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Simple Summary: The iKnife is an emerging tool which uses standard electrosurgical methods to
generate surgical aerosols that are then interrogated by a mass spectrometer to provide real-time
tissue signatures. It has been shown to correctly identify different tissue types including lung, colon
and liver. The aim of this study was to ascertain whether the iKnife can correctly identify endometrial
cancer from endometrial Pipelle biopsy samples, thereby facilitating point-of-care diagnosis. One
hundred and fifty endometrial Pipelle samples were analysed in this study. The iKnife reliably
diagnosed endometrial cancer in seconds, with a diagnostic accuracy of 89%, minimising the current
delays for women whilst awaiting a histopathological diagnosis. The findings presented in this study
can pave the way for new diagnostic pathways.

Abstract: Introduction: Delays in the diagnosis and treatment of endometrial cancer negatively
impact patient survival. The aim of this study was to establish whether rapid evaporative ionisation
mass spectrometry using the iKnife can accurately distinguish between normal and malignant
endometrial biopsy tissue samples in real time, enabling point-of-care (POC) diagnoses. Methods:
Pipelle biopsy samples were obtained from consecutive women needing biopsies for clinical reasons.
A Waters G2-XS Xevo Q-Tof mass spectrometer was used in conjunction with a modified handheld
diathermy (collectively called the ‘iKnife’). Each tissue sample was processed with diathermy, and
the resultant surgical aerosol containing ionic lipid species was then analysed, producing spectra.
Principal component analyses and linear discriminant analyses were performed to determine variance
in spectral signatures. Leave-one-patient-out cross-validation was used to test the diagnostic accuracy.
Results: One hundred and fifty patients provided Pipelle biopsy samples (85 normal, 59 malignant,
4 hyperplasia and 2 insufficient), yielding 453 spectra. The iKnife differentiated between normal and
malignant endometrial tissues on the basis of differential phospholipid spectra. Cross-validation
revealed a diagnostic accuracy of 89% with sensitivity, specificity, positive predictive value and
negative predictive value of 85%, 93%, 94% and 85%, respectively. Conclusions: This study is the first
to use the iKnife to identify cancer in endometrial Pipelle biopsy samples. These results are highly
encouraging and suggest that the iKnife could be used in the clinic to provide a POC diagnosis.

Keywords: endometrial cancer; mass spectrometer; point of care; diagnosis; Pipelle biopsy; rapid
diagnosis
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1. Introduction

Endometrial cancer is the most common gynaecological cancer in the western world,
with over 120,000 new cases diagnosed per year in the European Union [1]. Routine
management varies, but typically pelvic ultrasound is performed, followed by endometrial
biopsy if warranted. Biopsies can be obtained by outpatient endometrial sampling or by
hysteroscopy, from either outpatients or inpatients. Histological diagnosis can take up to
two weeks. It has been demonstrated that delays in diagnosis are associated with high
levels of anxiety and stress for patients [2–6]. The mainstay of treatment for endometrial
cancer is hysterectomy, with large international observational studies showing that delays
to definitive surgery can negatively impact survival [7–9]. To date, point-of-care (POC)
diagnosis of endometrial cancer has not been available.

Rapid evaporative ionisation mass spectrometry (REIMS), also known as surgical
intelligent knife (iKnife), can rapidly identify human tissues in real time [10]. REIMS is
a form of ambient mass spectrometry (MS). Standard electrosurgical diathermy converts
tissue into gas-phase ionic species, and the surgical aerosol is then analysed, nearly in
real time, by a time-of-flight (ToF) mass spectrometer [11]. The iKnife has been shown to
clearly discriminate between tissue types such as lung, liver and colon based on tissue-
derived lipidomic profiles [11]. Furthermore, the iKnife has also been shown to accurately
discriminate between normal and malignant tissue across various tumour sites including
colon, breast, cervical and ovarian tissues [12–15]. Aberrant lipid metabolism is a key
feature of cancer, due to the increased biosynthesis and generation of bioactive signalling
molecules and the formation of new cell membranes [16,17]. It is the culmination of these
lipid changes in malignant tissue compared to normal tissue that enable the iKnife to
discriminate between diseased and healthy tissues.

The aim of this study was to establish if the iKnife could distinguish between nor-
mal and malignant endometrial Pipelle biopsy samples based on their lipidomic profiles.
Furthermore, multivariate statistical models were used to provide a reference dataset for
real-time tissue recognition in the clinic and a rapid POC diagnosis for endometrial cancer.

2. Materials and Methods

A single-centre, prospective clinical trial was performed at Imperial College Healthcare
NHS Trust (London, UK). STARD guidelines were followed [18].

2.1. Population and Samples

Research Pipelle biopsies were obtained from consecutive patients with suspected
endometrial cancer attending the rapid access gynaecology clinic or day surgery (under-
going hysteroscopy) between June 2017 and April 2019. All patients provided written,
informed consent. Only patients who had a clinical indication for a Pipelle biopsy could
participate in the study. Indications for tissue biopsy included an abnormal scan following
post-menopausal bleeding or intermenstrual bleeding or an abnormal incidental finding
on imaging. Patients were excluded if they lacked capacity, were under 18 years old, were
pregnant, did not understand English, or if there were any contra-indications to carrying
out a biopsy.

To ensure all patients received gold standard clinical care, the sample obtained for
research was from a second pass of the Pipelle (the first pass sent for histopathology
analysis). Patients agreeing for a research Pipelle, but from whom no tissue was obtained,
were excluded from the study. The demographic details of the patients were collected, in
addition to the final histopathological diagnosis.

2.2. The iKnife and Sample Processing

Upon biopsy, the samples were either processed fresh or snap-frozen using a CoolRack
and stored at −80 ◦C within 30 minutes of collection for later processing. For REIMS
processing of the frozen samples, the tissue was first thawed at room temperature. The
clinician performing the tissue processing was blinded to the tissue diagnosis. Prior
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to sample processing, the mass spectrometer was calibrated as per the manufacturer’s
instructions.

The REIMS method, as previously described [10,11], couples a Waters G2-XS Xevo
Q-TOF mass spectrometer with a modified handheld diathermy. Figure 1 illustrates the
REIMS set up. Prior to tissue diathermy, the samples were first processed with a CO2
laser (l =10.6 µm, maximum power of 10 Watts, Omniguide, USA) followed by diathermy
using the Covidien ForceTriad™ generator (cut mode, power setting 15–20 Watts). Both the
conventional, handheld diathermy iKnife and the CO2 laser convert tissue constituents to
gas-phase ionic species that are drawn into the MS inlet and Venturi air pump through the
REIMS interface for analysis in negative ion mode. A solution of isopropyl alcohol (IPA)
and leucine encephalin (LeuEnk) (1 ng/µL) was sprayed towards the REIMS interface at a
flow rate of 0.2 mL/min. Leucine encephalin was used as an external lock mass (554.262
m/z). In addition, a known phospholipid (phosphatidic acid) was used as an internal lock
mass (699.497 m/z). Multiple tissue sampling points (burns) were performed to create
a surgical aerosol. The number of individual burns was dependent on the tissue size
(median = 3). Large endometrial biopsy samples produced multiple spectra, whilst small
samples produced only a single spectrum. The scan range and time were set to 15–1500
m/z and one second, respectively. Spectral processing was performed within the 600 to
1000 m/z range.
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Figure 1. Diagram of the iKnife set-up. Electrical current produced by the generator was applied to
the tissue using a handheld diathermy. The charged aerosol produced was extracted through the
handpiece and drawn into the iKnife interface and analysed by the G2-XS Xevo Q-ToF. IPA containing
LeuEnk (leucine encephalin) was sprayed across a heated coil.

2.3. Histological Validation

The final histological diagnosis for all samples was known (from the concurrently
processed clinically indicated Pipelle biopsy), including cell type and grade of the tumours.
To ensure the cellular composition of the research Pipelle biopsy was representative of the
final diagnosis, histopathological validation of the processed samples was required. Pipelle
biopsies are blind sampling devices; it is therefore possible that the research Pipelle could
miss a malignant endometrial lesion. Thus, the histopathologist confirmed whether the spe-
cific biopsy analysed by REIMS contained benign or malignant tissue. All processed tissues
were formalin-fixed, paraffin-embedded (FFPE) and then stained with haematoxylin and
eosin (H&E). Digital images of each histological sample were acquired using NDP.view2
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software (Hamamatsu Photonics, Hamamatsu, Japan). Tissue samples were all reported
by a senior histopathologist and reported according to FIGO recommendations, and this
acted as the reference standard. The reference standard is the current gold standard and
is considered 100% accurate. If it was not possible to make a diagnosis due to thermal
artefacts, the sample was excluded from further analyses. The histopathologist was blinded
to the clinical information and the result of the iKnife diagnoses.

2.4. Statistical Analysis and Classification Models

In-house software developed by Waters Corporation (Offline Model Builder (OMB),
version Abstract model builder, AMX) was used initially for all pre-processing of spectra
and for model building. OMB software enables background subtraction, lock mass correc-
tion, normalisation, peak alignment and binning of spectral peaks to 0.1 Da. Poor-quality
spectra with high noise-to-signal ratio were excluded as were any cases with missing
data. In addition, files were also imported to MatLab version 2016a (MathWorks), and
this enabled the creation of learning curves. No normalisation was required, as it was
performed by OMB.

Multivariate models, incorporating histology and corresponding mass spectra, were
created based on one spectrum per sample (thus creating a representative spectrum of all the
burns in a specific sample). Multivariate analyses were performed to determine the variance
in spectral signatures between tissues, for example, normal versus malignant endometrium.
This included 2-dimensional (2D) or 3-dimensional (3D) principal component analyses
(PCA) and linear discriminant analyses (LDA). PCA is an unsupervised analysis to visually
represent tissue class separation. The percentage of variance for each principal component
was calculated and recorded. Supervised LDA was also performed, providing graphical
2D or 3D representations of the data.

Loading plots were created to visualise principal components as 2D score plots. Each
principal component loading plot illustrates peaks and corresponding intensities that
account for the variance within each principal component for any model.

Validation of each PC-LDA model was performed using leave-one-patient-out cross-
validation. This method repeatedly leaves out all spectra from an individual patient sample
and rebuilds the model. The removed spectra are then tested against the new model to
determine the model’s diagnostic accuracy (sensitivity, specificity, positive predictive value
and negative predictive value).

A learning curve was created. This is a pictorial representation of the changes in
classification rate as more samples are included in the training set of a predictive model.
It shows a change in classification performance (y-axis) as a function of the number of
observations (x-axis). Classification accuracy should improve as more observations are
included, up to a finite number, at which point the classification rate plateaus. It is useful
in a context such as this to estimate whether maximum diagnostic performance is reached,
or if more samples are needed.

2.5. Univariate Analysis and Lipid Identification

Data matrices were interrogated by MatLab; the intensity values and median fold
change of binned m/z values were analysed using the Kruskal–Wallis test to identify
the discriminatory m/z values responsible for separation in the models. p-values were
reported for each m/z value. To minimise false discovery in the univariate analyses, the
p-values were corrected to q-values using the Benjamini–Hochberg–Yekutieli method (false
discovery rate, α = 0.05).

Loading plot and univariate analysis m/z values, that were abundant and strongly
contributed to class separation in the PC-LDA models, were selected for further tandem
mass spectrometry (MS/MS) analyses. Methods for MS/MS were similar to those pre-
viously described, but argon was used as the collision gas, and the collision energy was
set to 30 Watts but varied according to the sample. For the MS/MS experiments, the CO2
laser was used for tissue sampling over 2–7 seconds per burn in order to achieve sufficient
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aerosolised gas for analysis for a specific m/z value. A full scan was performed on each
tissue sample prior to MS/MS to confirm the lock mass and that peaks of interest were
present.

The spectra from MS/MS negative-ion-mode were averaged and presented to the
LipidMaps online tool. LipidMaps (Lipid Metabolite and Pathways Strategy Lipidomic
Gateway), is a free online resource sponsored by the Wellcome Trust (20). The following
search parameters were used within LipidMaps: [M-H]- and [M+Cl]-, intensity threshold 5,
ion mass tolerance +/− 0.1 m/z, any head group. LipidMaps suggested possible lipids and
chain configurations for each m/z value. Only even fatty chain compounds were included.
The main daughter ion was used to narrow down the exact lipid match.

3. Results
3.1. Tissue Characteristics and Processing

One hundred and fifty Pipelle samples were obtained. No adverse events were
reported. Four patients had endometrial hyperplasia, and two samples were insufficient
on final histology due to atrophy; the latter patients were excluded. The remaining 144
samples were classified as either cancer or normal (Table 1). The patients with cancer
tended to be older (median age 64 vs. 54 years), with a higher proportion of patients
presenting with postmenopausal bleeding (PMB). Most cancer samples were endometrioid
type 1 subtype (83%). Of the patients with cancer, 58% had stage 1A disease, 20% stage 1B,
and the remainder had more advanced disease.

Table 1. Summary table of the patient demographics from which the Pipelle biopsies were obtained,
along with the samples’ quality. Age (mean and range). PMB = post-menopausal bleeding, HMB =
heavy menstrual bleeding, IMB = intermenstrual bleeding, abdo = abdominal, G = grade.

Demographics Normal (n = 85) Cancer (n = 59)

Age 54 (22–80yo) 64 (35–85yo)

Presentation:
PMB
HMB
IMB

Abdo pain
Other

36 (42%)
26 (31%)
10 (12%)
11 (13%)
2 (2%)

49 (83%)
3 (5%)
0 (0%)
5 (8%)
2 (3%)

Type of Cancer N/a

Endometrioid
Low grade: 30 (51%)

High grade (G2/3) 19 (32%)
Serous 7 (12%)

Carcinosarcoma 2 (3%)
Clear cell 1 (2%)

Quality Pipelle:
Small/Bloody

Moderate
Good/Polyp

40 (47%)
22 (26%)
23 (27%)

14 (24%)
9 (15%)

36 (61%)

Due to large variations in the quality of the tissues, a simple quality score was deter-
mined for each sample, i.e., poor, moderate and good, which were recorded contempora-
neously. Poor samples were defined by very bloody samples with minimal amounts of
solid tissue (less than 0.5 cm for any of the diameters). Good samples were defined by large
amounts of solid tissue (more than 1 cm for any diameter). Moderate samples had solid
elements of 0.5–1 cm.

All 150 Pipelle samples were processed with REIMS. Five samples were predominately
liquid medium, and no lipid spectra were obtained with the monopolar diathermy or CO2
laser. Furthermore, four samples were too small to be processed with monopolar diathermy
and, therefore, were processed with the CO2 laser only. The remaining 141 samples were
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processed with the monopolar diathermy iKnife, producing 453 spectra. Of the 150 samples,
106 samples were also processed with the CO2 laser, yielding 106 spectra. Three samples
(all benign), processed with REIMS, were excluded from the analyses as no spectra passed
the quality control checks (see Appendix A Table A1). No laser spectra were removed due
to poor quality, compared to 52 monopolar diathermy spectra.

The reference standard was the final histological diagnosis based on the H&E slide
following tissue sampling with the iKnife; this took place 4–12 weeks post tissue sampling.
The H&E slides are very robust, and delays in reporting made no difference for the final
histological diagnosis. The histological quality control excluded a large proportion of
samples (35% for the iKnife and 39% CO2 laser). This was largely due to thermal artefacts
caused by the diathermy/CO2 laser. It was essential to be robust with the exclusion criteria
at this step to ensure that the resultant reference dataset contained only spectra that were
truly derived from confirmed histology. Some cancer samples did not have any recognisable
cancer tissue remaining during post-processing histopathological analysis, either because
the cancer within the sample was burned, or because the Pipelle biopsy sample did not
include the intra-uterine malignancy.

3.2. Statistical Modelling with the iKnife—Normal Tissue versus Cancer

Only samples which were histologically validated as either normal or endometrial
cancer were included in the models. The single validated hyperplasia sample was excluded.
Three models were created—the first sampled the tissue using the conventional diathermy
iKnife (Figure 2A,B), the second using the CO2 laser iKnife (Figure 2C,D) and a third
comparing normal tissue to type 1 endometrial cancer samples only (Figure 3A,B). Each
data point in principal component analysis incorporates data from all spectra obtained
from a single tissue sample. The red points represent cancer samples, and the blue ones,
normal tissue. Whilst no apparent separation was seen between tissue classes in PCA,
there was separation in PC/LDA based on the high diagnostic accuracies seen on cross
validation. For the first model with the diathermy iKnife, the sensitivity, specificity, positive
predictive value (PPV) and negative predictive values (NPV) were 81%, 91%, 90% and
84%, respectively. Overall, 86% of patient samples were correctly identified using the
cross-validation. The sensitivity, specificity, PPV and NPV of the second model with the
CO2 laser iKnife were 85%, 93%, 94% and 85%, respectively. Overall, 89% of the patient
samples were correctly identified.

In the third model, normal and type 1 cancer samples processed with the diathermy
iKnife were used. As before, in the Figure, each dot on the PCA plots represents the average
spectra for a single sample. Red points represent type 1 cancer, and blue points represent
normal tissue. The overall sensitivity, specificity, PPV and NPV were 79%, 96%, 93% and
86%, respectively. The overall accuracy was 89%.

3.3. Learning Curve

In this learning curve (Figure 4), the algorithm started with five observations per class
and incremented by one sample per class each time, until reaching 32 samples per class
(maximum size of training set). For each training set size, all of the observations were
randomly partitioned 20 times (‘resampled iterations’) in order to estimate the classification
performance using different observations for training and testing. The mean accuracy,
sensitivity and specificity were determined for each iteration and plotted on a learning
curve (Figure 4). The pink boundaries represent ± 1 standard deviation of the accuracy. The
‘curve' shows a gradual increase in diagnostic accuracy from 70 ± 10% to approximately
80 ± 10% when increasing the sample size from 5 to 32. It can also be seen that the curve
did not plateau, suggesting that an increase in sample size may improve the diagnostic
accuracy.
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Figure 2. Multivariate analysis of normal versus cancer Pipelle samples after histological validation,
processed with the standard diathermy iKnife (A,B) and CO2 laser iKnife (C,D). Red data points
represent endometrial cancer samples and blue points represent normal samples. Each point repre-
sents the average spectrum for a single tissue sample. Images A and C are 3D PCA plots, and images
B and D are 2D PCA plots. Principal component one accounted for 34.1% of the variance in the
diathermy iKnife model and 42.7% in the CO2 laser model. The confusion tables are shown alongside
the figures. The tables show the accuracy of the model classification compared to histopathological
gold standard.
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validation, processed with the standard diathermy iKnife (A,B). Red data points represent endome-
trial type 1 cancer samples, and blue points represent normal samples. Each point represents the
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accuracy of the model classification compared to histopathological gold standard. T1 = type one.
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based on 35 normal and 35 cancer samples. The algorithm started with five normal and five cancer
samples and increased by increments of one. The overall diagnostic accuracy (pink dots) increased
from 70 ± 10% to approximately 80 ± 10% when the sample size increased from 5 to 32.

3.4. Loading Plot and Univariate Analysis

The loading plots for PC1 of the CO2 laser model (cancer versus normal) is depicted
below (Figure 5). These only provide an overall visual assessment of the significant
m/z values, and the Kruskal–Wallis test was also performed to confirm these results.
Interestingly, very few m/z values >800 m/z accounted for the variance in PC1.



Cancers 2022, 14, 5892 9 of 14

Cancers 2022, 14, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 4. Learning curve of type 1 cancer versus normal (no hyperplasia) diathermy iKnife model 
based on 35 normal and 35 cancer samples. The algorithm started with five normal and five cancer 
samples and increased by increments of one. The overall diagnostic accuracy (pink dots) increased 
from 70 ± 10% to approximately 80 ± 10% when the sample size increased from 5 to 32. 

3.4. Loading Plot and Univariate Analysis 
The loading plots for PC1 of the CO2 laser model (cancer versus normal) is depicted 

below (Figure 5). These only provide an overall visual assessment of the significant m/z 
values, and the Kruskal–Wallis test was also performed to confirm these results. Interest-
ingly, very few m/z values >800 m/z accounted for the variance in PC1. 

 
Figure 5. Loading plot of Principal component 1 for the CO2 laser model cancer versus normal, no 
hyperplasia. 

Using Matlab, the Kruskal–Wallis analysis was performed to confirm the identify of 
specific m/z values responsible for the separation of cancer and normal samples on the 
PC/LDA model. A -log2fold change of 1, in addition to a q value of 0.001, was used as a 
threshold to reduce the number of significant values. 

Table 2 shows some of the key m/z values which were abundant and/or responsible 
for the separation of classes and lipids involved, identified using tandem MS. The m/z 
peaks were presented to the database in negative ion mode. LipidMaps proposes depro-
tonated ions [M-H]- and chlorinated ions [M+Cl]- as well as deaminated ions [M-NH3]-. 
The lipid groups that were found to be upregulated in endometrial cancer included 
ceramides and the phospholipids phosphatidic acid (PA), phosphatidylethanolamines 
(PE) and phosphatidylserines (PS). Tandem MS was not possible for all significant lipids 
responsible for the separation of classes in the PCA model and loading plots, as the signal 
was too noisy. 

Figure 5. Loading plot of Principal component 1 for the CO2 laser model cancer versus normal, no
hyperplasia.

Using Matlab, the Kruskal–Wallis analysis was performed to confirm the identify of
specific m/z values responsible for the separation of cancer and normal samples on the
PC/LDA model. A -log2fold change of 1, in addition to a q value of 0.001, was used as a
threshold to reduce the number of significant values.

Table 2 shows some of the key m/z values which were abundant and/or responsible
for the separation of classes and lipids involved, identified using tandem MS. The m/z
peaks were presented to the database in negative ion mode. LipidMaps proposes deproto-
nated ions [M-H]- and chlorinated ions [M+Cl]- as well as deaminated ions [M-NH3]-. The
lipid groups that were found to be upregulated in endometrial cancer included ceramides
and the phospholipids phosphatidic acid (PA), phosphatidylethanolamines (PE) and phos-
phatidylserines (PS). Tandem MS was not possible for all significant lipids responsible for
the separation of classes in the PCA model and loading plots, as the signal was too noisy.

Table 2. Top 10 most abundant m/z values seen in normal and malignant endometrial Pipelle biopsies,
along with the lipid assignments following MS/MS. Double carbon bonds not reported. * = MS/MS
not possible due to low signal intensity, so only tentative assignment. PI = phosphatidyl-inositol.

Model m/z Value p Value Potential Lipid

Cancer vs. Normal CO2 laser

600.55 0.00000137 Cer (36:1;O2) *

671.45 0.000000345 PA (34:2) *

679.55 0.00000265 PG (O-16:0/14:0) *

699.55 0.000000340 PA (36:2) *

722.54 0.0000600 PE (16:0/20:4)

738.51 0.0259 PE (P-16:0/20:4) (12OH[S])

750.57 0.00680 PE (18:0/20:4)

766.56 0.0282 PE (18:0/20:4)

770.45 0.00000631 PE (20:0/18:2)

786.55 0.0000000559 PS (36:2) *

794.57 0.00426 PC (O-18:0/20:4)

794.65 0.00363 PE (20:4)

864.57 * 0.000177 PI-Cer (d18:0/22:0)

The fragmentation pattern of each ion using tandem MS was interrogated using
LipidMaps. A typical MS spectrum of m/z 722.54 is shown in Figure 6. The mother ion can
be seen, approximately one-third of the height of the biggest daughter ion (303.24), along
with the other daughter ions 259.25, 418.29, 436.30. Using LipidMaps, we confirmed the
lipid as a PE (P -16:0/20:4).
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4. Discussion
4.1. Key Findings

This prospective diagnostic study is the first to report the use of REIMS for the real-
time diagnosis of endometrial cancer. REIMS provides rapid tissue classification and a
result within 1.8 seconds [13] as opposed to 1 to 2 weeks using standard histology, thereby
facilitating point-of-care diagnosis. The overall diagnostic performance of the models is
encouraging, with a sensitivity as high as 89%. The learning models (Figure 5) suggest that
adding more samples to the spectral library will further increase the diagnostic accuracy of
the models.

The CO2 laser was a better diagnostic tool than the iKnife (overall accuracy 89% vs.
86%). As described by Genangeli et al, the CO2 laser provides cleaner cuts, yielding higher
quality spectra and less background noise [19]. Unlike the iKnife, which had 15% (70/453)
of spectra excluded due to poor quality, the CO2 laser had no spectra excluded. The CO2
laser energy is rapidly absorbed by water and burns to a depth of approximately 20 µm
depending on the tissue type, leaving ample tissue for histological validation [20]. More
subtle differences in the phospholipid spectra seen when using the CO2 laser may be the
reason for the superior diagnostic accuracy of the CO2 laser.

In addition to its diagnostic role, the iKnife (both CO2 and diathermy) can provide
information about the phospholipid constitution of cancer versus normal cells. An impor-
tant feature of malignancy is uncontrolled cell division, necessitating an increase in cell
membrane lipid synthesis. This is reflected by an increase in phospholipid biosynthesis
pathways and an alteration in the cellular phospholipid make-up of cancer cells. The
iKnife interrogates these changes to distinguish between tissue classes. Multiple studies
have suggested that glycerophospholipids can be used as biomarkers for cancer [21–24].
The loadings plots and univariate analyses in the present study suggested multiple m/z
values had differential abundance and intensity in tissue samples, which contributed
to class separation. This suggests that the entire lipid signature may be important for
class separation rather than single m/z values. It is therefore unlikely that individual
lipids could be used as diagnostic markers for endometrial cancer; more likely, a com-
bination of lipids can be used as part of a multivariate prediction model to diagnose
endometrial cancer.
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4.2. Implications and Comparison with Other Studies

At present, both primary and secondary prevention in endometrial cancer is lacking.
A large meta-analysis has shown that early detection in women presenting with PMB will
capture approximately 90% of endometrial cancer cases [25,26]. Furthermore, those with
significant risk factors such as morbid obesity may benefit from risk-reducing interven-
tions [27]. Whilst screening pathways are not fully established, early detection remains
possible. Molecular biomarkers such as Ca125 and HE4 have been evaluated with some
success but have not been integrated into the clinical practice [28]. Emerging technologies
such as REIMS and vibrational spectroscopy may also aid an earlier and more reliable
detection.

A recent study by Paraskevaidi et al., using vibrational spectroscopy to look for
endometrial cancer biomarkers in blood samples, found a high diagnostic accuracy (71–
100%) [29]. The study also found an increase in lipid-related peaks in the blood of women
with endometrial cancer. The biggest disadvantage of this study was the authors’ inability
to delve deeper and correlate the spectral peaks with the biomolecular and cellular changes
underpinning carcinogenesis. Importantly, the group failed to correct for multiple testing
and maintained a p-value of 0.05, despite testing hundreds of peaks with a high likelihood
of a false positive result.

Despite multiple studies showing lipidomic alterations in cancer, few studies have
specifically addressed lipid metabolism in endometrial cancer. The lipid assignments for
many of the significant m/z values in this study indicated predominately PAs and PEs. This
is in keeping with other studies which found higher levels of PAs and PEs in breast, ovarian
and bowel cancer [11–13,15]. In this study, PE (16:0/18:1), PE (16:0/20:4), PE (18:0/20:4)
and PE (20:0/18:2) were all more common in endometrial cancer tissue, when compared
with normal tissue. Altadill’s study of 56 endometrial tissue samples found significant
dysregulation in lipid metabolism too, with a number of PCs, PEs, PIs and PAs upregulated
in endometrial malignant tissue, including PE (16:1/P-18:1). One limitation of that study
is the lack of clarity around how the tissue samples were obtained. Other studies have
reported profound changes in sphingolipid metabolism in endometrial cancer [30], though
this was not demonstrated in the present study. Further cell line work will be needed to
unravel the exact molecular pathways involved in endometrial cancer pathogenesis based
on the observed differences in phospholipid composition.

4.3. Strengths and Limitations

REIMS is a rapidly evolving technology, and this is the first study using it to detect
endometrial cancer from Pipelle biopsy samples. The technology performed extremely
well, with a diagnostic accuracy of up to 89%. The overall performance of the diathermy
iKnife was higher when type 2 samples were excluded. This is unsurprising, as type 1
cancers are more homogenous in nature, with a similar lipidomic profile, compared to type
2 cancers, which present diverse profiles. Type 2 cancers include rare and mixed tumours,
and therefore building a robust model for these cancers is more challenging, with fewer
individual subtypes within the reference dataset.

The sensitivity and specificity of the best models were sufficiently high to be used
in clinical practice, following prospective validation. The result from REIMS is virtually
instantaneous and can therefore provide a POC diagnosis for patients attending the clinic.
Treatment delays have been shown to be negatively associated with survival [9]. Given the
high PPV (90–94%), women who test positive are very likely to have endometrial cancer
and could be subjected to blood tests and pre-operative imaging that same day, while
awaiting final histopathological confirmation, minimising any treatment delays.

One of the limitations of this study is the limited number of Pipelle samples, with
a significant number of them being very small and of poor quality. In a study of over
200 women undergoing Pipelle biopsies, 23% of the samples failed, predominately due
to insufficient tissue [31]. In this study, research Pipelle samples were acquired only after
obtaining adequate tissue (first pass) for standard histology; thus, the samples were often
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very small. Indeed, the acquisition of the Pipelle samples was challenging. Patients
attending the clinic were anxious and not always happy to participate in the research,
particularly in view of the painful nature of the procedure needed to obtain the samples.
Those patients who agreed to participate in the research did not always need a Pipelle
biopsy, and for those who needed a Pipelle sample, there was often insufficient tissue for
research. Additionally, the consistency of the research Pipelle samples was heterogenous
(completely liquid to solid tissue), and this posed technical challenges for REIMS and
increased the complexity of model classification. For tissues which are very different, large
reference datasets are even more important to ensure an adequate number of reference
data for varied tissue types. Furthermore, natural variations in normal and cancer tissue
introduce complexity. For example, benign samples include inactive endometrium, normal
secretory endometrium and benign polyps. Molecular profiling has shown differences in
endometrial tissue depending on the timing of the cycle, and also the presence of polyps
or fibroids [32]; these changes may result in downstream phenotypic changes which are
recognised by REIMS.

Another limitation of REIMS is its destructive nature. A high proportion of samples
were excluded, as the thermal damage caused by REIMS made histological validation
impossible. When this study was first conceived, it was impossible to predict how many
samples would be needed for the model to recognise differences in the lipidomic profiles
between cancer and normal tissue (or, indeed, if the analysis was even possible). As seen
in the learning curve, further improvements in diagnostic accuracy may still be reached
with the inclusion of more samples in the model. Further development of the reference
dataset will be essential for prospective validation. Care needs to be taken to ensure that
sample conditions are as uniform as possible and continue to adopt standard operating
procedures for the acquisition, processing, utilisation and storage of tissue to minimise
confounding variables [33]. It is well recognised that endometrial pathophysiology is
highly complex and that there are multiple sources of biological variability that can affect
tissue composition, including body mass index, ethnicity, medications and timing of the
biopsy in relation to the menstrual cycle [33].

5. Conclusions

The results of this study suggest that REIMS has the potential to expedite the patient
pathway, providing point-of-care diagnosis for women with suspected endometrial cancer.
It accurately distinguishes normal from malignant endometrial tissue based on differences
in their lipidomic profiles. Further larger studies are needed to validate this technique and
improve its diagnostic performance.
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Appendix A

Table A1. Summary table of Pipelle samples processed with the diathermy iKnife. The number of
samples and spectra generated for the tissues is shown. Each tissue sample was obtained from one
patient, so the sample numbers represent the numbers of both patients and samples. A significant
number of samples were removed due to poor spectral quality or failed histopathological validation.

Tissue Type
Pre-spectrum QC Post Spectrum QC Post Histology QC

Samples Spectra Samples Spectra Samples Spectra

CANCER 59 210 59 189 43 145

HYPERPLASIA 4 12 4 12 1 5

NORMAL 78 231 75 200 45 131

TOTAL 141 453 138 401 89 281
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