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Simple Summary: Prostate cancer is one of the leading causes of cancer-related deaths among men in
the United States and Europe. While conventional treatment options either have high toxicity profiles
or are limited by the tumor’s ability to develop resistance, immunotherapy is specific in targeting
malignant cells. It can also enable the immune system to adapt dynamically while the tumor evades
the destruction process. Cellular Immunotherapy in particular is a promising approach; however,
there are gaps in knowledge in the current literature on its application. To contribute to a wider
understanding of cellular immunotherapy, specifically focusing on the chimeric antigen receptors
(CAR) T-cells, their benefits and application in clinical settings, we conducted a comprehensive
systematic review.

Abstract: Recently, the development of immunotherapies such as cellular therapy, monoclonal
antibodies, vaccines and immunomodulators has revolutionized the treatment of various cancer
entities. In order to close the existing gaps in knowledge about cellular immunotherapy, specifically
focusing on the chimeric antigen receptors (CAR) T-cells, their benefits and application in clinical
settings, we conducted a comprehensive systematic review. Two co-authors independently searched
the literature and characterized the results. Out of 183 records, 26 were considered eligible. This
review provides an overview of the cellular immunotherapy landscape in treating prostate cancer,
honing in on the challenges of employing CAR T-cell therapy. CAR T-cell therapy is a promising
avenue for research due to the presence of an array of different tumor specific antigens. In prostate
cancer, the complex microenvironment of the tumor vastly contributes to the success or failure
of immunotherapies.

Keywords: mCRPC; immunotherapy; cellular therapy; dendritic cells; CAR-T; vaccines

1. Introduction

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among
men in the United States and Europe, as well as the leader of estimated new cases of
non-cutaneous cancer in the United States [1].

Androgen deprivation therapy (ADT), with or without chemotherapy, is the standard
of care in metastatic prostate cancer (mCRPC). ADT can either be achieved surgically by
bilateral orchiectomy or by suppressing testosterone levels chemically with Gonadotropin-
releasing hormone (GnRH) analogues or antagonists [2]. Despite a good initial response to
ADT, a significant fraction of patients relapse [3]. Once the tumor continues to progress de-
spite castration levels of testosterone, known as castration resistant prostate cancer (CRPC),
the disease becomes incurable and is associated with poor prognosis, as well as bone, lymph
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node, liver and brain metastases (mCRPC) [4,5]. Four different classes of medical treat-
ment options improve survival among patients with mCRPC. These include taxane-based
palliative chemotherapy, androgen-signaling targeting inhibitors, Radium-223 dichloride,
Lutetium-177-PSMA-617 and immunotherapy [6–11].

While conventional treatment options either have high toxicity profiles or are limited
by the tumor’s ability to develop resistance, immunotherapy is specific in targeting ma-
lignant cells. It can also enable the immune system to adapt dynamically while the tumor
evades the destruction process [12].

Immunotherapy includes the use of but is not limited to cellular therapy (also known as
as adoptive cell therapy), monoclonal antibodies, vaccines and immunomodulators to target
and eliminate malignant cells [13,14] The goal set by most cancer immunotherapeutics is to
activate a population of effector T cells that can infiltrate tumors and cause specific lysis of
cancer cells [15].

Cellular Immunotherapy in particular is a promising approach; however, there are
gaps in knowledge in the current literature on its application. To contribute to a wider under-
standing of cellular immunotherapy, specifically focusing on the CAR T-cells, their benefits
and application in clinical settings, we conducted a comprehensive systematic review.

1.1. Mechanics of Cellular Immunotherapy

Cellular therapy refers to administering living cells to the patient, either actively or
passively. The dendritic cell vaccine is an example of active cellular immunotherapy. How-
ever, the deployment of T-cells such as tumor-infiltrating lymphocytes (TILs), engineered
T-Cell receptors (TCR), natural killer cells (NKs) and modified T-cells with chimeric antigen
receptors (CAR) is a mode of passive cellular immunotherapy [16,17].

1.1.1. Dendritic Cell Vaccine

Currently, the Sipuleucel-T dentridic cell vaccine is the only cellular immune therapy
approved by the U.S. Food and Drug Administration (FDA) for asymptomatic or minimal
symptomatic metastatic CRPC. Sipuleucel-T is a therapeutic vaccine that activates the
host immune system by using autologous peripheral-blood mononuclear cells (PBMCs),
including antigen presenting cells (dendritic cells) for regulating tumor control. The cells
are activated ex-vivo with PA2024, a recombinant fusion protein, consisting of prostatic acid
phosphatase (PAP), a prostate antigen combined with the granulocyte-macrophage colony
stimulating factor (GM-CSF), used as an immune-cell activator [9,18]. Its approval was
based on the efficacy demonstrated by results from the large phase III, double-blind placebo-
controlled IMPACT trial, which showed prolonged overall survival (OS) by 4.1 months in
the treatment group receiving Sipuleucel-T when compared to the placebo group (p = 0.03).
Interestingly, there was no significant difference in progression-free survival (PFS) or time
to clinical progression, as a former smaller phase III trial had already suggested [9,19].

1.1.2. T-Cell Therapies

T-cells play an important role in the adaptive immune system and can therefore be
used to enhance the patient’s immune response in different ways by using tumor-infiltrating
lymphocytes (TILs-) in adoptive cell therapy or by using engineered T cell receptors (TCR)
to boost the antitumor immune response or natural killer cells (NKs). TILs are collected
from patient’s tumor, expanded ex-vivo in the presence of recombinant IL-2, to improve the
anti-tumor cytotoxic function showing objective tumor shrinking in several types of cancer
including metastatic melanoma [20]. Besides the aforementioned TILs-, modified T cell
receptors are a novel class of molecules re-activating T-cells against cancer. By engineering
T cells to express tumor antigen-specific receptors targeting intracellular peptides expressed
on MHC-molecules, T-cells could increase antigen responsiveness with higher proliferation
and cytokine production rates [21,22].

Natural killer cells (NK) play an essential role in tumor immunosurveillance. Pre-
clinical as well as clinical studies have shown that diminished NK activity is associated
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with higher cancer frailty and metastatic burden. Adoptive NK cell transfer have been
demonstrated anti-tumor activities in clinical use of hematologic cancers as well as in pre-
clinical xenograft mouse models of solid tumors (glioblastoma, ovarian cancer, metastatic
colorectal cancer) [23].

1.2. CAR T-Cell Therapy

In CAR T-cells, gene transfer technology has been used to manufacture T-cell recep-
tors targeting specific tumor antigens to eliminate cancer cells [24]. CAR is a chimeric
recombinant molecule consisting of an extracellular tumor antigen-binding domain typ-
ically represented by a single-chain fragment variable (scFv), a transmembrane (CD3,
CD8, CD28 and FcεRI) and an intracytoplasmic region composed of CD8, CD28 or CD137
and CD3ζ as an intracellular signaling domain [25,26]. Depending on the presence of
one or more costimulatory molecules, CAR T-cells can be classified into four generations.
First-generation CAR T-cells permit T-cell activation but failed to enable persistence of
activated T-lymphocytes. Through additional costimulatory domains (CD27, CD28, CD134,
CDB7), second-generation CAR T-cells were able to persist in circulating blood. To further
extend T-cell activation, a second costimulatory receptor was then added, resulting in third
generation CAR T-cells (expressing CD28, 4-1BB). Whether the third generation of CAR
T-cells is superior to the second generation is a matter of ongoing research.

The fourth generation of CAR T-cells, also referred to as “next-generation” or “armed”,
increases the potency of anti-tumoral activity by the addition of proinflammatory cytokines
(IL-12, IL-15, IL-18) or costimulatory elements such as knock-in (TRAC, CXCR4) or knock-
out (PD-1, DGK) genes (Figure 1).

Patients peripheral blood mononuclear cells are obtained using leukopheresis, follow-
ing T-cell isolation and activation via CD3/CD28. They are then genetically engineered to
generate chimeric antigen receptors on their cell surface targeting cancer-specific antigens.
Prior to CAR T-cell transfer, the patient undergoes lymphodepletion using fludarabine or
cyclophosphamide, to further enhance immune responses [27–29].
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Figure 1. Generations of CAR-T Cells. (a) 1st Generation CAR-Ts; (b) 2nd Generation consisting of
an extra costimulatory domain; (c) 3rd Generation CAR-Ts with a second costimulatory receptor;
(d) 4th Generation CAR-Ts—“next generation” with an addition of proinflammatory cytokines and
costimulatory elements (knock-in/knock out genes) [30]. Figures originally created by C.S.
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1.3. Target Proteins

In an effort to identify potential immunotherapeutic targets for the treatment of PCa
with CAR T-cells, three antigens, namely Prostate-specific membrane antigen (PSMA),
Prostate stem cell antigen (PSCA) and Epithelial cell adhesion molecule (EpCam CD326),
are currently of clinical interest and part of clinical studies.

1.3.1. PSMA

PSMA is a transmembrane glycoprotein expressed in primary PCa [31], as well as
lymph node and bone metastases [32]. PSMA expression is highly specific for PCa and
correlates with high grading, castration-resistance and metastasis. PSMA has been in-
vestigated as a potential target for radioligand, bispecific T-cell engager (BiTEs) or CAR
T-cell therapy [33,34]. Over the last two decades, PSMA has been investigated as a promis-
ing target, showing antitumoral cytotoxic T-lymphocyte response by HLA-A2 restricted
PSMA-derived peptides [35–38], while other in-vitro and in xenograft models studied its
immunotherapeutic potential as effective antibody targeting PSMA-expressing prostate
tumor cells [39–42].

1.3.2. PSCA

PSCA is a glycoprotein located on the cell surface of normal prostate tissue and
in over 80% of PCa cells. Its expression correlates with high Gleason grading and the
presence of metastatic disease [43]. PSCA has further been found to be expressed in other
cancer types such as bladder-, pancreatic or gastric cancer [29,44]. PSCA-based vaccines
have been shown to delay tumor growth and induce immune responses mediated by
cytotoxic T lymphocyte activity, cytokine production and MHC (major histocompatibility
complex) class I expression in the transgenic adenocarcinoma of the mouse prostate model
(TRAMP) [45,46]. It is worth noting that Morgenroth et al. generated a PSCA-specific
chimeric T-cell receptor causing cytotoxicity against PSCA-positive tumor cells in mice [47].

1.3.3. EpCAM

EpCAM (CD326) is an epithelial cell adhesion molecule expressed by the surface of
several solid tumors, including prostate-, colorectal- or lung cancer [48]. CD326 mediates
specific intercellular cell-adhesion and is involved in cell signaling, migration, proliferation
and differentiation and was shown to be highly expressed in rapidly proliferating tu-
mors [49]. Deng et al. constructed an EpCAM-specific CAR and investigated its therapeutic
potential in xenografts using the human PCa cell lines PC3 and PCM3. Interestingly, they
found that treatment with this CAR resulted in tumor inhibition and prolonged survival
in vivo [50].

2. Methods

We performed a systematic review in accordance with the PRISMA (Preferred Re-
porting Items for Systemic Reviews and Meta-analysis) guidelines (48) including studies
published in the English language since January 2015. We searched the websites “ASCO
Meeting Library”, “ClinicalTrials.gov” and “PubMed” for clinical trials testing autologous
immunotherapeutics, including dendritic and CAR T-cell therapy in PCa. The following
keywords and combinations were used according to Medical Subject Heading database
(MeSH): “autolog” OR “autologeous” OR “autologic” OR “autological” OR “autologous”
OR “autologously” AND “cell and tissue-based therapy” OR “cell” AND “tissue based”
AND “therapy” OR “cell and tissue-based therapy” OR “cell” AND “therapy” OR “cell
therapy” AND “prostatic neoplasms”. Furthermore, a filter naming clinical trials only was
used. We then searched Pubmed by using the following MeSH terms concentrating on
CAR T-cell therapy in PCa: “car-t” AND “cells” OR “cells” OR “cells” AND “prostatic
neoplasms” OR “prostatic” AND “neoplasms” OR “prostatic neoplasms” OR “prostate”
AND “cancer” OR “prostate cancer”. All references of the retrieved articles were checked
to search for additional studies that we may have missed during the initial search. Reviews,
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preclinical trials and case reports were excluded. Only studies following Good Clinical
Practice (GCP) Guidelines were eligible. Two co-authors (MM, BS) independently searched
the literature and characterized the results. Figure 2 shows the process of collecting data.

1 

 

 

Figure 2. Methodology of literature search according to PRISMA guidelines. Figures originally
created by C.S.

3. Results

Our search yielded 185 results. After applying the exclusion criteria and excluding
duplicates, 28 records were considered eligible. Sixteen out of 28 clinical trials studied
dendritic cell therapeutics, and the remaining 10 studies examined CAR T-cell therapy.

The 13 clinical trials with clinical data available studied six immune cell-based thera-
peutics (total of 8 trials), namely Sipuleucel-T, BPX101, DCVAC/PCa, Tn-MUC1-dendritic
cell vaccine as well as PSMA and PSCA-targeting CAR T-cells. The most common endpoints
used in trials included in our study were safety endpoints, antitumoral activity, immune
response, overall survival (OS), progression-free survival (PFS), overall response rate (ORR)
and prostate specific antigen (PSA) response. The Results section has been categorized
into two parts: (1) Dendritic Cell Therapy, describing trials involving Sipuleucel-T, BPX101,
DCVAC/PCa, Tn-MUC1 (Table 1); and (2) CAR T-Cell Therapy, mapping trials focusing on
PSMA, PSCA and EpCam CD326 (Table 2).

3.1. Dendritic Cell Therapy
3.1.1. Sipuleucel-T

Due to signals of improved survival and low toxicity reported for Sipuleucel-T, the
development of immunotherapies for PCa using autologous antigen presenting cells has
progressed substantially in recent years [9].

PROCEED (NCT01306890) is a multicenter, open-label observational registry study
including 1976 patients with asymptomatic or minimal symptomatic mCRPC who had
received Sipuleucel-T. The study was conducted at urology and oncology centers as well
as in academic sites and private practices between 2011 to 2017. Its endpoints consisted
of OS, serious adverse events (SAEs), cerebrovascular events (CVEs) and anticancer inter-
ventions (ACIs). Median OS was 30.7 months with a median follow up of 46.6 months.
SAEs of 3.9% and CVEs of 2.8% were reported. It is worth noting that 77.1% of patients re-
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ceived one or more anticancer interventions (e.g., chemotherapy, abiraterone/enzalutamide,
radium-223) [51].

Results from two smaller, randomized phase II trials (NCT01807065, NCT01431391)
investigating the use of Sipuleucel-T after sensitizing radiation therapy and combinational
therapy of Sipuleucel-T and ADT have been published since 2015. In the first trial men-
tioned, the assumption that radiotherapy might act synergistically in mCRPC patients
treated with Sipuleucel-T was not confirmed [52]. The second study examined whether
the sequence of administration, i.e., Sipuleucel-T first and then ADT or vice versa, had an
effect on PA2024-specific T-cell response in men with hormone-sensitive, non-metastatic,
biochemically recurrent PCa. Sixty-eight patients were randomized in a 1:1 ratio to receive
either Sipuleucel-T following ADT or ADT following Sipuleucel-T. ADT was given for
one year. Both groups showed no difference in the time to PSA recurrence; however,
PA2024-specific humoral response correlated with a longer time to PSA progression. An
increased antitumoral immune response was observed for patients receiving Spiuleucel-T
first. There is a need to further investigate whether this observation has clinical impact on
patient prognosis [53].

NCT01981122 evaluated if PA2024-specific T-cell response differs in patients receiving
Sipuleucel-T given concurrently with Enzalutamide or administered sequentially. The
concurrent arm showed better T-cell response, although mortality did not differ in both
arms [54]. Lastly, based on the hypothesis that improved survival was observed in patients
with increased cancer specific immunoglobulin titers, a small phase I trial (NCT01832870)
investigated the combination of Sipuleucel and Ipilimumab in patients with CRPC. The
patients did show an increased immunoglobulin specific for PA2024 protein and PAP
without increased adverse events occurring [55]. Aside from the aforementioned trials who
had reported data, Table 1 summarizes ongoing trials investigating the safety and efficacy
of dendritic cell therapy in patients with PCa.

3.1.2. BPX101

BPX101 is a second generation, PSMA- targeting autologous dendritic cell (DC) based
vaccine using inducible human CD40 as a co-stimulatory molecule to permit controlled
DC activation. In a phase I (NCT00868595) trial published in 2017, immune upregula-
tion and anti-tumoral activity in mCRPC patients treated with BPX101 were observed.
Secondary endpoints defined as tumor tissue infiltration with CD4+, CD8+ T-cells and
CD20+ B-cells, lymphocytic response measured through cytokine concentrations (e.g.,
NFα, IFN-γ, RANTES) and antibody response (e.g., IL-10, IL-6) in patients’ blood, prostate
and skin biopsies were positive. In the study, 18 patients with a maximum of one prior
chemotherapy received different doses of BPX101 followed by rimiducid, a membrane-
permeable activating dimerizer drug for specific dendritic cell activation. Interestingly,
no dose-limiting toxicities were observed. Antitumoral activity was evaluated by PSA
decline, objective tumor regression and robust efficacy of post-trial therapy. A third of the
patients progressed or died during follow-up. Longer median OS was observed in patients
who had not received prior chemotherapy (530 days vs. 304.9 days in the post-docetaxel
group) [56,57].

3.1.3. DCVAC/PCa

A single-arm phase I/II trial (EudraCT 2009-017259-91) involving 27 patients with
rising PSA levels after primary prostatectomy or salvage radiotherapy examined the use of
autologous dendritic cells pulsed with LNCaP cells (DCVAC/PCa) following Imiquimod to
support DC accumulation. The use of DCVAC/PCa significantly prolonged PSA doubling
time (PSADT) from 5.7 months prior to immunotherapy to 18.9 months after 12 cycles
(p < 0.0018), with no significant side effects recorded. Long-term follow-up will reveal if
the observed prolongation of PSADT will translate into favorable patient outcomes [58].
In a different setting (EudraCT 2009-01295-24), combination chemoimmunotherapy with
dendritic cells was given to mCRPC patients. The underlying rationale was the hypothesis
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that chemotherapy may neutralize tumor-triggered immunosuppression and thus enhance
the effect of concurrent immunotherapy. Therefore, docetaxel was added to DCVAC/PCa
application (on day 0, 14, 28, every 6 weeks). Results showed an increase in OS through the
addition of DCs, with no serious DVAC/PCa-related adverse events observed. Although
significant decreases of regulatory T-cells (TREGs) in peripheral blood were described, no
immunological parameter significantly correlated with the survival benefit observed [59]. It
is worth noting that Kongsted et al. investigated whether the additional use of autologous
dendritic cell-based vaccines would induce the immune response in mCRPC patients
treated with docetaxel in a randomized phase II study (NCT01446731). In this trial and
in contrast to the aforementioned results, PSA response was reported to be similar in
both groups (docetaxel vs. combinational therapy, 58% vs. 38%, p =0,21). In addition,
no improvement in PFS (progression free survival) or DSS (disease specific survival) was
described [60].

3.1.4. Tn-MUC1

MUC1 is an epithelial glycoprotein, which was shown to be hypoglycosylated and
overexpressed in a variety of solid tumors, including PCa. Scheidl et al. (NCT00852007)
evaluated the safety of the Tn-MUC1 dendritic cell vaccine in a non-metastatic CRPC
(nmCRPC) patient cohort. In this trial, Tn-MUC1-loaded DCs appeared to be safe and
showed biological activity as well as T-cell response in nmCRPC patients [61].

Table 1. Selected trials of emerging dendritic cell therapy in mCRPC. Tables originally created by C.S.

Identifier Trial Name Phase/Status Endpoints

NCT04615845 [62]

Safety Evaluation of Autologous
Dendritic Cell Anticancer Immune

Cell Therapy
(Cellgram-DC-PC)

phase I
recruiting, n = 10

mCRPC

primary: measure CTCAE safety
secondary: immune response,

PSA effect

NCT02692976 [63]

Natural Dendritic Cells for
Immunotherapy of Chemo-naive

Metastatic Castration-resistant
Prostate Cancer Patients

phase I
n = 21

mCRPC

primary: immunogenicity of
tumor-peptide loaded natural blood

DCs
Secondary: AE, PFS, QoL, PSA

progression, OS, Time to opiate use,
time to skeletal related events, ECOG,

time to CHT, Radiographic PFS,
feasibility

NCT02111577 [64]

Phase III Study of DCVAC Added
to Standard Chemotherapy for Men
with Metastatic Castration Resistant

Prostate Cancer (VIABLE)

phase III
completed, n = 1182

mCRPC

primary: OS
secondary: PFS, PSA
progression, duration

of sceletal related events

NCT02105675 [65]

Phase II Study of DCVAC/PCa
Added to Standard Chemotherapy
for Men with Metastatic Castration

Resistant Prostate Cancer

phase II
completed, n = 60

mCRPC

primary: OS
secondary: rPFS, duration of PSA

progression, QoL, pain assessment

NCT01823978 [66]

Safety Study of BPX-201 Dendritic
Cell Vaccine Plus AP1903 in

Metastatic Castrate Vaccine Plus
AP1903 in Metastatic Castrate

phase I
completed, n = 19

mCRPC

primary: AE
secondary: PSA, PFS,
response to CHT after

Immunotherapy,
Reduction in circulating

Tumor cells

NCT01487863 [67]

Concurrent vs. Sequential
Sipuleucel-T & Abiraterone

Treatment in Men with Metastatic
Castrate Resistant Prostate Cancer

phase II
completed, n = 69

mCRPC

primary: CD54 upregul.
secondary: safety,
immune response,

Sipuleucel parameter
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Table 1. Cont.

Identifier Trial Name Phase/Status Endpoints

NCT02237170 [68] Immune Monitoring on
Sipuleucel-T (PROVENGE)

observational
completed
n = 36, PCa

primary: change in TREGsSecondary:
changes in APC, cytokines, PSA-

Specific immune resp. RNA
transcript.-based sign.

NCT01706458 [69]
Provenge with or without

pTVG-HP DNA Booster Vaccine in
Prostate Cancer

phase II
completed, p = 18,

PCa

primary: OS
secondary: number of circulating

tumor cells, PAP-specific Antibody and
T-cell Immune Responses

3.2. CAR T-Cell Therapy

Despite highly promising preclinical data, CAR T-cell therapy has shown limited
efficacy in PCa patients. Recently, three surface epitopes of interest, namely PSMA (prostate-
specific membrane antigen), PSCA (prostate stem cell antigen) and EpCAM (epithelial cell
adhesion molecules), were used as targets in clinical trials of CAR T-cell-based therapy
in PCa. Seven of ten clinical trials reviewed in this article targeted PSMA, whereas two
used PSCA as their surface epitope of interest. One trial targeted EpCAM. Among the ten
phase I/II trials mentioned above, three had reported early results before completion of
the study. The most common endpoints were safety, dose finding and antitumoral efficacy.

3.2.1. PSMA

The first trial (NCT00664196) using first-generation anti-PSMA CARS showed nega-
tive results with poor CAR T-cell persistence and inferior efficacy unlike upcoming next-
generation therapeutics. Two out of five patients treated showed partial responses as
measured by reduction of PSA levels in peripheral blood [70,71]. In a second phase I
dose-escalating study (NCT01140373), a second-generation CD28-based, anti-PSMA CAR
was used, demonstrating efficacy and stabilization of disease in two out of four patients
in cohort one. In cohort two, a higher number (dose) of CAR T-cells was administered.
Observations made included increased interleukin levels (Il-4, Il-8, IP-10, sIL-2ra, IL-6),
intermitted fever spikes and CAR T-cell persistence for up to 2 weeks [72].

One particular promising approach is the use of PSMA-specific TGFß-receptor dominant-
negative autologous CAR T-cells to help facilitate continuous proliferation of CAR T-cells
and enhance their antitumoral potential by suppressing the tumor microenvironment.
TGF-ß (transforming growth factor beta) acts as an important promotor of tissue growth
with proangiogenic and immunosuppressive effects on the tumor microenvironment and
functions as a mediator of metastasis by increasing the expression of tissue-specific metasta-
sis genes, all of which promote cancer progression [73,74]. Previously used mouse models
demonstrated enhanced potency of CAR T-cells by the co-expression of dominant-negative
TGFß in PSMA-directed CAR T-cells compared to unmodified CAR T-cells with increased
immune responses, long-term in-vivo persistence and tumor eradication [75]. Another
preclinical trial, using PSMA-specific TGFRß-receptor dominant-negative autologous CAR
T-cells, improved the antitumoral ability of CAR T-cells and intensified the immune sup-
pressive response to TGFß [76].

Based on these preclinical observations, a single center, single arm phase I clinical
trial (NCT03089203) was initiated, assessing feasibility, tolerability and efficacy of PSMA-
redirected/TGFß-insensitive CAR T-cells in metastatic CRPC treatment. Cohort 1 (single
dose of 1–3 × 107/m2) and cohort 2 (1–3 × 108/m2) were completed without observing dose
limiting toxicity; however, a reversible cytokine release syndrome responsive to tocilizumab
was described. Of note, in cohort 3 of the trial, CAR T PSMA-TGFßRDn cells were ad-
ministered following lymphodepleting chemotherapy (cyclophosphamide/fludarabine).
Results of this cohort, however, have not been published to date [77]. Furthermore, an
ongoing multi-center study, NCT04227275, aims to expand clinical knowledge of CAR
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T-cells, including dose escalation, safety, preliminary efficacy and feasibility [78]. Table 2
shows ongoing studies investigating the safety and efficacy of anti-PSMA CAR T-cells in
patients with PCa.

Table 2. Selected trials of emerging anti-PSMA-CAR T-cell therapy in CRPC. Tables originally created
by C.S.

Identifier Trial Name Phase/Status Endpoints

NCT04429451 [79]
Phase I/II Clinical Trial of

4SCAR-PSMA T Cell Therapy
Targeting PSMA Positive Malignancies

Phase I/II
enrolling, n = 100

PSMA positive tumors

primary: toxicity, adverse events,
secondary: ORR, OS,

expansion/persistence of
4SCAR-PSMA T cells

NCT04053062 [80]

A Phase I Study to Evaluate the Safety
and Efficacy of PSMA-CART

Co-expressing LIGHT in Treating
Patients with Castrate-Resistant

Prostate Cancer (CRPC)

Phase I
recruiting, n = 12

CRPC

primary: toxicity, safety
secondary: PSA

radiographic response,
duration time of CAR-T

cells in-vivo

NCT04249947 [81]

A Phase 1 Dose Escalation and
Expanded

Cohort Study of P-PSMA-101 in
Subjects with Metastatic

Castration-Resistant Prostate Cancer
(mCRPC)

Phase I
recruiting, n = 40

mCRPC

primary: safety, dose
finding, ORR

3.2.2. PSCA

There are currently two trials targeting PSCA as tumor antigen in solid tumors. To
evaluate the feasibility, safety and clinical activity of PSCA-targeting CAR T-cells (BPX-601),
a phase I/II open-label trial (NCT02744287) with 151 patients with previously treated,
advanced PSCA-expressing solid tumors (pancreatic and prostate) was initiated [82]. Par-
ticipants received BPX-601 followed by single or multiple infusions of rimidicid until a
recommended cell dose was reached. When initiated, phase II will assess safety, phar-
macodynamics and activity of BPX-601. The data of nine patients with pancreatic cancer
who have completed phase I showed promising results with enhanced T-cell expansion
and prolonged persistence of BPX-601. Four out of nine patients reached stable disease
≥8 weeks. Clinical data on PCA patient treatment were yet to be reported [83].

Lastly, a different phase I, open-label, study (NCT03873805) identified through our
search, which also uses second generation PSCA CAR T-cells containing an intracellular
4-1BB co-stimulatory domain, lists study side effects and describes best dose of second-
generation PSCA-CAR-4-1BB T cells in four cohorts (1,1b,2,3), each receiving different
doses of anti-PSCA CAR T-cell therapy in patients with mCRPC (n = 33) from August 2019
till December 2023. Early results showed that five participants successfully manufac-
tured PSCA-BB ζ cells, and that three patients completed cohort 1–100 million (M) CAR
T × 1 alone (without lymphodepletion) [84,85].

3.2.3. EpCAM

Since Deng et al. developed EpCAM-specific CARs showing significant tumor growth
inhibition and prolonged survival in mouse xenograft models using the PC3 human prostate
cell line, the antigen became a new target of interest in cellular therapy [50]. Currently, one
trial (NCT03013712) being conducted to evaluate safety and efficacy of EpCAM targeting
CAR T-cells in the treatment of patients with EpCAM positive cancer, including prostate,
plans to enclose 60 participants [86].

4. Discussion

In 2021, five anti-CD19 CAR-T-cell therapies received FDA approval for treatment of
hematological malignancies. In particular, patients with acute lymphoblastic leukemia,
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where CD19 is known as a suitable marker, show high response rates, leading to their
following FDA approval. The first multicenter, open-label, phase III trial comparing the
safety and efficacy of bb2121 vs. standard treatment in refractory or relapsed myeloma
with an estimated enrollment of 381 participants complete recruiting May 2022 [87,88].
Although CAR T-cell therapy has celebrated success with numerous of hematological tumor
identities, it still faces numerous barriers in solid tumors, in particular in the treatment of
prostate tumors.

According to a recent review, the epi- and intratumoral genetic heterogeneity in PCa
is a major contributor to the failures faced by researchers and clinicians [29]. Till now, the
current state of knowledge and the approval of the aforementioned CAR T-cell agents is
based on selected phase I/II trials. Data from large, multicenter phase II/III studies are still
pending and very much needed to further develop their impact in clinical practice.

High-grade PCa is characterized by low levels of tumor infiltrating lymphocytes and a
poorly understood interaction between adaptive and innate immune response [89–91]. Fur-
ther several targets are available, but with no comparable specificity in antigen expression
for PCa.

In addition, the most prevalent metastatic site in PCa is the bone with a majority of
patients, over 90% in some studies suffering from bone metastasis only [88].

To achieve durable remissions in CRPC, CAR T-cells must effectively migrate to the
bone lesions, and attack in and survive in a mostly hostile and immunologically little
understood microenvironment [92]. Improving tumor trafficking could be achieved in
two main ways: (1) CAR T-cells with chemokine receptors secreted by PCa such as CCL2,
CCL21, (2) by converting the “cold” anti-immunogenic PCa into “hot” immunogenic tumor
cells, thereby engaging the intrinsic ability of PCa by employing chemotherapy or local
radiotherapy alongside with CAR T-cell therapy [93–96].

Once a CAR T-cell reaches its intended target, it has to face the inhibitory tumor
microenvironment with lack of nutrients, low pH levels, hypoxia and a high amount of
immunosuppressive cells containing fibroblasts, Tregs, tumor-associated macrophages and
myeloid-derived suppressive cells known to weaken the immune response at multiple
levels and various antigen escape mechanisms resulting in tumor resistance [97].

In a preclinical mouse model of PCa, PSMA-CAR T-cells combined with a dominant-
negative TGFß typ II receptor binding domain overcame the aforementioned problem and
led to increased proliferation rates as well as long-term persistence in vivo [75]. Previous
mouse models have shown that, by targeting Interleukin-4, an inhibitory cytokine expressed
by the TME in pancreatic cancer, next generation anti-PSCA CAR T-cells were able to
eliminate tumor cells [98].

By developing NK-92 cell lines with PSMA-recognizing CARs as a novel approach,
a potent cytotoxic response was achieved through acquired lytic activity against PSMA-
overexpressing PCa cells. In addition, tumor growth was slowed and an increased produc-
tion of IFN-y levels was described, improving survival in vitro and vivo mice models [99].

To increase efficiency, additional therapeutic approaches could be explored in form of
multimodal combination therapies of CAR T-cells with ADT, radiotherapy, chemotherapy
or other immunologic targets [100]. By triggering apoptosis and hence the formation of
apoptotic bodies that can be used by antigen-presenting cells to activate T cells, ADT could
be used to sensitize the immunosuppressive microenvironment of PCa for CAR-Ts. In
addition, increased CD4+ and CD8+ T-cell infiltration after androgen deprivation has been
described in the literature [101–103]. Chemotherapeutics such as cyclophosphamide or
fludarabine have been used for depletion of endogenous lymphocytes before administra-
tion of CAR T-cell therapy, with the result of a reduced number of Tregs, anti-CD19 CAR
T-cell expansion as well as longer persistence resulting in an increased anti-tumor immune
response [104,105]. Furthermore, chemotherapy could enhance CAR T-cell penetration
through pre damaged tumor cells and lead to enhanced cytokine release in TME, resulting
in increased CAR T-cell activation [100]. To our knowledge, one open-label, multicenter
phase 1b/2 study (NTC03910660) currently investigates the safety, tolerability and efficacy
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of a combined therapeutical approach with BXCL701 and the immune checkpoint Pem-
brolizumab in 40 mCRPC patients [106]. Future studies are required to determine whether
the combination of CAR T-cells with chemotherapy, ADT, radiotherapy or other forms of
immunotherapy could have clinical utility in patients with PCa.

5. Conclusions

While CRPC was the first solid tumor where a dendritic cell therapy could show an
improvement in survival, clinical research with CAR T-cell therapy in this patient group
is in its infancy compared to lymphoma and even other solid tumors. The lack of specific
antigens and the complex immunologic tumor environment in bone metastasis proves
to be a continuing challenge. Ongoing clinical research is therefore warranted to lead to
improving patient outcomes.

Author Contributions: Conceptualization, M.K.; methodology, C.S.; software, Word and Mendeley;
validation, M.M., A.-T.Z. and P.H.; formal analysis, C.S.; investigation, C.S.; resources, C.S., M.K.
and A.M.; data curation, C.S.; writing—original draft preparation, C.S.; writing—reviewing and
editing, M.K., M.M., A.M., A.-T.Z. and P.H.; supervision, M.K. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Abbreviations

Abbreviation Meaning
ADT Androgen deprivation therapy
CRPC castration resistant prostate cancer
CAR chimeric antigen receptors
DE dendritic cells
EpCam Epithelial cell adhesion molecule
GM-CSF macrophage colony stimulating factor
GnRH Gonadotropin-releasing hormone
GCP Good Clinical Practice
mCRPC metastatic castration resistant prostate cancer
MHC major histocompatibility complex
nmCRPC non-metastatic CRPC
NK natural killer cells
OS overall survival
PAP prostatic acid phosphatase
PBMCs peripheral-blood mononuclear cells
PCa Prostate Cancer
PRISMA Preferred Reporting Items for Systemic Reviews and Meta-analysis
PSA Prostate specific antigen
PSMA Prostate-specific membrane antigen
PFS progression free survival
SAE serious adverse events
TCR T-Cell receptors
TREGs regulatory T-cells
TILs tumor-infiltrating lymphocytes
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