multiple combinations of these interactions exist
within several lipid raft domains along the plasma membrane of glioma cells, especially in
the leading edge of migratory cells or during chemotaxis [233,243]. The dynamic nature of
these interactions complicates our understanding of how ion channels contribute to tumour
progression in brain cancer.
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Figure 1. Anoctamin function in calcium-mediated cell signalling. In this model, ANO channels exist
in lipid rafts within the plasma membrane, bound to receptor proteins such as EGFR, and other ion
channels, such as TRP channels, for intracellular signalling. Through this interaction, calcium influx
into the cell may activate ANO channels, stimulating chloride efflux and regulated volume decrease,
leading to cell migration. Stimulation and activation of EGFR leads to PLC activation and cleavage of
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PIP2 to form IP3. IP3 activates the IP3R on the endoplasmic reticulum, causing the release of ER
calcium stores. Through TRP channels and IP3R activation, localised calcium oscillations, and EGFR
activation, may contribute to intracellular signalling and cellular plasticity. In an alternative model,
ANO/TRP complexes may also serve to stabilise KID-EGFR as a pro-survival mechanism, resulting
in calcium remodelling to sustain activation of migration and invasion pathways. ANO, anoctamin;
Ca2+, calcium; Cl−, chloride; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum;
IP3, inositol 1,4,5-trisphosphate; IP3R, inositol 1,4,5-trisphosphate receptor; KID, kinase independent;
P, phosphate; PIP2, phosphatidylinositol 4,5-bisphosphate; PLC, phosphoinositide phospholipase C;
PM, plasma membrane; TRP, transient receptor potential channel.

8. Future Directions and Conclusions

In recent years, it has become evident that drug resistance, particularly in the case
of EGFR-targeted therapy, may be caused by dysregulated ion channel activity and intra-
cellular calcium signalling. Indeed, EGFR-targeted therapy can rewire calcium signalling
proteins in NSCLC. Moreover, restricting extracellular calcium in NSCLC cells restores
sensitivity to EGFR-targeted therapy [270]. However, research investigating the synergistic
role of EGFR and ion channels in GBM is limited. The fact that EGFR-amplified brain
tumours are enriched with astrocyte-like cell states reflects the importance of maintain-
ing ionic currents in these cells. Thus, EGFR-amplified, astrocyte-like GBMs are likely to
have dysregulated ion channel expression that mirrors the highly proliferative state by
increasing intracellular calcium and uncontrolled calcium release, driving proliferation,
migration, and invasion. Ion channels have been investigated individually for their roles in
regulating ionic cellular influxes and downstream effects on cell behaviours, such as cell
growth. Although ion channels are undoubtedly involved in cellular plasticity, particularly
in the neuronal setting, their contributions to maintaining tumour cell plasticity in high
grade glioma has been given little research attention. More specifically, more studies are
needed to elucidate the role of ANOs in regulating localised calcium signalling in synergy
with calcium channels, like IP3R and TRP channels, and calcium-regulated growth factor
receptors, such as EGFR. These interactions likely play an underestimated role in driving
cancer cell progression and drug resistance, and ultimately may be responsible for the
highly plastic and therapeutically challenging nature of GBM. This gap signifies an exciting
avenue of research and may lead to new therapeutic discoveries that address the unmet
clinical need for improved treatment options for GBM patients.
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EGFR epidermal growth factor receptor
ER endoplasmic reticulum
FASN fatty acid synthase
GBM glioblastoma multiforme
Grb2 growth factor receptor-bound protein 2
HNSCC head and neck squamous cell carcinoma
IDH isocitrate dehydrogenase
IP3R inositol 1,4,5-trisphosphate
JAK janus kinase
mTOR mammalian target of rapamycin (mTOR)
MMP matrix metalloproteinase
NFA niflumic acid
NF-κB nuclear factor-κB
NPPB 5-nitro-2-(3 phenylpropylalanine) benzoate
NSCLC non-small cell lung cancer
PI3K phosphoinositide 3-kinase
PIP2 phosphatidylinositol 4,5-bisphosphate
PIP3 phosphatidylinositol-3,4,5-triphosphate
PLC phosphoinositide phospholipase C
RVD regulatory volume decrease
SGLT1 sodium/glucose cotransporter 1
Sos son of sevenless
TRP transient receptor potential
TRPC TRP canonical
TRPV TRP vanilloid
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