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Simple Summary: The deubiquitinase-mediated cleavage of ubiquitin chains from substrate proteins
plays a crucial role in regulating protein degradation, activities, interactions, and localization. The
dysregulation of multiple deubiquitinases has been implicated in various human diseases, especially
cancer. More importantly, many small molecules targeting oncogenic deubiquitinases have been dis-
covered, some of which have exhibited promising anti-cancer effects and entered clinical trials. Gastric
cancer remains one of the most common and fatal malignancies. In this review, we aim to summarize
the multifaceted roles of deubiquitinases in gastric tumorigenesis. We also present the upstream
regulation of specific deubiquitinases and the research progress of several deubiquitinase-associated
small molecules for gastric cancer therapy. Together, this review will improve our understanding of
the biological role of deubiquitinases as well as the therapeutic potential of targeting deubiquitinases
in gastric cancer.

Abstract: Gastric cancers (GCs) are malignant tumors with a high incidence that threaten global public
health. Despite advances in GC diagnosis and treatment, the prognosis remains poor. Therefore,
the mechanisms underlying GC progression need to be identified to develop prognostic biomarkers
and therapeutic targets. Ubiquitination, a post-translational modification that regulates the stability,
activity, localization, and interactions of target proteins, can be reversed by deubiquitinases (DUBs),
which can remove ubiquitin monomers or polymers from modified proteins. The dysfunction of
DUBs has been closely linked to tumorigenesis in various cancer types, and targeting certain DUBs
may provide a potential option for cancer therapy. Multiple DUBs have been demonstrated to
function as oncogenes or tumor suppressors in GC. In this review, we summarize the DUBs involved
in GC and their associated upstream regulation and downstream mechanisms and present the benefits
of targeting DUBs for GC treatment, which could provide new insights for GC diagnosis and therapy.

Keywords: gastric cancer; deubiquitinases; biomarkers; tumorigenesis; pathogenesis; diagnosis

1. Introduction

Gastric cancer (GC) is the fifth most common cancer and the fourth leading cause of
cancer-related mortality worldwide. Based on estimates from the GLOBOCAN database,
more than 1 million new GC cases and an estimated 769,000 GC deaths occurred worldwide
in 2020 [1]. As with other cancer types, GC development is a multistage process involving
genetic and epigenetic alterations [2,3]. In addition to host factors, other etiological factors,
including a high-salt diet, tobacco use, and infectious agents, such as Helicobacter pylori
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(H. pylori) and Epstein–Barr virus (EBV), also play a significant role in the initiation and
progression of GC [4]. Despite advances in understanding the mechanisms underlying GC
and improved therapies, almost one-third of patients with GC are diagnosed at a late stage,
with a 5-year survival rate below 20% [3,5,6]. Therefore, there is an urgent need to develop
novel biomarkers and therapeutic targets for treating GC.

Deubiquitinases (DUBs) are isopeptidases that can cleave a single ubiquitin or entire
ubiquitin chains from target proteins, thereby counteracting protein ubiquitylation, a
post-translational modification fundamental for the regulation of protein stability, activity,
subcellular localization, and interactions [7,8]. DUBs are involved in many physiological
processes, such as apoptosis, autophagy, and the cell cycle, and pathological processes, such
as neurodegenerative diseases and cancers [9–14]. Hence, DUBs have attracted attention as
therapeutic targets, and DUB inhibitors have been developed, with some now in preclinical
development or clinical trials [15]. To date, approximately 100 DUBs have been reported
and are classified into seven subfamilies based on their sequence and structural similarities
as follows: ubiquitin-specific proteases (USPs), ubiquitin carboxy-terminal hydrolases
(UCHs), ovarian tumor proteases (OTUs), Jab1/MPN domain-associated metalloenzymes
(JAMMs), Machado–Joseph disease proteases (MJDs), the monocyte chemotactic protein-
induced protease family (MINDYs), and Zn-finger and UFSP domain proteins (ZUFSPs)
(Figure 1) [16].
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Figure 1. The classification and members of DUB family. DUBs are divided into seven subfamilies:
ubiquitin-specific proteases (USPs), ubiquitin carboxy-terminal hydrolases (UCHs), ovarian tumor
proteases (OTUs), Jab1/MPN domain-associated metalloenzymes (JAMMs), Machado–Joseph disease
proteases (MJDs), monocyte chemotactic protein-induced protease family (MINDYs), and Zn-finger
and UFSP domain proteins (ZUFSPs).

During the past decades, many studies have demonstrated that multiple DUBs are
implicated in the development of GC. In this review, we first summarize and discuss the
DUBs related to GC, with a summary of their mechanisms of action and regulation (Table 1).
In addition, we document the potential of pharmacological interventions that target DUBs
(Table 2). Taken together, the present review aims to provide a better understanding of the
molecular mechanisms underlying GC development associated with DUBs and how they
can be targeted for GC treatment.
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Table 1. The list of DUBs involved in GC.

DUBs Upstream Regulatory Events Substrate(s) Biological Effects Ref.

USPs

USP1
None reported None reported USP1 silencing hindered the proliferation, migration, and

invasion of GC cells. [17]

None reported ID2 USP1 promoted GC metastasis by stabilizing ID2. [18]

USP2 None reported E2F4 USP2 promoted GC progression by facilitating
E2F4/autophagy/zinc homeostasis axis. [19]

USP3

None reported None reported USP3 promoted GC cell proliferation and spreading by
regulating cell-cycle-control- and EMT-related molecules. [20]

TGF-β upregulates USP3 expression SUZ12 USP3 promoted GC metastasis by stabilizing SUZ12. [21]

None reported COL9A3/COL6A5 USP3 promoted GC cell migration, invasion, and EMT via
binding to and deubiquitinating COL9A3 and COL6A5. [22]

Hsa_circ_0017639 upregulates USP3 expression
by sponging miR-224-5p None reported Hsa_circ_0017639 participates in GC progression by

regulating the miR-224-5p/USP3 axis. [23]

LncRNA SND1-IT1 functions as a ceRNA to
upregulate USP3 expression via absorbing

miR-1245b-5p and simultaneously recruiting
DDX54 to enhance USP3 mRNA stability

SNAIL1

Exosomal SND1-IT1 from GC cells upregulated USP3
expression, thus mediating SNAIL1 stabilization and

accelerating the migration and invasion of gastric
mucosa cells.

[24]

USP7

None reported USP11, PPM1G, DHX40,
DDX24 and TRIP12 Unclear [25]

None reported PD-L1

USP7 served as an upstream DUB of PD-L1; USP7
abrogation hindered GC cell growth by downregulating
PD-L1-mediated immunosuppression and enhanced cell

cycle arrest simultaneously by stabilizing p53.

[26]

Cisplatin and paclitaxel promoted USP7
expression in CAFs hnRNPA1

Cisplatin and paclitaxel promoted the secretion of
miR-522 from CAFs by activating USP7/hnRNPA1 axis,

resulting in ferroptosis suppression, and acquired
chemoresistance by inhibiting ALOX15 expression and

lipid-ROS accumulation in GC cells.

[27]

USP9X

None reported None reported USP9X was overexpressed and predicted poorer survival
in GC. [28]

Hsa_circ_0008434 enhances USP9X expression
by sponging miR-6838-5p None reported Hsa_circ_0008434 promoted GC proliferation, invasion,

and migration by regulating miR-6838-5p/USP9X axis. [29]

None reported YAP

The LINC01433-YAP feedback loop promoted GC cell
proliferation, migration, invasion, and chemotherapy

resistance. LINC01433 increased the stability but
decreased the phosphorylation of YAP by enhancing its
interaction with USP9X and attenuating its interaction

with LATS1, respectively.

[30]

USP10

None reported None reported USP10 was an independent prognostic marker for
patients with GC. [31]

3-Deazaneplanocin A treatment upregulates
USP10 expression by reducing EZH2 binding on

its promoter
p53 Stabilization of p53 by USP10 seemed to be correlated

with the sensitivity of GC cells to 3-Deazaneplanocin A. [32]

CircCOL1A2 upregulates USP10 expression by
sponging miR-1286 RFC2

CircCOL1A2 sponges miR-1286 to promote GC cell
migration and invasion by increasing USP10 level to

stabilize RFC2.
[33]

USP11 None reported None reported
USP11 overexpression promoted proliferation and

migration and alleviated paclitaxel’s toxicity in GC cells
by inhibiting RhoA and Ras signaling.

[34]

USP13
None reported None reported High expression of USP13 predicted poor

prognosis in GC. [35]

None reported Snail USP13 promoted the EMT and metastasis of GC cells by
stabilizing Snail. [36]

USP14

miR-320a inhibits USP14 expression by
targeting its 3′-UTR Vimentin

USP14-mediated deubiquitination of vimentin enhanced
the aggressiveness of GC cells, and miR-320a served as a
tumor suppressor by inhibiting both USP14 and vimentin.

[37]

None reported None reported USP14 silencing sensitized GC cells to cisplatin by
impeding Akt/ERK signaling pathways. [38]

YTHDF1 enhanced USP14 protein translation in
a m6A-dependent manner

None reported
YTHDF1 promoted GC progression and metastasis by

promoting USP14 protein translation in an
m6A-dependent manner.

[39]

USP15

None reported None reported USP15 overexpression inhibited GC cell proliferation,
migration, and invasion. [40]

None reported None reported USP15 promoted GC progression through the
Wnt/β-catenin signaling pathway. [41]

USP15 is potential regulated by
LINC00205/miR-26a axis None reported Unclear [42]

USP20 None reported None reported USP20 inhibited GC cell growth and G1/S cell cycle
transition by regulating Claspin. [43]

USP21 None reported GATA3 USP21 upregulated MAPK1 expression by stabilizing
GATA3 to promote GC cell growth and stemness. [44]
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Table 1. Cont.

DUBs Upstream Regulatory Events Substrate(s) Biological Effects Ref.

USP22

None reported None reported Coordinate expression of USP22 and BMI1 correlated
with GC progression and treatment failure. [45]

None reported None reported High expression of USP22 correlated with GC progression
and has synergistic effects with c-Myc. [46]

None reported BMI1 USP22 contributed to gastric CSC stemness maintenance
and GC progression by stabilizing BMI1. [47]

None reported None reported
USP22 siRNA-loaded nanoliposomes decorated with

CD44 antibodies selectively target and eliminate CD44+

GC stem cells.
[48]

None reported None reported Positive co-expression of USP22 and HSP90 might be
more effective in predicting prognosis of GC. [49]

None reported None reported
USP22 promotes GC progression and metastasis through

c-Myc/NAMPT/SIRT1-dependent FOXO1
and YAP signaling.

[50]

POU2F1 upregulates USP22 expression by
suppressing the expression of miR-4490 None reported POU2F1-miR-4490-USP22 signaling axis plays a

significant role in GC development and progression. [51]

None reported None reported
USP22 overexpression in GC induces the upregulation of

SOS1 and activation of the RAS/ERK and
PI3K/AKT pathways.

[52]

USP28 None reported None reported USP28 promoted cell proliferation and metastasis of GC
cells by regulating LSD1. [53]

USP29 TGFβ, TNFα, and hypoxia induced the
transcription of USP29 Snail USP29 cooperated with SCP1 to prevent Snail

degradation and further promoted GC cell metastasis. [54]

USP32 None reported SMAD2 USP32 is involved in GC development and
chemoresistance through the upregulation of SMAD2. [55]

USP33
None reported None reported USP33 overexpression inhibited GC cell proliferation,

migration, and invasion. [56]

None reported ROBO1 USP33 contributed to SLIT2-ROBO1 axis in inhibiting GC
cell migration and EMT process. [57]

DUB1 None reported TAZ DUB1 stabilized TAZ protein and promoted GC
progression via the Hippo/TAZ axis. [58]

USP37 PLAGL2 activated USP37 transcription Snail
USP37, which is transcriptionally activated by PLAGL2,

deubiquitinates and stabilizes Snail1 to promote the
proliferation, EMT, and metastasis of GC cells.

[59]

USP39
None reported None reported USP39 silencing inhibited the growth of GC cells via

PARP activation. [60]
miR-133a inhibited USP39 expression by

targeting its 3′-UTR None reported miR-133a suppressed GC proliferation by
regulating USP39. [61]

USP42 None reported None reported USP42 depression inhibited GC cell
proliferation and invasion. [62]

USP44

None reported None reported USP44 overexpression resulted in DNA aneuploidy. [63]

CircFOXO3 upregulates USP44 expression by
sponging miR-143-3p None reported

CircFOXO3 promoted GC cells proliferation and
migration by increasing USP44 expression through

targeting miR-143-3p.
[64]

USP47

miR-204-5p inhibited USP47 expression via
binding its 3′-UTR None reported MiR-204-5p functioned as a tumor suppressor in GC by

suppressing USP47 and RAB22A. [65]

None reported None reported USP47 regulates NF-κB activity by stabilizing β-TrCP
and contributes to chemoresistance of GC cells. [66]

USP49 USP49 was transcriptionally activated by the
YAP1/TEAD4 complex YAP1 USP49 and YAP1 form a positive feedback loop to

promote malignant progression of GC. [67]

CYLD

miR-362 inhibited CYLD expression via
targeting its 3′-UTR None reported

Upregulated miR-362 promoted GC cell proliferation and
cisplatin resistance by repressing CYLD and activating

NF-κB signaling.
[68]

miR-500 inhibited CYLD expression via
targeting its 3′-UTR None reported

Upregulated miR-500 promoted GC cell proliferation and
cisplatin resistance by repressing CYLD, OTUD7B, and

TAX1BP1 and activating NF-κB signaling.
[69]

miR-130b inhibited CYLD expression via
targeting its 3′-UTR None reported Upregulated miR-130b promoted GC cell proliferation

and inhibited apoptosis by repressing CYLD. [70]

miR-20a negatively regulated CYLD expression
by targeting its 3′ UTR None reported

Upregulated miR-20a augmented the resistance of GC
cells to cisplatin by inhibiting CYLD and activating

NF-κB signaling and its downstream targets.
[71]

miR-425-5p negatively regulated CYLD
expression by targeting its 3′ UTR None reported Upregulated miR-425-5p may promote GC cell migration

and invasion by repressing CYLD. [72]

CYLD expression was inversely correlated with
hypermethylation of its promoter, which could

be induced by some infectious agents
None reported

Decreased CYLD level may be associated with gender,
patient’s age, high grade, and no lymph-node metastasis

in GC patients.
[73]

LncRNA CRAL functions as a ceRNA to
upregulate CYLD expression via

absorbing miR-505
None reported LncRNA CRAL improved cisplatin resistance via the

miR-505/CYLD/AKT axis in GC cells. [74]

miR-454 inhibited CYLD expression via
targeting its 3′-UTR None reported miR-454 supported survival and induced oxaliplatin

resistance in GC cells by repressing CYLD. [75]

Exosomal miR-588 from M2 polarized
macrophages inhibited CYLD expression via

targeting its 3′-UTR
None reported Exosomal miR-588 contributed to cisplatin GC cell

resistance by repressing CYLD. [76]

ZNF333 decreased CYLD level by binding
to its promoter None reported

ALKBH5 promoted the process of bile-acid-induced
gastric intestinal metaplasia by

ZNF333/CYLD/CDX2 pathway.
[77]
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Table 1. Cont.

DUBs Upstream Regulatory Events Substrate(s) Biological Effects Ref.

UCHs

UCHL1

UCHL1 may be epigenetically inactivated via
promoter methylation None reported UCHL1 methylation was correlated with poor clinical

outcome in GC patients. [78–82]

None reported None reported UCHL1 promoted GC cell proliferation and metastasis by
activating the Akt and ERK1/2 pathways. [83]

None reported None reported UCHLI silencing inhibited GC cell proliferation
and metastasis. [84]

UCHL3 None reported None reported UCHL3 stimulated GC metastasis by upregulating IGF2. [85]

UCHL5

None reported None reported A certain subgroup of GC patients with high expression
of UCHL5 had better prognosis. [86]

None reported NFRKB
LncRNA DRAIC inhibited GC proliferation and

metastasis by mediating ubiquitination degradation of
NFRKB by interfering with its combination with UCHL5.

[87]

BAP1 None reported None reported BAP1 downregulation predicts unfavorable
survival in GC. [88]

OTUs

OTUB1 None reported None reported OTUB1 enhanced tumor invasiveness and predicted a
poor prognosis in GC. [89]

OTUB2
None reported KRT80 OTUB2 enhanced KRT80 stability via deubiquitination

and promoted GC proliferation. [90]

None reported KDM1A OTUB2 promoted GC tumorigenesis by enhancing
KDM1A-mediated stem cell-like properties. [91]

A20

A20 expression was inversely correlated with
methylation at specific CpG sites in its

intronic region
None reported Increased A20 levels were associated with poor

clinical outcomes. [92]

None reported None reported A20 depletion inhibited the capacity of proliferation,
migration, and invasion of GC cells. [93]

miR-200a inhibited A20 expression by targeting
its 3′-UTR RIP1 miR-200a prevented RIP1 polyubiquitination and

enhanced TRAIL sensitivity by targeting A20 in GC cells. [94]

H. pylori-induced NF-κB activation elevated
A20 expression Procaspase-8

Increased A20 expression by USP48 inhibited K63-linked
ubiquitinylation of procaspase-8, restricting caspase-8

activity and apoptosis in GC cells.
[95–98]

H. pylori infection decreased A20 expression by
upregulating miR-29a-3p None reported A20 silencing promoted gastric epithelial cell migration. [99]

JAMMs

PSMD14 None reported PTBP1 PSMD14 stabilized PTBP1 to promote GC cell
proliferation and invasion. [100]

CSN5

None reported RUNX3 CSN5 facilitates nuclear export and degradation
of RUNX3. [101]

None reported None reported
CSN5 knockdown inhibited proliferation and promoted

apoptosis of GC cells by regulating p53-related
apoptotic pathways.

[102]

None reported p14ARF CSN5 potentiated GC progression by decreasing p14ARF
expression through non-ubiquitin pathway. [103]

The activity of CSN5 was enhanced by IKKβ,
and IKKβ expression was inhibited by DAPK1 PD-L1

Overexpression of DAPK1 enhanced NK cell killing and
suppressed tumor immune evasion in GC cells by

inhibiting the IKKβ/CSN5/PD-L1 axis.
[104]

BRCC3
LncRNA TMPO-AS1 functions as a ceRNA to
upregulate BRCC3 expression via absorbing

miR-126-5p
None reported

TMPO-AS1 accelerated GC cell proliferation, migration,
and angiogenesis by regulating miR-126-5p/BRCC3 axis

and activating PI3K/Akt/mTOR signaling.
[105]

MJDs

Ataxin-3 None reported None reported Decreased Ataxin-3 expression correlated with
clinicopathologic features of GC. [106]

Table 2. Compounds that suppress GC by modulating DUBs.

Compound Structure Affected
DUB IC50 (µM) Effects Ref.

Emetine
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2.1. USP3

Studies have highlighted the role of USP3 in GC progression. USP3 is overexpressed
in GC cells and tissues and can serve as a prognostic marker for patients [20,21]. USP3 facil-
itates GC cell growth and metastasis in vitro and in vivo by modulating cell cycle control
and epithelial–mesenchymal transition (EMT)-related molecules [20]. Wu et al. identified
differentially expressed proteins in BGC-823 cells stably expressing USP3 [21]. Among
them, SUZ12, a scaffolding component of the PRC2 complex, and COL9A3/COL6A5,
collagen family members, were deubiquitinated and stabilized by USP3, which accounts for
its role in promoting invasion and migration [21,22]. In addition to SUZ12, the core PRC2
complex also comprises the histone methyltransferase EZH2 and the scaffolding component
EED. As an epigenetic regulator complex, PRC2 trimethylates lysine 27 on histone H3 tails
to modulate its several thousand target genes, including various genes involved in cancer
proliferation, migration, and invasion, such as E-cadherin and p14ARF [114]. However, it is
unknown whether these three proteins are involved in the USP3-directed proliferation of
GC cells, and future studies should examine their oncogenic roles in GC.

Additionally, non-coding RNAs, including circular RNAs, long non-coding RNAs
(lncRNAs), and microRNAs (miRNAs), play critical roles in modulating GC [115–118].
Hsa_circ_0017639, a circular RNA, is increased in GC cell lines and promotes proliferation
and migration by increasing USP3 expression by sponging miR-224-5p [23]. In addition,
Jin et al. demonstrated that exosomal lncRNA SND1-IT1 secreted from GC cells not only
recruited DDX54, a DEAD-box RNA helicase that binds to specific RNAs, to enhance
USP3 mRNA stability, but also bound to miR-1245b-5p to upregulate USP3 expression,
thus leading to SNAIL1 stabilization and inducing the malignant transformation of gastric
mucosa cells [24]. Taken together, these studies suggest that targeting USP3 may be a
potential treatment for GC.

2.2. USP7 and USP11

USP7, also called herpes-virus-associated ubiquitin-specific protease, deubiquitinates
many substrate proteins involved in the cell cycle, DNA damage responses, and immune
responses [119,120]. Accordingly, the aberrant expression and activity of USP7 have been
found in GC. Wang et al. showed that USP7 is highly expressed in GC and increases the
expression of programmed cell death protein 1 (PD-L1), a pivotal immune checkpoint
molecule that decreases T-cell immune responses [26]. Furthermore, USP7 knockdown
or inhibition with its inhibitor Almac4, developed by Gavory et al., conferred GC cell
sensitivity to T-cell cytotoxicity, reduced proliferation, and induced cell cycle arrest by
stabilizing p53, which interacts with USP7 [26,107,121]. Similarly, the USP7 inhibitor C9, a
quinazolin-4(3H)-one derivative, also suppressed GC cell proliferation by upregulating p53
and its downstream target p21 [108].

To better understand the USP7 binding network in tumor cells, Anna et al. performed
affinity purification coupled with mass spectrometry to identify interactions in GC cells
overexpressing USP7. In addition to several reported binding proteins (such as USP11
and TRIP12), this study also identified DHX40 and DDX24, two DEAD/DEAH-box RNA
helicases, as novel targets of USP7, providing preliminary evidence that USP7 may regulate
RNA metabolism [25]. Furthermore, these interactions were confirmed with nasopharyn-
geal carcinoma cells. However, the role of these USP7 substrates in GC carcinogenesis
were not investigated [25]. Interestingly, a recent study suggested that USP11 might play
an oncogenic role in GC by affecting RhoA and Ras-mediated signaling pathways [34].
Moreover, a previous study indicated that H. pylori decreases the expression and activity
of USP7 in infected GC cells. However, the exact function of H. pylori in regulating USP7
expression remains unclear [122].
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In addition, Zhang et al. found that USP7 stabilizes hnRNPA1 in cancer-associated fi-
broblasts (CAFs) to contribute to the packaging and release of exosomes containing miR-522.
Paclitaxel and cisplatin also promoted miR-522 secretion by activating the USP7/hnRNPA1
axis. The lipoxygenase ALOX15 is important in mediating the lipid peroxidation that drives
ferroptosis. Further, exosomal miR-522 repressed ALOX15 expression and lipid peroxide
accumulation, inhibited ferroptosis, and ultimately lead to acquired chemoresistance in GC
cells [27].

2.3. USP9X, USP36, and USP49

USP9X has been shown to function as either an oncogene or tumor suppressor, de-
pending on the type of cancer [123]. Increased USP9X expression is associated with a poor
prognosis in patients with GC, suggesting an oncogenic role [28]. Consistent with this
evidence, another study showed that silencing USP9X represses the migration, invasion,
and colony formation ability of GC cells. Moreover, hsa_circ_0008434, a miRNA sponge for
miR-6838-5p, increased USP9X expression and promoted GC progression [29].

Hippo signaling has been implicated in regulating cell growth, metastasis, and
chemoresistance in GC [124]. As the core downstream effectors, YAP and TAZ activ-
ity is controlled by a conserved kinase cassette. In mammals, once Hippo signaling is
activated, MST1/2 kinases phosphorylate and activate LATS1/2 kinases, which further
phosphorylate YAP/TAZ for cytoplasmic sequestration or degradation. Inhibiting the
Hippo pathway leads to the nuclear translocation of YAP/TAZ, which regulate target
gene expression by binding to TEAD coactivators [125,126]. Additionally, several DUBs
activate or repress Hippo signaling through different mechanisms [127]. For instance,
USP9X promotes breast cancer cell survival and attenuates cell sensitivity to chemotherapy
by deubiquitinating and stabilizing YAP [128]. Zhang et al. demonstrated that LINC01433,
a lncRNA positively related to GC progression, increased YAP stability by enhancing its
interaction with USP9X and decreased YAP phosphorylation by weakening its association
with LATS1. Because YAP binds to the LINC01433 promoter and activates its transcription,
this positive feedback loop could be a therapeutic target for GC treatment [30].

Two studies have suggested that DUB1 and USP49 also contribute to GC development
by regulating the Hippo signaling pathway [58,67]. DUB1 is a short form of USP36, but
its role in tumorigenesis remains largely unknown [129,130]. However, it has a role in GC
progression. Wang et al. found that DUB1 is capable of interacting with, deubiquitinating,
and stabilizing the Hippo signaling effector TAZ [58]. USP49 silencing decreases cell
proliferation, migration, and invasion and enhances GC cell sensitivity to chemotherapy;
however, this effect can be reversed by YAP1 overexpression. Because USP49 is a target gene
modulated by YAP1/TEAD4, this result indicates that USP49 and YAP1 form a positive
feedback loop to support the malignant progression of GC [67].

2.4. USP10

USP10 plays a dual role in different human cancer types [131]. Zeng et al. showed
that USP10 expression was lower in GC cell lines and clinical samples than in their non-
cancerous counterparts. More importantly, decreased USP10 expression indicates several
highly malignant clinicopathological features and poor survival in patients with GC, sug-
gesting that USP10 may be a prognostic biomarker [31]. Additionally, the calcium-binding
protein S100A12 was found to be a GC prognostic marker, and its levels correlated with
USP10 [132,133]. Given that USP10 and S100A12 are both located in the cytoplasm, USP10
may regulate the stability of S100A12 via deubiquitylation [132]. Therefore, future studies
should investigate the role of USP10 in GC proliferation and metastasis. Moreover, the
USP10-mediated stabilization of p53 likely contributes to the sensitivity of GC cells to
3-deazaneplanocin A, a histone methylation inhibitor that depletes EZH2, the enzymatic
component of the PRC2 complex that catalyzes H3K27me3 [32]. As p53 turnover is regu-
lated by a variety of DUBs [134], whether these DUBs influence chemotherapy resistance
in GC cells warrants further study. While these results indicate that USP10 functions as a
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tumor suppressor, one study showed that USP10 promoted GC cell migration and invasion
by stabilizing replication factor C subunit 2 [33]. Collectively, the function of USP10 in GC
remains unclear and requires further studies.

2.5. USP13, USP29, and USP37

As a master transcriptional factor that induces EMT, Snail is frequently overex-
pressed in tumors and drives tumor progression, cell survival, metastasis, and stem cell
properties [135]. E3 ligases and DUBs are involved in the phosphorylation-dependent
ubiquitination and proteasomal degradation of Snail [135]. For instance, GSK-3β phos-
phorylates Snail at six Ser sites. Snail phosphorylation at four Ser sites (Ser-107, 111, 115,
and 119) causes cytoplasmic localization, whereas phosphorylation at two Ser sites (Ser-
96 and 100) promotes ubiquitination and degradation by β-TrCP [136]. USP13, USP29,
and USP37 were reported to promote the metastasis of GC by deubiquitinating and sta-
bilizing Snail [35,36,54,59]. In addition, the upstream events of USP29 and USP37 are
relevant for Snail regulation. Specifically, USP29, induced by TGFβ, TNFα, and hypoxia,
increases the interaction between Snail and phosphatase SCP1, resulting in the dephos-
phorylation and deubiquitination of Snail, preventing its degradation [54]. USP37, which
is transcriptionally activated by PLAG1-like zinc finger 2, stabilizes Snail in a GSK-3β
phosphorylation-dependent manner [59]. Overall, these studies demonstrate the complex-
ity of Snail regulation and provide potential therapeutic targets for the treatment of GC.

2.6. USP14

USP14 is a proteasome-associated DUB that plays a dual role in regulating protein
degradation. Although it cleaves ubiquitin, it also promotes protein degradation by acti-
vating the proteasome [137,138]. USP14 has been reported to be an oncogene in GC [139].
USP14 levels are elevated in GC and may be an independent disease-free survival marker in
patients [38,39]. In one study, USP14 was found to promote GC cell proliferation, invasion,
and migration by stabilizing the EMT protein vimentin. Furthermore, the authors showed
that miR-320a acts as a tumor suppressor by reducing vimentin expression and preventing
USP14 from stabilizing this protein [37]. However, Fu et al. showed that USP14 depletion
did not lead to cell death but sensitized GC cells to cisplatin-induced apoptosis [38]. As
one chemical modification commonly found in eukaryotic mRNAs, N6-methyladenosine
(m6A) plays a crucial role in modulating mRNA processing; studies have indicated that
dysregulated m6A regulators are involved in cancer progression [140]. The m6A reader
YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) promotes gastric carcino-
genesis by modulating the translation of FDZ7, a key Wnt receptor [141]. YTHDF1 also
increased USP14 levels in an m6A-dependent manner, and USP14 overexpression reversed
the tumor-suppressive effects elicited by YTHDF1 silencing [39]. Additionally, the USP14
inhibitor IU1 restricted GC cell viability and metastasis triggered by YTHDF1 overex-
pression [39,109]. Together, these findings provide novel insights into the USP14-related
mechanisms underlying malignancy in GC.

2.7. USP15

The role of USP15 in GC is less defined and contradictory. Zheng et al. suggested that
the ectopic expression of USP15 could suppress GC cell growth, migration, and invasion
through the deubiquitination of IκBα by the COP9 signalosome (CSN) complex, thereby
hindering NF-κB activity [40,142]. In contrast, USP15 knockdown attenuated the activity
of Wnt/β-catenin signaling and inhibited GC progression both in vitro and in vivo, but
the mechanism through which USP15 regulates this pathway remains unclear [41]. As
reviewed by Das et al., USP15 can either activate or suppress NF-κB and Wnt/β-catenin
signaling depending on its effects on different proteins in various cellular contexts [143].
Furthermore, Huangfu et al. suggested that USP15 may assist in GC development by
acting as a target that is regulated by the LINC00205/miR-26a axis [42]. In short, the
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effects of USP15 on specific signaling pathways, such as NF-κB and Wnt/β-catenin, and on
tumorigenesis and metastasis in GC require further study.

2.8. USP22

USP22 has been identified as producing cancer-stem-cell-like qualities, including ag-
gressive growth, metastasis, and therapy resistance [144]. Unlike other DUBs, the USP22
zinc-finger ubiquitin-binding domain does not directly bind to ubiquitin and instead is
recruited and activated by the SAGA complex, forming a subcomplex (DUB module)
with other proteins [145,146]. By regulating a broad range of histone and non-histone
protein substrates, USP22 is associated with oncogenesis in GC [145]. Several studies have
suggested that USP22 expression is upregulated in GC tissues and cells [45–47,49–52]. In
gastric tumors, USP22 expression was found to be positively correlated with the expression
of the three well-known oncoproteins BMI1, c-Myc, and HSP90, which better predicted
GC progression and prognosis than other methods [45,46,49]. Notably, USP22 stabilizes
BMI1 and c-Myc, but not HSP90 [47,49,50]. USP22 maintained GC cell stemness by stabiliz-
ing BMI1 and promoted proliferation and metastasis by activating the FOXO1 and YAP
signaling pathway [47,50]. However, these studies did not provide evidence that USP22
can stabilize BMI1 or c-Myc through deubiquitination, but this role was later identified in
glioma and breast cancer cells [147,148]. As a guanine nucleotide exchange factor, son of
sevenless 1 (SOS1) catalyzes GTP-bound RAS formation, whose activation elicits oncogenic
signaling pathways [149]. Lim et al. proposed that USP22 upregulates SOS1 expression in
GC, thus leading to the activation of RAS/ERK and RAS/PI3K/AKT pathways [52]. USP22
can also be modulated by the POU2F1/miR-4490 axis to further increase GC proliferation
and metastasis [51].

To target these USP22-regulated stemness properties, Yang et al. constructed USP22
siRNA-loaded nanoliposomes modified with anti-CD44 (USP22-NLs-CD44), which targets
a stem-cell-associated marker. USP22-NLs-CD44 impaired tumorsphere formation and
reduced the percentage of CD44+ cells in two human GC cell lines, MKN45 and NCI-N87,
presenting an approach to eliminating GC stem cells [48].

Although the aforementioned studies indicate that USP22 is a GC oncogene, a meta-
analysis noted contradictions between USP22 expression, tumor size, differentiation state,
tumor stage, and clinical outcomes in patients with gastric tumors. However, these incon-
sistencies may be due to the small sample size, suggesting that the role of USP22 should
be analyzed in larger randomized controlled clinical trials [150]. Moreover, there are dis-
crepancies in USP22′s effects on malignant behaviors. Ma et al. reported that USP22 only
affects cell proliferation, whereas other authors have shown that USP22 affects GC cell
proliferation, cell migration, and apoptosis [47,50–52]. Such controversial conclusions may
be explained by differences in the cell context, including variations in USP22 levels among
cell lines. Taken together, the role and downstream effectors of USP22 in GC warrant
further investigation.

2.9. USP28

USP28 has been validated as an oncoprotein and therapeutic target in various can-
cer types, and a list of oncogenic substrates of USP28 have been reported, such as JUN,
NOTCH1, CCNE, and LSD1 [151,152]. For instance, USP28 was identified as a DUB of
LSD1 and conferred stem-cell-like characteristics in breast cancer [153]. Likewise, Zhao et al.
found that USP28 was highly expressed in GC and was conducive to proliferation and
metastasis, mainly due to its ability to increase LSD1 levels [53]. The same group sub-
sequently designed and synthesized new [1–3] triazolo [4,5-d] pyrimidine derivatives as
potent USP28 inhibitors. Among them, compound 19 potently inhibited USP28 activity
with an IC50 of 1.10 ± 0.02 µM and induced its degradation at higher doses, thereby ex-
hibiting cytotoxic effects against GC cells [110]. In addition to LSD1, compound 19 also
promotes c-Myc degradation, another substrate of USP28 [110]. Hu et al. showed that two
GC cell lines, MKN-45 and SGC-7901, were sensitive to lanatoside C, an FDA-approved
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cardiac glycoside derived from Digitalis lanata. They also showed that lanatoside C partially
promoted c-Myc degradation by reducing its interactions with USP28 [111]. These studies
suggest that c-Myc is a potential downstream effector responsible for the oncogenic role of
USP28 in GC.

2.10. USP32

USP32 was reported to be one protein that contributed to the chimeric Tre2 (USP6)
oncogene [154]. The pro-cancer effects of USP32 have been observed in breast cancer and
glioblastoma [155,156]. Additionally, USP32 promotes GC cell growth, metastasis, and
chemoresistance by upregulating SMAD2, an important protein in the TGF-β signaling
pathway [55]. However, it is unclear whether USP32 regulates the ubiquitination level
of SMAD2.

2.11. USP33

USP33 expression is reduced in GC tissues and cell lines, which correlates with poor
patient survival [56,57]. Additionally, USP33 overexpression suppresses the prolifera-
tion, migration, and invasion of gastric adenocarcinoma cells [56]. In addition, Xia et al.
demonstrated that USP33 deubiquitinates and stabilizes ROBO1, which is required for the
SLIT2-mediated inhibition of EMT and GC cell metastasis [57].

2.12. USP39

Although USP39 was initially identified as a DUB without ubiquitin hydrolysis activity,
other studies have suggested that it plays a role in RNA splicing and oncogenesis in
multiple malignant tumors [157,158]. Intriguingly, USP39 stabilizes SP1, ZEB1, and FOXM1
through its deubiquitination activity, thus supporting the progression of hepatocellular
carcinoma and breast cancer [159–161]. Silencing USP39 expression hinders MGC-803 GC
cell proliferation and induces G2/M arrest and PARP cleavage [60]. In line with these
results, USP39 knockdown also decreased the proliferation of MGC-803 and HGC-27
cells. Moreover, miR-133a can suppress USP39 expression by directly targeting its 3′ UTR,
thereby acting as a tumor suppressor in GC [61]. However, the mechanisms by which
USP39 depletion inhibits GC proliferation require further investigation.

2.13. USP44

Aneuploidy is a common characteristic of tumor cells [162]. Several studies have
demonstrated that USP44 dysregulation results in aneuploidy, which has also been observed
in GC tissues [63,163]. Furthermore, the combination of elevated USP44 expression and
DNA aneuploidy provides useful prognostic information [63]. In addition, USP44 is
regulated by the circFOXO3/miR-143-3p axis in GC, in which circFOXO3 functions as a
miR-143-3p sponge to promote USP44-directed malignancy in gastric carcinoma [64].

2.14. USP47

USP47 is inhibited by miR-204-5p, which represses GC cell proliferation [65]. Interac-
tion between USP47 and β-TrCP, a subunit of the SCF β-TrCP E3 ubiquitin ligase complex,
is involved in a number of signaling pathways [164–166]. Naghavi et al. found that USP47
stabilizes β-TrCP-modulated NF-κB activity by promoting RelA phosphorylation. Their
findings also showed that USP47 knockdown sensitized NCI-N87 cells to camptothecin-
or etoposide-induced apoptosis [66]. These data indicate that USP47 may be involved in
NF-κB-dependent chemoresistance in some cellular contexts.

2.15. CYLD

CYLD was initially described in cylindromatosis and is currently considered a tumor
suppressor that negatively regulates multiple signaling pathways, such as NF-κB, AKT,
and Wnt [167–169]. Ghadami et al. showed that CYLD expression was decreased in GC
tissues owing to the hypermethylation of its promoter. They also revealed a direct cor-
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relation between H. pylori, EBV, and CMV infections and CYLD hypermethylation and
downregulated protein expression, suggesting that infectious-agent-induced CYLD hyper-
methylation may be a significant mechanism of GC development [73]. Several studies have
shown that CYLD can also be regulated by non-coding RNAs and serve as a downstream
effector by modulating the progression and chemoresistance of GC. For example, miR-130b,
miR-425-5p, miR-454, and exosomal miR-588 from M2-polarized macrophages negatively
regulated CYLD expression by targeting its 3′-UTR, thus promoting GC cell proliferation,
migration, invasion, and treatment resistance [70,72,75,76]. In addition, the activation
of NF-κB by miR-362, miR-500, and miR-20a plays a significant role in the survival and
cisplatin resistance of GC cells [68,69,71]. Notably, miR-500 also activates NF-κB signaling
by directly repressing two other negative regulators of NF-κB, OTUD7B, and TAX1BP1 [69].
miR-505 also targets the 3′-UTR of CYLD mRNA. However, miR-505 can be sponged by
CRAL and increase CYLD levels, which decreases AKT signaling and increases treatment
susceptibility in GC cells [74]. Furthermore, the ALKBH5/ZNF333/CYLD axis participates
in the development of gastric intestinal metaplasia, a precursor of GC. In bile-acid-induced
gastric intestinal metaplasia, ZNF333 activates NF-κB signaling by repressing CYLD ex-
pression [77]. Taken together, these studies suggest that targeting proteins and miRNA that
reduce CYLD levels may be a useful therapeutic strategy for GC.

2.16. Other USPs Involved in GC

In addition to the USPs mentioned previously herein, there are several other GC-
associated USPs, including USP1, USP2, USP20, USP21, and USP42. USP1 levels were
increased in GC cell lines and clinical samples, and its overexpression confers poor patient
survival rates. USP1 knockdown inhibits their proliferation, migration, and invasion [17,18].
Mechanistically, USP1 promotes metastasis by stabilizing the inhibitor of DNA binding-2
protein [18]. USP2 was recently reported to harbor oncogenic properties by promoting
E2F4-mediated cytoprotective autophagy and zinc homeostasis. By blocking the USP2-
E2F4 interaction, emetine inhibited autophagy and GC aggressiveness, suggesting the
therapeutic potential of targeting the USP2-E2F4 axis [19].

USP20 promotes the tumorigenesis of several cancer types, such as breast and cervical
cancer; however, it exhibits inhibitory effects on GC [16]. Past reports have indicated that
USP20 overexpression inhibited cell proliferation and delayed the cell cycle transition from
the G1 to S phase by stabilizing Claspin [43,170]. Additionally, USP21 elevates MAPK1
expression through the transcription factor GATA3, thereby contributing to tumor growth
and stemness in GC [44]. Hou et al. showed that higher USP42 expression was associated
with poor prognosis in patients with GC. In vitro and in vivo studies showed that USP42
knockdown inhibited GC cell survival and invasion, suggesting that USP42 may be a
therapeutic target [62].

3. UCHs and GC

All members of this family have been reported to be associated with GC (Figure 3).
UCHL1, also called PGP9.5, controls intracellular ubiquitin levels and is related to tu-
morigenesis in various cancer types [171]. However, UCHL1 has a paradoxical role in
GC. UCHL1 promoter hypermethylation is a common event in several types of primary
digestive tumors, including GC [78–82]. Moreover, UCHL1 hypermethylation is more
frequent in advanced-stage GC [78,81]. In addition, this hypermethylation is associated
with poor prognosis [82]. Furthermore, galangin cytotoxicity in SNU-484 cells may occur
through increasing UCHL1 levels [112]. These studies indicate that UCHL1 may serve as a
tumor suppressor and a diagnostic marker for GC. However, two other studies reported
higher UCHL1 expression in liver metastases from GC and gastric cardiac adenocarcinoma,
likely because UCHL1 overexpression increases the proliferation, migration, and invasion
capabilities of GC cells [83,84]. Lastly, the pro-cancer effect of UCHL1 is mechanistically
correlated with activated Akt and ERK1/2 pathways [83]. Thus, the role of UCHL1 in GC
requires further investigation.
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Similar to USP14 and PSMD14, UCHL5 is also a proteasome-associated DUB. Higher
UCHL5 expression is a predictor of increased survival in a subgroup of patients with
early-stage GC [86]. However, another study suggested that UCHL5 stabilizing NFRKB,
a chromatin-remodeling protein, may promote GC cell proliferation and metastasis [87].
Therefore, the biological function of UCHL5 requires more investigation.

One recent study reported that UCHL3 promotes GC cell migration and invasion by
upregulating IGF2 [85]. In addition, Yan et al. found that BAP1 levels are decreased in GC,
which was linked to advanced tumor features and unfavorable survival, suggesting its role
as a tumor suppressor [88]. Moreover, another study suggested that BAP1 upregulation is
essential for ferroptosis induced by 3,3′-diindolylmethane in BGC-823 cells, suggesting that
BAP1-induced ferroptosis could be one of the potential mechanisms by which it suppresses
GC progression [113].

4. OTUs and GC

Three members of this family, including OTUB1, OTUB2, and A20, have been linked to
GC (Figure 4). Weng et al. found that patients with GC with high OTUB1 expression were
associated with several advanced clinical features, such as invasion depth, lymph node
status, and nerve invasion, and these patients had lower disease-specific survival rates.
OTUB1 was found to be active in GC cell invasion and migration [89], but the underlying
mechanism is unknown. Similar to OTUB1, OTUB2 was also found to be overexpressed
in GC tissues and cell lines and predicted a poor prognosis [90,91]. Silencing OTUB2
inhibited GC cell growth, metastasis, and sphere formation. Mechanistically, OTUB2 acts
as a potential driver oncogene in GC by deubiquitinating and stabilizing the demethylase
KDM1A, and epithelial keratin KRT80 [90,91]. As previously reported, KDM1A and KRT80
contributed to GC progression by regulating KLF2 expression and the PI3K/Akt pathway,
respectively [172,173].

A20, also known as TNFAIP3, is a ubiquitin-editing enzyme with both DUB and E3
ligase activities [174]. A20 expression is increased in GC tissues and cell lines, which is
associated with poor clinical outcomes [92,93]. In vitro studies have suggested that A20
downregulation suppresses the proliferation, migration, and invasion of MGC-803 GC
cells [93]. In addition, A20 was found to be the target of miR-200a in GC cells (MGC-803 and
SGC7901) resistant to TRAIL-induced apoptosis. Overexpressing miR-200a or depleting
A20 enhanced apoptosis by reducing RIP1 polyubiquitination and promoting caspase-8
cleavage [94]. These results were consistent with a previous study showing that A20
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mediates the polyubiquitination of RIP1, which in turn binds to and inhibits caspase-8
activation [175]. Later studies suggested that RIP1 is involved in multiple cellular signaling
pathways and processes, such as NF-κB activation and apoptosis, and promotes GC growth
and invasion [176]. Moreover, the DUB activity of A20 counteracted the ubiquitination
of procaspase-8, thereby restricting caspase-8 activity and apoptosis [96]. Consistently,
NF-κB activation induced A20 upregulation during H. pylori infection, mainly because
USP48 stabilizes nuclear RelA and promotes its transcriptional activity [95–98]. Together,
USP48 and A20 promoted GC cell survival during H. pylori infection and suggested an
oncogenic role for A20. Conversely, one study reported that H. pylori infection increased
miR-29a-3p, which promoted the migration of gastric epithelial cells by reducing A20
expression, indicating that A20 silencing may induce EMT to promote GC progression [99].
Thus, the role of A20 in GC might be context-dependent and requires further investigation.
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5. JAMMs and GC

Three members of this family, PSMD14, CSN5, and BRCC3, have been found to be
associated with GC (Figure 5). PSMD14, also known as Rpn11 and POH1, is a subunit
of the proteasomal 19S regulatory particle, which functions as a DUB [177]. PSMD14
overexpression has been reported to be tumorigenic and promote cancer progression
through multiple mechanisms [177–181], such as stabilizing the alternative splicing factor
PTBP1 to promote GC tumorigenesis [100].

CSN5, the catalytic subunit of the COP9 signalosome, also called COPS5 or JAB1,
may play a role in GC [182]. CSN5 overexpression contributes to GC by modulating the
stability or expression of several tumorigenic proteins. Silencing CSN5 suppresses GC
cell growth and induces apoptosis by regulating P53 and BAX expression [102]. Addi-
tionally, CSN5 induces non-ubiquitin proteasomal degradation of the tumor suppressor
p14ARF [103]. CSN5 also facilitates the nuclear export and degradation of the tumor
suppressor RUNX3 [101]. Previous studies suggested that TNFα and CCL5 increase CSN5,
stabilize PD-L1, and facilitate the immune escape of breast cancer cells and colorectal cancer
cells [183,184]. CSN5 also stabilizes PD-L1 in GC cells. Furthermore, CSN5 activity in GC
cells is regulated by the DAPK1/IKKβ axis [104]. Collectively, these studies indicate that
CSN5 could be a novel therapeutic target in GC.

Lastly, Hu et al. reported that BRCC3 is upregulated in GC and is regulated by the
lncRNA TMPO-AS1/miR-126-5p axis. TMPO-AS1 sponges miR-126-5p to upregulate
BRCC3 expression, thereby activating the PI3K/Akt/mTOR pathway, which leads to
malignancy [105].



Cancers 2022, 14, 5831 15 of 23Cancers 2022, 14, 5831 18 of 27 
 

 

 
Figure 5. JAMM-related upstream regulation and downstream mechanisms in GC. These three 
members of JAMMs all play an oncogenic role. The text to the left and right of the JAMMs corre-
sponds to the upstream regulatory events and downstream substrates, respectively. 

CSN5, the catalytic subunit of the COP9 signalosome, also called COPS5 or JAB1, 
may play a role in GC [182]. CSN5 overexpression contributes to GC by modulating the 
stability or expression of several tumorigenic proteins. Silencing CSN5 suppresses GC cell 
growth and induces apoptosis by regulating P53 and BAX expression [102]. Additionally, 
CSN5 induces non-ubiquitin proteasomal degradation of the tumor suppressor p14ARF 
[103]. CSN5 also facilitates the nuclear export and degradation of the tumor suppressor 
RUNX3 [101]. Previous studies suggested that TNFα and CCL5 increase CSN5, stabilize 
PD-L1, and facilitate the immune escape of breast cancer cells and colorectal cancer cells 
[183,184]. CSN5 also stabilizes PD-L1 in GC cells. Furthermore, CSN5 activity in GC cells 
is regulated by the DAPK1/IKKβ axis [104]. Collectively, these studies indicate that CSN5 
could be a novel therapeutic target in GC. 

Lastly, Hu et al. reported that BRCC3 is upregulated in GC and is regulated by the 
lncRNA TMPO-AS1/miR-126-5p axis. TMPO-AS1 sponges miR-126-5p to upregulate 
BRCC3 expression, thereby activating the PI3K/Akt/mTOR pathway, which leads to ma-
lignancy [105]. 

6. MJDs and GC 
In the MJD family, only Ataxin-3 has been reported to be associated with GC tumor-

igenesis. Ataxin-3 levels were found to be decreased in GC tissues and cells, which corre-
lated with clinicopathological characteristics, including tumor size, Lauren classification, 
histologic differentiation, and p53 mutation status [106]. However, the molecular mecha-
nisms underlying this process have not yet been elucidated. 

7. Conclusions and Perspectives 
In the past few years, DUBs and tumorigenesis have been linked. Here, we summa-

rize the regulatory roles of DUBs in the occurrence and development of GC. As shown in 
Figures 2–5, most DUBs promote GC progression, whereas several DUBs play an inhibi-
tory role or exert context-dependent effects. Moreover, the regulatory mechanisms of 
DUBs are complicated and involve multiple targets and signaling pathways, yet some 
regulatory mechanisms have not been discovered (Table 1). Although the USP subfamily 
has received the most attention in GC research, other subfamilies, namely, OTUs, UCHs, 
JAMMs, and MJDs, have received attention as well. However, there have been no reports 
on MINDYs and ZUFSPs to date. Therefore, we speculate that USPs may be the most 
promising biomarkers for GC diagnosis and treatment, and we believe that the function 
of other DUB subfamilies requires further in-depth exploration. 

In addition, DUB regulation is complex. Although the regulatory mechanisms of 
some GC-related DUBs remain to be discovered, non-coding RNAs have been reported to 
modulate the expression of DUBs, such as USP3 and CYLD, in GC (Table 1). Intriguingly, 

Figure 5. JAMM-related upstream regulation and downstream mechanisms in GC. These three
members of JAMMs all play an oncogenic role. The text to the left and right of the JAMMs corresponds
to the upstream regulatory events and downstream substrates, respectively.

6. MJDs and GC

In the MJD family, only Ataxin-3 has been reported to be associated with GC tumorige-
nesis. Ataxin-3 levels were found to be decreased in GC tissues and cells, which correlated
with clinicopathological characteristics, including tumor size, Lauren classification, histo-
logic differentiation, and p53 mutation status [106]. However, the molecular mechanisms
underlying this process have not yet been elucidated.

7. Conclusions and Perspectives

In the past few years, DUBs and tumorigenesis have been linked. Here, we summarize
the regulatory roles of DUBs in the occurrence and development of GC. As shown in
Figures 2–5, most DUBs promote GC progression, whereas several DUBs play an inhibitory
role or exert context-dependent effects. Moreover, the regulatory mechanisms of DUBs are
complicated and involve multiple targets and signaling pathways, yet some regulatory
mechanisms have not been discovered (Table 1). Although the USP subfamily has received
the most attention in GC research, other subfamilies, namely, OTUs, UCHs, JAMMs, and
MJDs, have received attention as well. However, there have been no reports on MINDYs
and ZUFSPs to date. Therefore, we speculate that USPs may be the most promising
biomarkers for GC diagnosis and treatment, and we believe that the function of other DUB
subfamilies requires further in-depth exploration.

In addition, DUB regulation is complex. Although the regulatory mechanisms of
some GC-related DUBs remain to be discovered, non-coding RNAs have been reported
to modulate the expression of DUBs, such as USP3 and CYLD, in GC (Table 1). Intrigu-
ingly, three studies discovered that non-coding RNAs are also key mediators of inter-
actions between GC cells and other cell types, including gastric mucosa cells, CAFs,
and M2-polarized macrophages, and that USP3, USP7, and CYLD are linked to this
process [24,27,76]. Furthermore, several infectious agents, cytokines, and antitumor agents
also affect the expression of several DUBs, such as USP3, USP7, USP10, USP29, CYLD,
and A20 [21,27,32,54,73,97,98,122] (Table 1), which implicates unknown pro-cancer effects
under certain circumstances.

Finally, research on the therapeutic potential of DUB inhibitors for GC therapy is
limited despite the efforts made in their development. Some inhibitors show promising
therapeutic effects in various cancer types [15,185]. For instance, pharmacological inhibition
of USP28, USP1, and USP7 with their inhibitors efficiently hindered in vitro and in vivo
tumor growth or metastasis in squamous cell carcinoma, breast cancer, and colon cancer,
respectively [186–188]. However, only a few studies have demonstrated the antitumor
effects of USP7, USP14, and USP28 inhibitors on GC cells. Moreover, compounds that
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upregulate DUB tumor suppressors also exhibited activity against GC cells, providing
another direction for drug development (Table 2). In conclusion, the investigation of DUBs
in the pathogenesis and treatment of GC requires more work, which may provide clues for
GC treatment in the future.
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