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Simple Summary: The reported global incidences of skin cancer led to the development of automated
clinical aids for making proper clinical decision models. Correctly classifying the skin lesions during
the early stage may increase the chances of being cured before cancer. However, the skin lesion dataset
images pose many critical challenges related to available features to develop classification models
with cross-domain adaptability and robustness. This paper made an attempt to select important
features from skin lesion datasets for proper skin cancer classification by proposing some feature
fusion strategies. Three pre-trained models were utilized to select the important features and then
an adaptive weighted mechanism of choosing important features was explored to propose model-
based and feature-based optimized feature fusion strategies by optimally and adaptively choosing
the weights using a meta-heuristic artificial jellyfish algorithm. The empirical evidence shows that
choosing the weights of the pre-trained networks adaptively in an optimized way gives a good
starting point for initialization to mitigate the chances of exploding or vanishing gradients.

Abstract: This study mainly focuses on pre-processing the HAM10000 and BCN20000 skin lesion
datasets to select important features that will drive for proper skin cancer classification. In this
work, three feature fusion strategies have been proposed by utilizing three pre-trained Convolutional
Neural Network (CNN) models, namely VGG16, EfficientNet B0, and ResNet50 to select the important
features based on the weights of the features and are coined as Adaptive Weighted Feature Set (AWFS).
Then, two other strategies, Model-based Optimized Weighted Feature Set (MOWFS) and Feature-
based Optimized Weighted Feature Set (FOWFS), are proposed by optimally and adaptively choosing
the weights using a meta-heuristic artificial jellyfish (AJS) algorithm. The MOWFS-AJS is a model-
specific approach whereas the FOWFS-AJS is a feature-specific approach for optimizing the weights
chosen for obtaining optimal feature sets. The performances of those three proposed feature selection
strategies are evaluated using Decision Tree (DT), Naïve Bayesian (NB), Multi-Layer Perceptron
(MLP), and Support Vector Machine (SVM) classifiers and the performance are measured through
accuracy, precision, sensitivity, and F1-score. Additionally, the area under the receiver operating
characteristics curves (AUC-ROC) is plotted and it is observed that FOWFS-AJS shows the best
accuracy performance based on the SVM with 94.05% and 94.90%, respectively, for HAM 10000
and BCN 20000 datasets. Finally, the experimental results are also analyzed using a non-parametric
Friedman statistical test and the computational times are recorded; the results show that, out of those
three proposed feature selection strategies, the FOWFS-AJS performs very well because its quick
converging nature is inculcated with the help of AJS.

Keywords: skin lesion classification; feature selection; VGG16; EfficientNet B0; ResNet50; HAM
10000 dataset; BCN 20000 dataset
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1. Introduction

Skin lesion mainly refers to a skin area with distinctive characteristics, such as color,
shape, size, and texture, from the other surrounding areas of skin. The leading cause of
this may be sunburn or contact dermatitis, which causes localized damage to the skin [1–3].
The American Society for Dermatologic Surgery describes a skin lesion as an abnormal
lump, bump, ulcer, sore, or colored skin area. Other causes of skin lesions or skin patches
include any underlying disorder, infections, diabetes, or genetic disorders. It has been seen
that this type of skin type may be benign non-harmless or malignant, or premalignant,
leading to skin cancer. Freckles or small patches of light brown skin color can be the reason
for exposure to the sun. Flat moles are the best examples of skin lesions, and a growing
mole with color variation, itching, and bleeding may lead to melanoma lesions, as shown
in Figure 1 for regular lesions (Figure 1a) and melanoma lesions (Figure 1b) [4].

Figure 1. Examples of normal lesions and melanoma in skin lesion images [4]. (a) Normal lesion, (b)
Melanoma lesion, (c) Basal cell carcinoma, (d) Squamous cell carcinoma, (e) Merkel cell carcinoma, (f)
Keratoacathoma, (g) Actinic Keratoses, (h) Atypical moles, (i) Bowen’s Disease.

The study reveals that this skin cancer is the 17th most common cancer worldwide
and is a warning phase for researchers and academicians to develop an early detection
system for this skin cancer in the form of a computer-based system for effective treatment
and better outcomes treatment. The computer-assisted dermoscopic image classification
has attracted significant research for its potential to timely and accurately diagnose skin
lesions [4–7]. Scientists, clinicians, analyzers, and experimenters are trying to delve into
this area of research to develop models and strategies by exploring artificial intelligence
(AI)-, machine learning (ML)-, and deep learning (DL)-based approaches [8–11].
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It is evident that DL strategies are being widely used for structure detection by re-
searchers for localization and interpolation of anatomical structures in medical images
and to accomplish this task of distinguishing the image features [10,11]. Additionally, the
DL methods are highly effective in handling large samples during the training stage, and
this network learns valuable representations of the features directly. For example, the
convolutional neural network’s (CNN’s) pre-trained architectures can effectively identify
and remove the artifacts from the images such as noise. In medial image processing, espe-
cially in skin lesion recognition, it is essential to pre-process the image concerning feature
selection and feature extraction leading to feature engineering to design an effective and
correctly working algorithm [12–15]. The evolution of transfer learning and its advantages
of saving resources with improved efficiency concerning cost and time-consuming issues
have widely used CNN’s pre-trained networks in the image analysis research domain [2,11].
In other words, this transfer learning is an ML-based approach where a pre-trained model
is reused and customized to develop a new model for a new dataset. For image recognition
tasks, the pre-trained models are great because they are easier to use and typically perform
better with less training time. It also enables the models to train fast and accurately by ex-
tracting the relatively useful features or features of importance at the beginning of training
learned from the large datasets [16,17]. The feature level fusion in the classification task
has shown improved recognition performance by combining the results of multiple feature
selection strategies, thereby identifying a compact set of salient features without losing
any data that can improve the recognition accuracy compared to the single base models.
Feature fusion, or in other words, the combination of features from different networks,
is an omnipresent part of the model learning mechanisms, which is achieved in many
ways. The simplest form is the concatenation of outputs of participating networks or using
some means or methods of optimizing the weights of the opinions of the participating
networks to obtain a good fusion of features having relative discriminative power to design
a classification model [18–20]. The importance of using optimization in feature fusion is
not only to just rank the ranking of features to obtain an optimized version of features,
but also the optimized weights help to decide the impact of each feature even if a feature
of first rank will have some weighted importance. Being motivated by the advantages of
DL-based recognition systems, the use of transfer learning mechanism through CNN’s
pre-trained networks, and the feature fusion approach, in this study, we attempted to
design a few feature fusion methodologies which call for active fusion approaches resulting
to an effective and robust skin lesion classification model. Our prime contributions in
this research are: the transfer learning strategy was exploited with the help of CNN’s
pre-trained networks for feature selection and feature fusion [2,16–18]; the advantages of
visual geometry group network (VGG16), EfficientNet B0, and residual neural network
(ResNet50) such as low number of parameters and small size filters, multi objective neural
architecture optimizing the accuracy and floating point operations with a balanced depth,
width, and resolution producing a scalable, accurate and easily deployable model; and
the ability to solve the problem of vanishing gradients of those three pre-trained networks
have been explored deeply while designing this deep feature fusion model [12–15]. The key
advantages of the ensemble learning mechanism to design a robust feature selection model
by proposing combined feature fusion strategies [19–21], such as combined feature set
(CFS), adaptive weighted feature set (AWFS), model-based optimized weighted feature set
(MOWFS), and feature-based optimized weighted feature set (FOWFS), are experimented
and validated. In order to reduce the losses and selection of optimized weights of those
three pre-trained networks, the advantages of a new meta-heuristic optimizer artificial jelly-
fish optimizer (AJS) [22–29] was used and finally, the performance of the proposed feature
fusion strategies are likened to other combinations of the models with genetic algorithm
(GA) [30] and particle swarm optimization (PSO) [31] such as MOWFA-GA, MOWFS-PSO,
FOWFS-GA, and FOWPS-PSO, and it was observed that the proposed combination of
FOWFS-AJS outperforms the other models used for classification of skin lesion diagnosis.
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The rest of the article is organized as follows: the literature on CNN’s pre-trained
networks and feature fusion approaches are discussed in Section 2. The pre-trained CNN
feature extraction models are discussed in Section 3, the experimentations, results, and
discussions are detailed in Section 4. Finally, the conclusion and future scope are given in
Section 5.

2. Literature Survey

The key challenge associated with the available skin lesion datasets includes the
selection of features of importance giving rise to feature selection and/or feature extraction
as one the pre-processing task to improve the classification accuracy of the classifiers. This
section mainly reviews some related feature selection and feature extraction approaches
for image datasets including feature fusion or ensemble techniques. In early studies, the
researchers usually used few traditional feature selection methods such as correlation-based
feature selection, consistency-based filter, information gain, ReliefF etc., then they shifted
their attention to using CNN to extract features. For instance, dense convolutional network
(DenseNet), VGG16, Inceptionv3 (GoogLeNet), ResNet, EfficientNet, etc. are the most
commonly used pre-trained models for fine-tuning the datasets to improve classification
accuracy [2,12–15].

Lingzhi Kong and Jinyong Cheng [32] proposed classification of COVID-19 X-ray
images using DenseNet and VGG models and fine-tuned feature fusion model. First,
they applied pre-processing of images and then segmented those images for classification.
In addition to this, authors also attempted to resolve the data imbalance problem by
introducing fine-tuned global attention block and category attention block to obtain more
detailed information of small lesions. Manjary P et al. [33] proposed a classification model
to distinguish between natural and computer-generated images by designing a multi-
color-space fused EfficientNet using transfer learning methodology which operates in three
different color spaces. Ying Guo et al. [34] proposed an EfficientNet based multi view feature
fusion model for cervical cancer screening. This proposed model takes the colposcopy
images as inputs and tries to extract the features which lead to cervical intraepithelial
neoplasia lesions by avoiding the negative effects caused by individual differences and
non-cervical intraepithelial neoplasia lesions. An interesting study was carried out by
David McNeely-White et al. [35] for comparing the utility of inception and ResNet for as a
feature extractor. Authors observed that the features extracted by Inception are very similar
to features extracted using ResNet, i.e., the feature set can be very well approximated by an
affine transformation of the other. In other words, this literature suggests that for the CNNs,
the selection of training set is more important than the selection of pre-trained models.

Yan Wang et al. [36] focused on accurate skin lesion classification by adversarial mul-
timodal fusion with attention mechanism for classification, but before this process, they
adopted a discriminator based on adversarial learning to extract the correlated features.
This proposed multimodal feature extraction strategy tries to extract the features of the
lesion area to enhance the feature vector to obtain more discriminative features. Moreover,
the main focus was to consider both correlated and complementary information to design
a multimodal fusion strategy. Lina Liu et al. [37] created an automated skin lesion classifi-
cation model by extracting the region of interest from skin lesson images using ResNet and
DenseNet. The authors tried to obtain the mid-level features by studying the relationships
among different images based on distance metric learning and gave as an input to the
classifiers instead of using the extracted features directly. A study on understanding the
efficiency of 17 commonly pre-trained CNN models used for feature extraction was carried
out by Samia Benyahia et al. [38]. It has been observed that DenseNet201 along with
k-nearest neighbor and support sector machine (SVM) outperformed with respect to classi-
fication accuracy for the ISIC 2019 dataset. Di Zhuang et al. [39] proposed a cost-sensitive
multi-classifier fusion approach for skin lesion image classification by taking the advantage
of subjective weights assigned to datasets. That study utilized a concept of cost-sensitive
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feature by adapting to the different customized cost matrices and twelve different CNN
architectures to evaluate the fusion approaches performance.

As per the study, it was seen that the ensemble learning or fusion approach made better
predictions and achieved better performance than the single contributing feature or model.
The higher predictive accuracy compared to individual models of this ensemble strategy
gained wide use in the case of classification. Considering this advantage, many researchers
are trying to use this either in the feature level or classifier level. In this section, some works
done on this approach are described. Amirreza Mahbod et al. [40] proposed an automatic
skin lesion ensemble-based classification model for ISIC 2017 skin lesion classification
challenge dataset by combining intra and inter architecture network fusion with multiple
sets of CNNs and in that model, the CNNs are pre-trained architectures. Those pre-
trained CNNs are able to identify fine-tuned dermoscopic lesion images for the different
settings of those models. Similarly, Nils Gessert et al. [41] also proposed an ensemble-based
classification model for ISIC 2017 skin lesion classification challenge using EfficientNets,
SENet, and ResNeXt WSL. Mohamed A. Elashiri et al. [19] proposed an ensemble-based
classification model with the weighted deep concatenated features with long short-term
memory. These ensembles of weighted features are basically concatenated features from
three CNNs pre-trained models, namely DeepLabv3, ResNet50, and VGG16 integrating
the optimal weights of each feature using their proposed hybrid squirrel butterfly search
algorithm. Amira S. Ashour et al. [42] also proposed an ensemble-based bag of features
strategy for classification of COVID-19 X-ray images.

Redha Ali et al. [43,44] proposed DL-based skin lesion analysis models in 2019 and
2022. In [43], the authors proposed a CNN-based ensemble method by utilizing VGG19-
UNet, DeeplabV3+, and a few other pre-processing methodologies using the ISIC 2018
challenge dataset. Similarly, a DL-based incremental modular network named IMNets was
proposed in [44] for medical imaging by using small network modules called as SubNets
capable of generating salient features for a particular problem, then larger and more
powerful networks were designed by combining these SubNets in different configurations.
At each stage, only one new SubNet module underwent learning updates, thereby reducing
the computational resource requirements for training in network optimization. Xinzi
He et al. [45] proposed a segmentation and classification model by improving the CNNs
through a fully transformer network to learn long-range contextual information for skin
lesion analysis.

3. Methodologies

The preliminary details of VGG16, EfficientNet B0, and ResNet 50 along with their
architectures are discussed in this section along with the theory and working process of
AJS optimization algorithm. The broad scope of this study along with the proposed deep
feature fusion strategies are also detailed along with their workflow diagrams.

3.1. CNNs’ Pre-Trained Models for Feature Selection

CNNs’ pre-trained models are saved networks that were previously trained on a large
dataset for large-scale image classification and can be used as is or may be customized as
per the requirements. This type of architecture of applying the gained knowledge from
one source to a different but similar task is widely known as transfer learning. There
are many pre-trained models of CNN available and they are being widely used in the
field of image processing, such as LeNet, AlexNet, ResNet, GoogleNet or InceptionNet,
VGG, DenseNet, EfficientNet, PolyNet, and many more. CNN is basically originated from
neural network with convolution layers, pooling layers, activation layers, etc., and those
mentioned pre-trained networks are specific CNNs designed for various applications, such
as classification and localization [2,12–17,31–34,37].

In this work of designing feature fusion strategy for feature selection, three pre-trained
CNNs, namely VGG16, EfficientNet B0, and ResNet50 were utilized. The VGG stands
for Visual Geometry Group, consisting of blocks composed of 2D convolution and max
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pooling layers. This has two variants, VGG16 and VGG19, representing 16 and 19 layers in
each of them and it has been seen that the performance of VGG16 is equivalent to VGG19;
therefore, VGG16 is widely used rather than VGG19. VGG16 was proposed in [46] at the
Visual Geometry Lab in Oxford University, United Kingdom in 2014; it is denser with small
3 × 3 filters which provides the effect of a big size filters such as 5 × 5 and 7 × 7, as shown
in Figure 2a. The lowering of number of parameters and use of small size filters in the
VGG16 network shows the benefit of low computational complexity which gave a new
research trend to work with low filters.

Figure 2. VGG16, EfficientNet B0, and ResNet 50 pre-trained networks architecture. (a) VGG16
network architecture [46], (b) EfficientNet B0 network architecture [47], (c) ResNet50 network archi-
tecture [48].

EfficientNet uses the neural architecture search to design a new network and it has
been scaled up to obtain a family of deep learning models. The EfficientNet B0 was
developed using a multi-objective neural architecture optimizing the accuracy and floating
point operations. It has been found that this network achieves better accuracy and efficiency
in comparison to standard CNN models and taking this EfficientNet B0 as a baseline model,
a full family of EfficientNets from EfficientNet B1 to EfficientNet B7 are being developed,
and they have shown their accuracy and efficiency on ImageNet. The total number of
layers in EfficientNet Bo is 237 and 11 M trainable parameters and the detailed architecture
in shown in Figure 2b [47]. This model exacts features throughout the layers by using
multiple convolution layers using 3 × 3 receptive field and mobile inverted bottleneck
convolution layer. This network employs a balanced depth, width, and resolution which
produce a scalable, accurate, and easily deployable model. This EfficientNet was proposed
by Mingxing Tan and Quoc V. Le of Google Research in 2019.

Residual network or ResNet is a classic neural network used for many computer vision
and image processing tasks and allowed to train more than 150 layers, being the extremely
deep neural networks, leading to solving the problem of vanishing gradients introduced
by Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun in 2015. ResNet50 is a deep
network with 5 stages that contains 3 convolutional layers and 1 identity block, which is
trained over 23 million parameters and can work very well with 50 neural network layers
as shown in Figure 2c [48]. A skip connection is used in the ResNet50 to fetch the earlier
parameters to the layers close to the output. It overcomes the vanishing gradient problem.

The concept of wider, deeper, and higher resolution properties of those pre-trained
networks giving the network with more filters, more convolution layers and the ability to
process the images with larger depth has gained popularity in the field of image processing.
Considering those general advantages as well as a few other advantages, such as VGG16 is
good at image classification, the effectiveness of model scaling, the proper use of baseline
network in EfficientNet B0, and the principle of ResNet50 to build deeper networks and
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efficiency to obtain number of optimized layers to overcome the vanishing gradient prob-
lem, has been the motivation behind this work to design a deep feature fusion strategy for
feature selection leading to an effective skin lesion image classification [2,8–15,17–20].

3.2. Artificial Jellyfish Search Algorithm (AJS)

This AJS is one of the newly proposed meta-heuristic swarm-based optimization
algorithms derived by simulating the locomotion and dietary patterns [22–29] of jellyfish.
Jellyfish are the most efficient swimmers of all aquatic animals widely seen in the oceans
having umbrella-shaped bells and trailing tentacles. Their bodies are made up of 98% water
which helps them to survive by blending themselves with the direction of current of ocean.
The jellyfish swims in the water in such a way that creates two vortex rings, which in turn
allows the jellyfish to travel 30% farther on each swimming cycle. From a study, it was
observed that jellyfish are excellent swimmers and they utilizes less energy and less oxygen
to travel within the water. They have a very simple nervous system which acts as a good
receptor to detect light, vibration, and chemicals in the water. They also have a great ability
to sense the gravity which allows the jellyfish to traverse in the ocean. The gelatinous skin
of this jellyfish helps them to absorb oxygen and their thin hairs help them to bite the food.
Jellyfish have stinging cells called nematocysts with tiny needle-like stingers known as
tentacles to paralyze the prey before eating. The rising sea temperatures and the dead zones
created for other fish or aquatic animals have given a better opportunity to the jellyfish
to bloom.

The jellyfish bloom or flock is being affected by the ecosystem significantly, i.e., the
amount of food varies from place to place the jellyfish moves or visits to determine the best
place which contains more food. Considering this movement of jellyfish to search for more
food in an ocean motivated the design of an AJS based on three idealistic rules:

(a) The movement of the jellyfish is either drawn by the current of the ocean or looking
at the swarm and controlling the switching between the mentioned two movements
by a time controlled approach;

(b) Being efficient swimmers, jellyfish swim to search for food and try to obtain the
locations where a large amount of food is available.

The location simply depends on the quantity of food found and the corresponding
objective function of it (i.e., location of jellyfish);

The AJS algorithm basically depends on four ingredients considering the above three
rules, namely ocean current; bloom of jellyfish; the time controlled mechanism; and bound-
ary conditions in search spaces and are mathematically formulated and detailed as follows.

(a) Ocean current: The jellyfish is attracted to the large amount of food based on the
direction (→) of the current of the ocean and the new location of the jellyfish can be
formulated using Equations (1) and (2), respectively.

→
OceanCurrent = JF# − ϕ× rand(0, 1)×MeanLocationJF (1)

JFi(t + 1) = JFi(t) + rand(0, 1)×
→

OceanCurrent (2)

where, JF# represents the jellyfish currently at the best location in a swarm or bloom; ϕ is

the distribution coefficient and is >0 related to the direction of
→

OceanCurrent, JFi represents
the jelly f ish i, and MeanLocationJF represents the new location of each jellyfish.

(b) Jellyfish bloom or swarm: The mobility of the jellyfish is of two types, i.e., passive and
active motion, and most jellyfish initially show passive motion during the formation
of bloom and they progressively show active motion. Basically, the passive motion of
the jellyfish is around their own locations and the corresponding updated location of
each jellyfish can be obtained using Equation (3). The Upperbound and Lowerbound are
the upper and lower bounds of the search space and ω is the length of the movement
around the jellyfish’s locations and is called as motion coefficient.
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JFi(t + 1) = JFi(t) + ω× rand(0, 1)× (Upperbound − Lowerbound) (3)

The active motion can be simulated as

(a) either JFi moves towards JFj or moves away;
(b) JFj other than a JFi is randomly chosen and a vector from JFi to the chosen JFj is used

to determine the direction of the movement of jellyfish or motion;
(c) when the food quantity exceeds at the chosen location of JFj that the location of JFi, a

JFi moves towards a JFj;
(d) and if the quantity of the food available to the chosen JFj is lower than that available

to a JFi, it moves away from it;

This leads every jellyfish to move in a better direction to find food in a bloom and
the direction of motion is simulated and the location of the jellyfish is updated using
Equations (4) and (5), respectively, where f is an objective function of location of jellyfish.

→
Motion Direction =

{
JFj(t)− JFi(t) i f f (JFi) ≥ f

(
JFj
)

JFi(t)− JFj(t) i f f (JFi) < f
(

JFj
) (4)

JFi(t + 1) = JFi(t) + rand(0, 1)×
→

Motion Direction (5)

(c) Time Controlled Mechanism: The passive or active motions of jellyfish in a bloom
over a time need to be determined to control the motions of jellyfish towards the
ocean current. This time controlled mechanism can be formulated using a time control
function f (TC) which is a random value that changes between (0, 1) over time and a
constant c as shown in Equation (6), where maximum number of iterations is given as
Iterationsmax and t is the time specified with respect to the iteration number.

f (TC) =

∣∣∣∣(1− t
Iterationsmax

)
× (2× rand(0, 1)− 1)

∣∣∣∣ (6)

Equation (6) computes the f (TC) and when this function increases the value of constant

c, it signifies that, the jellyfish follow the
→

OceanCurrent and when f (TC) < c, the jellyfish
move inside the bloom. In this case, f (TC) = c is not known as the time control changes.

(d) Boundary Conditions: The boundary conditions represent the maximum search space
defined for the jellyfish. With respect to these boundary conditions (as represented
in Equation (7)), when a jellyfish progresses outside the bounds of search area, it
will return to the opposite bound. In this equation, JFi,d, JF

′
i,d, Upperbound,d , and

Lowerbound,d represent the location of the ith jellyfish in dth dimension, upper, and
lower bounds of the search spaces, respectively.{

JF
′
i,d = (JFi,d −Upperbound,d) + Lowerbound(d) i f JFi,d > Upperbound,d

JF
′
i,d = (JFi,d − Lowerbound,d) + Upperbound(d) i f JFi,d > Lowerbound,d

(7)

3.3. Proposed Deep Feature Fusion Approach for Feature Selection

The broad scope of the proposed deep feature fusion strategy for feature selection of
skin lesion classification is outlined in Figure 3. The original feature sets are given as input
to the three variants of pre-trained CNN models as an initial phase of experimentation.
Considering the contributing factors of ensemble techniques such as (a) the final predic-
tion obtained by combining the results from several base models have achieved better
performance and (b) the spread or dispersion of the predictions and model performance
are more robust, this study mainly focused on design of ensemble-based feature fusion
strategy exploring the deep learning architecture. In this work, four ensemble feature
fusion strategies, namely CFS, AWFS, MOWFS, and FOWFS, are proposed, experimented,
and validated.
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Figure 3. Layout of proposed feature fusion approach for skin lesion data classification.

The predicted features by VGG16, EfficientNet B0, and ResNet50 are 512, 1024, and
1024, respectively, while the input to those three models are images from HAM 10000 [49]
and BCN 20000 [50] datasets represented as {I1 · · · Im · · · Ik}. The CFS is one of simplest
form of ensemble techniques which simply concatenates the outputs of the three pre-trained
models to form a batch of feature set as illustrated in Figure 4a. In the AWFS approach, the
weights of those three pre-trained models are initialized to (0, 1) and then the combined
feature set is formed by adaptively selecting weights concatenated by the extracted features
from the respective pre-trained models, namely [w1 × FVGG16],

[
w2 × FE f f icientNet B0

]
, and

[w3 × FResNet50] as shown in Figure 4b.
The workflow of the proposed MOWFS is illustrated in Figure 4c, in which initially,

the combined feature set is formed same as the AWFS strategy and then, the technique
of identifying optimum point considering two special cases (active and passive) motion
of AJS optimization algorithm helps to find best cost. In this model-based approach,
any one of the classifiers (in our experimentation DT, NB, MLP and SVM) is considered
as cost f unction, where the measured MSE of the opted classification model is taken as
the cost and the weights (w1, w2 and w3) are taken as decision variables. This total pro-
cess is continued for 50 iterations to obtain optimized weights from all three pre-trained
models. Then the final ensemble of features is formed for test set as

(
[w1]1×1 × FVGG16

)
,(

[w2]1×1 × FE f f icientNet B0

)
,
(
[w3]1×1 × FResNet50

)
. The process of FOWFS strategy focuses

on feature-based optimization of adaptively chosen weights for formation of combined
weighted feature set, such as [w1]1×512× FVGG16, [w2]1×1024× FE f f icientNet B0, and [w3]1×1024
×FResNet50 with total weights (512+1024+1024). Then, the process of obtaining optimized
weights is performed the same as the MOWFS strategy and finally it returns 512 + 1024 + 1024
number of optimized weights based on each feature and the combined feature set is formed
as [w1]1×512 × FVGG16, [w2]1×1024 × FE f f icientNet B0, [w3]1×1024 × FResNet50. The total process
of this strategy is detailed in Figure 4d. Then, features having weights more than 0.5 are con-
sidered as best performing features and are considered for final classification. Finally, the
performance of the proposed deep feature fusion strategies such as CFS, AWFS, MOWFS,
and FOWFS are evaluated based on each classification model and the proposed optimized
strategies are compared with GA and PSO two widely used meta-heuristic optimization
techniques though accuracy, precision, sensitivity, and F1-score.
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Figure 4. The steps of (a) Combined Feature Set (CFS) generation process; (b) Adaptive Weighted
Feature Set (AWFS) generation process; (c) Model-based Optimized Weighted Feature Set (MOWFS)
generation process; and (d) Feature-based Optimized Weighted Feature Set (FOWFS) generation process.

4. Experiments, Results, and Discussion

This segment focuses on the experimental stages in order to effectively illustrate the
study’s findings. Broadly, the section discusses the datasets and parameter descriptions,
the algorithm of the proposed FOWFS feature fusion approach. The experimentation was
performed using Intel(R) Core(TM) i5-7200U CPU @ 2.50G Hz with 2.71 GHz processor,
4.00 GB (3.88 GB usable) RAM, 64-bit operating system, x64-based processor operating
system, and executed on the platform Google Colab.

4.1. Datasets Description

This study of feature selection and classification was performed on two skin lesion
datasets, HAM 10000 and BCN 20000, collected from [49,50]. The HAM 10000 dataset is
the abbreviated form of Human Against Machine and it has 10,000 training images for
detection of pigmented skin lesions with seven classes. The BCN 20000 dataset is composed
of 19,424 demoscopic images of skin lesion collected from a hospital clinic in Barcelona
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during the period 2010 to 2016 and this dataset has eight classes as detailed in Table 1 and
Figure 5a,b.

Table 1. Datasets and description of skin lesion classes.

Dataset Classes

HAM 10000

Actinic keratoses and intraepithelial carcinoma/Bowen’s disease
(AKIEC), basal cell carcinoma (BCC), benign keratosis-like lesions
(BKL), dermatofibroma (DF), melanoma (MEL), melanocytic nevi

(NV) and vascular lesions (VASC).

BCN 20000
Nevus, melanoma (MEL), basal cell carcinoma (BCC), seborrheic

keratosis (SK), actinic keratosis (AK), squamos cell carcinoma
(SCC), dermatofibroma (DF), and vascular lesions (VASC).

Figure 5. The skin lesions of (a) HAM 10000 and (b) BCN 20000 datasets.

4.2. Parameters Discussion

The various parameters of the network models and optimization techniques used for
experimentation of this study and their chosen values are discussed in Table 2.

Table 2. Parameters and their chosen values.

Network Models and
Optimization Techniques Parameters and Their Associated Values

VGG16 16 weight layers

EfficientNet B0 237 weight layers

ResNet50 50 weight layers

AWFS Total weights:3; w1 dimension = 1 × 1; w2 dimension = 1 × 1; w2 dimension = 1 × 1

MOWFS Total weights:3; w1 dimension = 1 × 1; w2 dimension = 1 × 1; w2 dimension = 1 × 1

FOWFS Total weights:3; w1 dimension = 1 × 504; w2 dimension = 1 × 1024; w2 dimension = 1 × 1024

GA Number of decision variables = 3; Maximum number of iterations = 50; Population size = 10;
Selection method-Roulette wheel

PSO
Number of decision variables = 3; Maximum number of iterations = 50; Number of particles = 10;
Inertia weight = 1; Inertia weight damping ratio = 0.99; Personal learning coefficient = 1.5; Global

learning coefficient = 2.0

AJS Number of decision variables = 3; Maximum number of iterations = 50; Population size = 10



Cancers 2022, 14, 5716 12 of 25

4.3. Algorithm of Proposed FOWFS Feature Fusion Strategy

The working principle of the four feature fusion strategies, CFS, AWFS, MOWFS,
and FOWFS, are depicted in Figure 4a–d. The MOWFS and FOWFS strategies are based
on optimizing the chosen weights using AJS algorithm. The optimization steps of both
are the same, the only difference lies in the formation of combined feature weights as
detailed in Section 3.3. The hybridization of AJS for formation of combined feature sets
exploring the model-based optimization and each feature-based optimization is depicted
in an algorithmic form as given in Algorithm 1.

Algorithm 1 MOWFS and FOWFS: Optimized deep feature fusion strategies

For 100 population
(
Totalpop

)
initialize (w1, w2 and w3);

For i = 1 : Totalpop
Calculate MSE using extracted features and cost f unction of SVM/DT/NB/MLP classifier;

For i = 1 : Totalpop;
Calculate time control function f (TC) for t;

If f (TC)(t) ≥ 0.5
Update w1, w2 and w3 using Equation (2);

Else
If rand(0, 1) > (1− f (TC)(t)
Update w1, w2 and w3 using Equation (3);
Else

Update w1, w2 and w3 using Equation (5);
End if

End for
End for

Check the boundary conditions such as Upperbound and Lowerbound, whether w1, w2 and w3 range
between 0~1;
Choose w1, w2 and w3 with minimum MSE;
End for: Iterate over 50 iterations;

4.4. Result Analysis and Validation

This section discusses the experimental results of all the proposed deep feature fusion
approach for skin lesion classification of HAM 10000 and BCN 20000 datasets along with
the evaluation and validation of the feature selection strategies. In the first phase of
experimentation, the benefit of transfer learning mechanism was achieved for obtaining the
better performance with less computational effort. Here, three CNNs’ pre-trained learning
models, VGG16, EfficientNet B0, and ResNet50, were used to extract the meaningful
features from the new images.

Table 3 shows the experimental results of those three pre-trained models for both the
skin lesion image datasets, which demonstrates the feature acquisition time (in minutes)
with respect to the original features. A straightforward comparison was carried out for the
accuracy validation with respect to fused feature sets and the highest ranked feature sets
(features whose weight > 0.5) obtained from three pre-trained models using Decision Tree
(DT), Naïve Bayesian (NB), Multi-Layer Perceptron (MLP), and Support Vector Machine
(SVM) classifiers as discussed in Table 4, Table 5, Table 6, Table 7, respectively. From
those three tables, it can be seen that for both the datasets, initially, the number of features
selected from three pre-trained models is 2560 features, which form a fused feature set
and the CFS selects 2560 features and as all the features are selected for the classification
process, the ranking of features has not been done, therefore there is no improvement in
validation accuracy.
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Table 3. Feature acquiring time.

CNN Pre-Trained
Models Datasets Original No. of

Features
Feature Acquisition

Time

VGG16
HAM 10000

512 10.11
EfficientNet B0 1024 8.24

ResNet50 1024 5.42

VGG16
BCN 20000

512 17.21
EfficientNet B0 1024 15.11

ResNet50 1024 10.29

Table 4. Validation accuracy of fused feature sets vs. ranked feature sets based on DT.

Fused Feature
Configurations Datasets Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9110 2560 0.9110
AWFS 2560 0.9124 512+1024 0.9410

MOWFS-GA 2560 0.9116 512 0.9411
MOWFS-PSO 2560 0.9215 512 0.9412
MOWFS-AJS 2560 0.9219 1024 0.9401
FOWFS-GA 2560 0.9310 1015 0.9312
FOWFS-PSO 2560 0.9322 954 0.9412
FOWFS-AJS 2560 0.9322 914 0.9422

CFS

BCN 20000

2560 0.8847 2560 0.8847
AWFS 2560 0.8925 512 0.9610

MOWFS-GA 2560 0.8948 512 + 1024 0.9611
MOWFS-PSO 2560 0.9012 512 + 1024 + 1024 0.9612
MOWFS-AJS 2560 0.8999 1121 0.9602
FOWFS-GA 2560 0.9015 998 0.9512
FOWFS-PSO 2560 0.9128 1019 0.9611
FOWFS-AJS 2560 0.9198 925 0.9622

Table 5. Validation accuracy of fused feature sets vs. ranked feature sets based on NB.

Fused Feature
Configurations Datasets Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9118 2560 0.9118

AWFS 2560 0.9211 512 0.9411

MOWFS-GA 2560 0.9124 512 0.9421

MOWFS-PSO 2560 0.9158 1024 0.9422

MOWFS-AJS 2560 0.9199 1024 + 1024 0.9428

FOWFS-GA 2560 0.9210 995 0.9391

FOWFS-PSO 2560 0.9214 961 0.9438

FOWFS-AJS 2560 0.9218 1015 0.9448

CFS

BCN 20000

2560 0.9001 2560 0.9001

AWFS 2560 0.9191 512 + 1024 0.9611

MOWFS-GA 2560 0.9125 1024 0.9621

MOWFS-PSO 2560 0.9215 512 + 1024 0.9622

MOWFS-AJS 2560 0.9244 512 + 1024 + 1024 0.9628

FOWFS-GA 2560 0.9248 1115 0.9594

FOWFS-PSO 2560 0.9314 1245 0.9632

FOWFS-AJS 2560 0.9325 998 0.9648
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Table 6. Validation accuracy of fused feature sets vs. ranked feature sets based on MLP.

Fused Feature
Configurations Datasets Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9211 2560 0.9211

AWFS 2560 0.9214 1024 0.9550

MOWFS-GA 2560 0.9244 512 + 1024 0.9552

MOWFS-PSO 2560 0.9214 512 + 1024 0.9558

MOWFS-AJS 2560 0.9254 512 0.9561

FOWFS-GA 2560 0.9311 915 0.9342

FOWFS-PSO 2560 0.9324 898 0.9537

FOWFS-AJS 2560 0.9345 975 0.9562

CFS

BCN 20000

2560 0.9112 2560 0.9112

AWFS 2560 0.9119 512+1024 0.9650

MOWFS-GA 2560 0.9132 1024+1024 0.9652

MOWFS-PSO 2560 0.9124 512 0.9658

MOWFS-AJS 2560 0.9312 512+1024 0.9661

FOWFS-GA 2560 0.9365 1124 0.9549

FOWFS-PSO 2560 0.9378 954 0.9649

FOWFS-AJS 2560 0.9411 929 0.9669

Table 7. Validation accuracy of fused feature sets vs. ranked feature sets based on SVM.

Fused Feature
Configurations Datasets Dimensionality

(Fused Feature Set)

Validation
Accuracy (Fused

Feature Set)

Dimensionality
(Highest Ranked

Feature Set)

Validation Accuracy
(Highest Ranked

Feature Set)

CFS

HAM 10000

2560 0.9225 2560 0.9225

AWFS 2560 0.9315 1024 + 1024 0.9599

MOWFS-GA 2560 0.9311 512 0.9611

MOWFS-PSO 2560 0.9347 512 + 1024 0.9712

MOWFS-AJS 2560 0.9348 512 + 1024 0.9612

FOWFS-GA 2560 0.9378 1125 0.9479

FOWFS-PSO 2560 0.9399 897 0.9679

FOWFS-AJS 2560 0.9425 867 0.9779

CFS

BCN 20000

2560 0.9147 2560 0.9147

AWFS 2560 0.9110 1024 0.9599

MOWFS-GA 2560 0.9118 1024 + 512 0.9611

MOWFS-PSO 2560 0.9210 1024 + 1024 0.9712

MOWFS-AJS 2560 0.9211 512 0.9612

FOWFS-GA 2560 0.9212 1005 0.9579

FOWFS-PSO 2560 0.9245 905 0.9688

FOWFS-AJS 2560 0.9311 899 0.9779

From Table 4, it can be seen that, for the HAM 10000 dataset, the AWFS selects highest
ranked feature set with weights of VGG16 (with 512 features) and any one of the other two
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pre-trained models (with 1024 features) based on DT classifier with an improved accuracy
of 94.10%. It can also be inferred that the MOWFS-AJS and FOWFS-AJS have validation
accuracy of 94.24% and 94.22%, respectively, with the highest ranked feature set of 1024
and 914 number of features. Considering the improvement in accuracy with respect to CFS,
MOWFS-AJS, and FOWFS-AJS, it is clearly evident that with a lower number of feature
sets, MOWFS-AJS and FOWFS-AJS achieve 3.14% and 3.12% improved accuracy for HAM
10000 dataset based on DT classifier. Similarly, for the BCN 20000 dataset, the improvement
of MOWFS-AJS and FOWFS-AJS over CFS was found to be 7.77% and 7.75%, respectively,
with a lower number of features selected as ranked fused feature set based on DT classifier.

The performance based on NB classifier from Table 5 can be detailed as follows. The
observed improvements for HAM 10000 dataset of MOWFS-AJS and FOWFS-AJS over CFS
were found to be 3.1% and 3.3%, respectively with 1024 + 1024 and 1015 ranked feature
sets. Similarly, for the BCN 20000 dataset, the recorded improvements of MOWFS-AJS and
FOWFS-AJS over CFS were 6.27% and 6.47%. Additionally, it was seen that the number of
features selected for classification by FOWFS-AJS is only 998 features, which is much less
in comparison to both strategies.

Table 6 depicts the performance of all proposed feature fusion strategies based on the
MLP classifier. From this table, it can be seen that the FOWFS-AJS is outperformed over
the rest of the compared methods for both the datasets. The observed improvements for
HAM 10000 dataset of MOWFS-AJS and FOWFS-AJS over CFS were found to be 3.3% and
3.58%, respectively, with 512 and 975 features in ranked feature set. Similarly, for the BCN
20000 dataset, the recorded improvements of MOWFS-AJS and FOWFS-AJS over CFS are
5.49% and 5.57% with 512 + 1024 and 929 selected features from the ranked feature set.

Similarly, the performance based on the SVM classifier for both the datasets are
recorded in Table 7. From this table, we can see that the improvements for the HAM
10000 dataset of MOWFS-AJS and FOWFS-AJS over CFS was found to be 3.87% and 5.54%,
respectively with 512+1024 and 876 features in the ranked feature set. For the BCN 20000
dataset, the recorded improvements of MOWFS-AJS and FOWFS-AJS over CFS were 4.65%
and 6.32% with 512 and 899 selected features from the ranked feature set. From Table 5 to
Table 7, the FOWFS-AJS outperformed rest of the proposed feature fusion strategies with
respect to validation accuracy measured using NB, MLP, and SVM for both the skin lesion
datasets except the performance recorded using DT shows MOWFS-AJS better results in
comparison to other strategies (Table 4), but when compared with FOWFS-AJS, it has only
0.02% improved result for both the datasets.

The recognition performance of the three CNNs’ pre-trained models and the proposed
strategies, namely CFS, AWFS, MOWFS-GA, MOWFS-PSO, MOWFS-AJS, FOWFS-GA,
FOWFS-PSO, and FOWFS-AJS, are recorded in Tables 8 and 9 for HAM 10000 and BCN
20000 datasets, respectively, by measuring the accuracy, precision, sensitivity, and F1-score
based on all four classification algorithms. From both tables, it is observed that the SVM
shows better recognition performance and FOWFS-AJS is showing improved recognition
rate with respect to all the models considered for comparison.
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Table 8. Recognition performance with respect to CNNs’ pre-trained models, CFS, and feature fusion configurations for HAM 10000 dataset.

Classifiers Performance
Measures

CNN Pre-Trained Models

CFS

Feature Fusion Configurations

VGG16 EfficientNet B0 ResNet50 AWFS MOWFS-
GA

MOWFS-
PSO

MOWFS-
AJS

FOWFS-
GA

FOWFS-
PSO FOWFS-AJS

DT

Accuracy 0.9302 0.9321 0.9315 0.9412 0.9410 0.9411 0.9412 0.9424 0.9312 0.9412 0.9422

Precision 0.9100 0.9112 0.9187 0.9189 0.9128 0.9254 0.9288 0.9321 0.9124 0.9311 0.9318

Sensitivity 0.9125 0.9144 0.9128 0.9214 0.9311 0.9301 0.9299 0.9298 0.9388 0.9258 0.9301

F1-Score 0.9115 0.9132 0.9120 0.9199 0.9205 0.9289 0.9289 0.9298 0.9298 0.9299 0.9304

NB

Accuracy 0.9308 0.9302 0.9311 0.9332 0.9411 0.9421 0.9422 0.9428 0.9398 0.9438 0.9448

Precision 0.9104 0.9106 0.9111 0.9154 0.9128 0.9118 0.9187 0.9144 0.9218 0.9217 0.9288

Sensitivity 0.9114 0.9114 0.9125 0.9128 0.9177 0.9178 0.9188 0.9198 0.9189 0.9200 0.9202

F1-Score 0.9108 0.9110 0.9121 0.142 0.9135 0.9158 0.9187 0.9158 0.9199 0.9211 0.9245

MLP

Accuracy 0.9302 0.93 0.9342 0.9369 0.9550 0.9552 0.9558 0.9561 0.9349 0.9549 0.9569

Precision 0.9114 0.9115 0.9105 0.9200 0.9189 0.9344 0.9341 0.9358 0.9219 0.9347 0.9382

Sensitivity 0.9148 0.9198 0.9200 0.9258 0.9301 0.9289 0.9299 0.9351 0.9374 0.9387 0.9403

F1-Score 0.9151 0.9144 0.9184 0.9235 0.9215 0.9288 0.9306 0.9352 0.9254 0.9355 0.9389

SVM

Accuracy 0.9412 0.9341 0.9416 0.9477 0.9599 0.9611 0.9712 0.9612 0.9479 0.9679 0.9779

Precision 0.9204 0.9205 0.9345 0.9200 0.9301 0.9301 0.9289 0.9447 0.9321 0.9498 0.9524

Sensitivity 0.9200 0.9236 0.9124 0.9258 0.9256 0.9306 0.9401 0.9400 0.9389 0.9498 0.9499

F1-Score 0.9200 0.216 0.9205 0.9250 0.9289 0.9302 0.325 0.9411 0.9322 0.9497 0.9510
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Table 9. Recognition performance with respect to CNN’s pre-trained models, CFS, and feature fusion configurations for BCN 20000 dataset.

Classifiers Performance
Measures

CNN Pre-Trained Models

CFS

Feature Fusion Configurations

VGG16 EfficientNet B0 ResNet50 AWFS MOWFS-
GA

MOWFS-
PSO

MOWFS-
AJS

FOWFS-
GA

FOWFS-
PSO FOWFS-AJS

DT

Accuracy 0.9402 0.9461 0.9415 0.9512 0.9610 0.9611 0.9612 0.9624 0.9512 0.9612 0.9622

Precision 0.9348 0.9311 0.9321 0.9348 0.9410 0.9422 0.9148 0.9522 0.9432 0.9498 0.9509

Sensitivity 0.9218 0.9302 0.9109 0.9358 0.9389 0.9401 0.9487 0.9451 0.9422 0.9502 0.9511

F1-Score 0.9225 0.9310 0.9215 0.9250 0.9399 0.9410 0.9255 0.9458 0.9425 0.9500 0.9510

NB

Accuracy 0.9421 0.9402 0.9451 0.9532 0.9611 0.9621 0.9622 0.9628 0.9598 0.9638 0.9648

Precision 0.9215 0.9244 0.9348 0.9324 0.9422 0.9502 0.9248 0.9100 0.9458 0.9519 0.9588

Sensitivity 0.9257 0.9301 0.9108 0.9458 0.9109 0.9002 0.9315 0.9487 0.9518 0.9505 0.9522

F1-Score 0.9222 0.9241 0.9210 0.9344 0.324 0.9542 0.9268 0.9214 0.9461 0.9510 0.9544

MLP

Accuracy 0.9502 0.9538 0.9542 0.9569 0.9650 0.9652 0.9658 0.9661 0.9549 0.9649 0.9669

Precision 0.9325 0.9328 0.9212 0.9318 0.9458 0.9428 0.9478 0.9488 0.9498 0.9500 0.9582

Sensitivity 0.9388 0.9399 0.9458 0.9222 0.9331 0.9411 0.9501 0.9499 0.9502 0.9312 0.9401

F1-Score 0.9341 0.9349 0.9332 0.9288 0.9339 0.9412 0.9481 0.9492 0.9499 0.9514 0.9554

SVM

Accuracy 0.9522 0.9541 0.9546 0.9572 0.9599 0.9611 0.9712 0.9612 0.9579 0.9679 0.9779

Precision 0.9401 0.9388 0.9406 0.9399 0.9401 0.9402 0.9500 0.9502 0.9501 0.9515 0.9624

Sensitivity 0.9358 0.9412 0.9402 0.9388 0.9385 0.9366 0.9488 0.9412 0.9499 0.9489 0.9539

F1-Score 0.9366 0.9391 0.9404 0.9389 0.9390 0.9389 0.9489 0.9488 0.9488 0.9490 0.9568
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Further, a straightforward comparison was made considering the observed validation
accuracy of all the proposed feature fusion strategies for the combined or fused feature
sets and the feature sets obtained after ranking based on all four classifiers for both of the
datasets as given in Figure 6, Figure 7, Figure 8, Figure 9. The differences in validation
accuracy based on DT classifier for HAM 10000 and BCN 20000 datasets are represented
in Figure 6a,b respectively and from this figure, we can see the significant improvement
of MOWFS-AJS and FOWFS-AJS over the remaining six strategies and the MOWFS-AJS
performed better in this case of classification with 1.09% (fused feature set) and 2.91%
(ranked feature set) for HAM 10000 and 3.51% and 7.75% for BCN 20000 datasets. The
FOWFS-AJS showed better validation accuracy with respect to the rest of the proposed
strategies based on NB, MLP, and SVM classifiers. From Figure 7a,b, it can be seen that
FOWFS-AJS over CFS showed improvement of 1% (fused feature set) and 2% (ranked
feature set) and 3.24% (fused feature set) and 6.47% (ranked feature set) for HAM 10000 and
BCN 20000 datasets, respectively. Similarly, the accuracy recorded based on MLP and SVM
classifiers can be summarized as 1.34% (fused feature set),3.51% (ranked feature set), 2%
(fused feature set), 5.54% (ranked feature set) for HAM 10000 dataset (Figures 8a and 9a)
and 2.99% (fused feature set), 5.57% (ranked feature set) and 1.64% (fused feature set) and
6.35% (ranked feature set) for BNC dataset respectively (Figures 8b and 9b).

Figure 6. Comparison of validation accuracy for fused feature set and highest ranked feature set
using DT classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 7. Comparison of validation accuracy for fused feature set and highest ranked feature set
using NB classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.
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Figure 8. Comparison of validation accuracy for fused feature set and highest ranked feature set
using MLP classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 9. Comparison of validation accuracy for fused feature set and highest ranked feature set
using SVM classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Additionally, the area under the receiver operating characteristics curves (AUC-ROC)
were plotted to measure the performance and degree of separability amongst the proposed
three strategies AWFS, MOWFS-AJS, and FOWFS-AJS to describe how well the models are
capable of distinguishing between the classes which are represented in Figure 10, Figure 11,
Figure 12, Figure 13 for both datasets based on DT, NB, MLP, and SVM classifiers. From
Figure 10a,b, it is observed that FOWFS-AJS showed best accuracy performance with 90.9%
and 91.06% for HAM 10000 and BCN 20000 datasets, respectively. Similarly, the recorded
performance of the three remaining classifiers can be summarized as: based on NB classifier,
the best recorded performance of FOWFS-AJS was 92.84% and 93.21% for HAM 10000
and BCN 20000 datasets, respectively (Figure 11a,b); based on MLP, FOWFS-AJS showed
93.24% and 93.81% for HAM 10000 and BCN 20000 datasets, respectively (Figure 12a,b);
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and similarly, the SVM recorded a performance of FOWFS-AJS as 94.05% and 94.90%,
respectively, for HAM 10000 and BCN 20000 datasets (Figure 13a,b).

Figure 10. ROC using DT classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 11. ROC using NB classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Figure 12. ROC using MLP classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.
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Figure 13. ROC using SVM classifier for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

Finally, a computational comparison (in minutes) was made between the feature
acquisition time by the proposed deep feature fusion strategies and the mean of time taken
for classification algorithms to classify the skin lesson datasets with the updated feature
sets and is shown in Figure 14a,b for HAM 10000 and BCN 20000 datasets, respectively.
From those two figures, it is also evident that the proposed FOWFS-AJS comparatively
showed better performance with respect to both feature acquisition and classification time
for both the datasets.

Figure 14. Comparison of mean feature acquisition time vs. classification time of DT, NB, MLP, and
SVM classifiers for (a) HAM 10000 dataset and (b) BCN 20000 dataset.

4.5. Validation through Statistical Test

The experimental results were further analyzed using a non-parametric Friedman
statistical test [51,52] to determine whether or not there is a statistical difference observed
between the models or strategies experimented and compared. Here, this statistical test
was utilized to deal with the issue of comparison between all three pre-trained CNNs’
models and the proposed fusion strategies on both HAM 10000 and BCN 20000 datasets. To
analyze the performance of VGG16, EfficientNet B0, ResNet50, CFS, AWFS, MOWFS-GA,
MOWFS-PSO, MOWFS-AJS, FOWFS-GA, FOWFS-PSO, and FOWFS-AJS, the test was
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performed from the perspective of average ranking. This Friedman test, which is under the
null hypothesis, was computed as follows using Equation (8):

FMStat =
[

12
(N×k×(k+1)

]
×∑ R2 − [3× N × (k + 1)]

FMStat =
[

12
(N×k×(3+1)

]
×∑ 322 + 272 + 132 − [3× 12× (3 + 1)]

FMStat =
[

12
144

]
×∑×[1024 + 729 + 169]− 144

FMStat = [0.083× 1922]− 144 = 15.526

(8)

where FMStat, N, k, and R represent the statistical value, number of datasets, the number of
strategies used, and average ranking respectively. The statistical value FMStat is distributed
in line with the Fisherman distribution with (k− 1) and ((k− 1)()(T − 1)) degrees of
freedom. The result of this test is R = [21 21 18 16 12 10 4 8 14 6 2] and the calculated
FMStat = 19.7988. The critical value is 2.9782 under the significance level α = 0.05 for
N = 2 and k = 11; it is evident that the critical value is smaller than the observed values of
all FMStat on all evaluation metrics. This means that the null hypothesis on all evaluations
metrics is rejected under this test and the proposed FOWFS-AJS deep feature fusion strategy
achieves satisfactory performance on two datasets and eleven compared models.

4.6. Discussions on Key Findings

The key findings of this research are as follows. The performance of the transfer learn-
ing at the feature level based on the CNNs’ three pre-trained networks achieved optimal per-
formance faster than any other traditional feature selection models and the ensemble learn-
ing of features used to design the feature fusion models (for example, CFS) from the output
of those three pre-trained networks showed their good performance to design a robust
classifier for skin lesion datasets. From the experimentation, it was seen that only designing
a CFS model based on basic fusion strategy does not achieve better leverage, therefore the
weighted approach of selecting features and forming features sets through AWFS was ex-
perimented and shown to have better performance over CFS. Rather than only using feature
fusion, it was seen that the strategy for decision on feature fusion approach by utilizing the
AJS optimizer to identify the optimum point considering two special cases (active and pas-
sive) motions of this algorithm helped to find the best cost. In this study, two decision-based
feature fusion models, namely model-based and feature based strategies formed by adap-
tively choosing the optimal weights such as MOWFS-AJS and FOWFS-AJS have showed
their relatively good performance. The MSE of both model-based and feature-based strate-
gies are measured as cost f unction, where the measured MSE of the opted classification
model is taken as the cost and the weights (w1, w2 and w3) are taken as decision variables.
This total process was continued for 50 iterations to obtain optimized weights from all
three pre-trained models. Thus, the final ensemble of features was formed for test set
as
(
[w1]1×1 × FVGG16

)
,
(
[w2]1×1 × FE f f icientNet B0

)
,
(
[w3]1×1 × FResNet50

)
for model-based

strategy. The feature-based strategy focused on feature-based optimization of adaptively
chosen weights for formation of combined weighted feature set such as [w1]1×512 × FVGG16,
[w2]1×1024× FE f f icientNet B0 and [w3]1×1024× FResNet50 with total weights (512 + 1024 + 1024).
Then, the process of obtaining optimized weights is performed and finally it returns
512 + 1024 + 1024 optimized weights based on each feature and the combined feature set
is formed as [w1]1×512 × FVGG16, [w2]1×1024 × FE f f icientNet B0, [w3]1×1024 × FResNet50. Then,
features having weights > 0.5 were considered as best performing features and were
considered for final classification. The performance of the proposed deep feature fusion
strategies was evaluated based on each classification model and the proposed optimized
strategies were compared with GA and PSO, two widely used meta-heuristic optimization
techniques, through accuracy, precision, sensitivity, and F1-score. Finally, the Friedman
statistical test was performed to statistically validate the proposed strategies.
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The empirical evidence showed that choosing the weights of the pre-trained networks
adaptively in an optimized way gave a good starting point for initialization to mitigating
the chances of exploding or vanishing gradients, thus the performance of FOWFS-AJS
with SVM learning leveraged the existing network for both the skin lesion datasets and
the advantage of properly selecting rich and informative beneficial feature through this
feature-based optimized approach received better attention during the experimentation
and validation processes.

5. Conclusions

Visual inspection and manual examination of skin lesion images has been a burden to
the physicians and clinicians to detect melanoma. With the advancements of technology
and computational resources, academicians and researchers are trying to develop computa-
tional models and AI, ML, and DL have given a new direction to this area of research. In this
work, we tried to propose feature level fusion strategies by exploring the DL approaches
which in turn help for proper classification. An empirical study was attempted for design of
combined, weighted, and optimized strategies of feature selection by exploring the feature
fusion approach for classification of skin lesion image classification. The key advantages
of transfer learning through the CNNs’ pre-trained networks, fusion approach, selection
of features sets by adaptively choosing the weights (model based and feature based) with
a new meta-heuristic optimizer AJS was experimented for two skin lesion datasets and
then validated through four state-of-the art classifiers, namely DT, NB, MLP, and SVM. The
validations of the proposed strategies were performed based on classification accuracies,
precision, sensitivity, and F1-score, the difference between the validation accuracies and the
AUC-ROC curves were plotted. Extensive comparative studies and the computational time
taken for acquisition of features to form features along with statistical validations were
performed and the outcome of this empirical research led to conclude that in this exper-
imental setting, the feature sets generated through the proposed FOWFS-AJS leveraged
the SVM classifier to classify the HAM 10000 and BCN 20000 skin lesion datasets. This
work only explored three pre-trained networks and can be further experimented for few
more pre-trained networks to establish the capability of transfer learning. Further, this
research can be implemented for other domains of research and specifically, the decision
fusion approach can be further explored by utilizing many other upcoming meta-heuristic
optimization techniques and a few other skin lesion datasets can also be experimented.
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