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Simple Summary: Soft tissue sarcomas are uncommon and diverse solid tumors with high risks that
have a poor prognosis. Tumor microenvironment (TME) and hypoxia play critical roles in tumor
development. Therefore, we aimed to determine whether linking hypoxia-related parameters to TME
cells could improve prognosis and treatment outcomes. The Hypoxia-TME classifier was first proposed
by us using TCGA-SARC court (n = 258) and fusion data from GSE63157 and GSE30929 (n = 225). This
classifier is capable of correctly classifying patients based on their prognosis and immune type. In
addition, immunotherapy and chemotherapy programs were provided in a more specific manner.
Several key genes were identified for future research as a result of the classification results.

Abstract: Soft tissue sarcoma (STS) is one of the rarest but most aggressive cancer. It is important to
note that intratumoral hypoxia and tumor microenvironment (TME) infiltration play a significant role
in the growth and therapeutic resistance of STS. The goal of this study was therefore to determine
whether linking hypoxia-related parameters to TME cells could provide a more accurate prediction
of prognosis and therapeutic response. An analysis of 109 hypoxia-related genes and 64 TME cells
was conducted in STS. Hypoxia-TME classifier was constructed based on 6 hypoxia prognostic genes
and 8 TME cells. As a result, we evaluated the prognosis, tumor, and immune characteristics, as well
as the effectiveness of therapies in Hypoxia-TME-defined subgroups. The Lowplus group showed a
better prognosis and therapeutic response than any other subgroup. It is possible to unravel these
differences based on immune-related molecules and somatic mutations in tumors. Further validation
of Hypoxia-TME was done in an additional cohort of 225 STS patients. Additionally, we identified five
key genes through differential analysis and RT-qPCR, namely, ACSM5, WNT7B, CA9, MMP13, and
RAC3, which could be targeted for therapy. As a whole, the Hypoxia-TME classifier demonstrated a
pretreatment predictive value for prognosis and therapeutic outcome, providing new approaches to
therapy strategizing for patients.

Keywords: soft tissue sarcomas; hypoxia; tumor microenvironment; prognosis; therapy strategizing

1. Introduction

Soft tissue sarcomas (STS) are a diverse group of rare and highly aggressive solid
tumors that originate from mesenchymal tissue [1,2]. Approximately 1% to 2% of all new
adult cancers are caused by these diseases [3–5]. There is a 12- to 16-month survival rate
for patients with metastatic disease, and the two-year survival rate is approximately 30%.
The outcome for these patients has been poor despite the development of several novel
therapies or combinations of chemotherapy [3,6]. Consequently, STS remains a medical
need that needs to be addressed.
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It is important for STS that the tumor microenvironment (TME) is critical, including
the population of immune cells as well as nonimmune cells [7]. Considering that the TME
contains a variety of cells essential for antitumor immunity, studying cell composition could
provide not only prognostic information but also insight into immunotherapy efficacy [7–9].
Consequently, it is crucial to gain a better understanding of how TME composition relates
to tumor aggressiveness and therapy response. There are also many non-immune cells
within the TME, including stromal cells, that interact with cancer cells [7]. Therefore, we
proposed that a more global cellular landscape approach might be a more effective way to
predict prognosis and therapy.

As a general feature of TME, hypoxia can contribute to metastatic spread [10–13].
There is also an association between hypoxia and distant relapse in localized STS [14].
Animal sarcoma models with hypoxic cell populations exhibited reduced lung metastasis
after adjuvant administration of systemic agents [15–17]. In addition to influencing tumor
cells, hypoxia triggers a variety of events in TME and affects many TME surrounding cells as
well, which play a crucial role in tumorigenesis, promoting tumor aggression and inhibiting
antitumor responses [18–20], such as hypoxic cells that tend to switch to glycolytic metabolism,
resulting in higher lactate levels, which aggravates the acidification of immunosuppressive
TME [21]. Additionally, hypoxic microenvironments enhance immunosuppressive cell infiltra-
tion (e.g., M2 macrophages, myeloid-derived suppressor cells, regulatory T cells) [22–25].
The TME experiences high levels of hypoxia, which inhibits T cell-mediated immunity
strongly, and causes immune escape [26,27]. In addition, tumor tissues lack adequate levels
of intracellular H2O2 that hinder chemodynamic treatment [28]. Researchers have shown
that hypoxia-reactive drug delivery nanosets can promote cancer chemoimmunotherapy
by overcoming tumor immune tolerance induced by hypoxia [29]. In brief, a strong intratu-
moral Hypoxia-TME cell cross-interaction exists [30–32].

As far as we know, no study has reported combining hypoxia and a comprehensive
cellular landscape to examine the STS tumor microenvironment. A Hypoxia-TME signature
may improve clinical classification as well as therapeutic outcomes for patients with STS
considering the effects of hypoxia modifiers [33] and immunotherapy [34]. As a result, we
developed a Hypoxia-TME classifier for predicting prognosis and therapeutic response by
incorporating TME cells and hypoxia genes. Furthermore, we identified key differential
genes to indicate the direction of study into the TME/hypoxia relationship.

2. Materials and Methods
2.1. Date Source

Downloading of RNA sequencing profiles (TCGA TARGET GTEx cohort) was done
using the UCSC browser (http://xenabrowser.net/, accessed on 5 May 2022, Table S1).
A download of the clinical data from the TCGA-SARC cohort was conducted through
cBioPortal (http://www.cbioportal.org/, accessed on 21 October 2021, Table S2). Based
on the combination of expression data and clinical data, 258 STSs patients were identi-
fied with complete information. The TCGA-SARC cohort consisted of 104 patients with
leiomyosarcoma (LMS), 59 patients with dedifferentiated liposarcoma (DDLPS), 49 patients
with undifferentiated pleomorphic sarcoma (UPS), 25 patients with myxofibrosarcoma
(MFS), and 21 patients with other STS. We extracted RNA sequencing maps of 395 normal
soft tissues (adipose viscera (omentum), Table S3) in order to compare TCGA-SARC with
the GTEX cohort and to determine genes with aberrant expression in tumors. Using log2
(TPM + 1), the input TPM was transformed, and added 1 for each TPM value, to avoid
divergence. Moreover, we downloaded the gene expression profiling and clinical data of
Ewing sarcoma (GSE63157) and liposarcoma (GSE30929) to form the independent vali-
dation cohorts. We created an independent validation cohort consisting of 225 patients
by combining gene expression profiles (Table S4) and clinical data from GSE63157 and
GSE30929 (Table S5). A single-cell dataset of synovial sarcoma (GSM3770931) was collected
and analyzed (Table S6).

http://xenabrowser.net/
http://www.cbioportal.org/
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2.2. Identification of Hypoxia Genes and TME Cells Associated with Prognosis

From the KEGG pathway “hsa04066”, 109 hypoxia-related genes were identified
within the HIF-1 signaling pathway (Table S7) [35]. In order to analyze the tumor immune
microenvironment using transcriptomic data [36], the xCell score was calculated using the
xCell algorithm. On the basis of transcriptomes of all tumor samples collected, this method
calculates 64 types of TME cells, which outperforms all other approaches (Table S8) [37].
Univariate Cox regression analyses were performed on hypoxia-related genes and TME
cells to determine their prognosis. The final results of the analysis indicated that 6 hypoxia-
related genes and 8 TME cells were statistically significant predictors of prognosis in STSs.
Using the “glmnet” R package (Version 4.1-2), they were further entered into LASSO (least
absolute shrinkage and selection operator) Cox regression analysis to narrow down the
scope of gene selection. In addition, the risk score was calculated using the formula below:

Hypoxia score = ∑6
i Xi ∗ Yi (Xi : coe f f icients o f the gene i, Yi : expression values o f the gene i) (1)

TME score = ∑8
i Xi ∗ Yi (Xi : coe f f icients o f the TME cell i, Yi : expression values o f the TME cell i) (2)

2.3. Establishment of Hypoxia-TME Prognostic Model

According to the hypoxia classifier, TCGA-SARC cohorts were divided into high-risk
and low-risk groups. Similarly, based on the TME cell classification, TCGA-SARC cohorts
were also divided into high and low-risk groups. KM plots were used to demonstrate the
survival differences between high-risk and low-risk groups in the TCGA-SARC cohort.
A second external validation was undertaken using GSE63157 and GSE30929, which was
divided into similar groups based on the same critical point.

After that, hypoxia and TME scores were combined to create the Hypoxia-TME classifier.
Subgroups of tumors were then identified: Highplus (high hypoxia score/high TME score),
Middle (high hypoxia score/low TME score and low hypoxia score/high TME score) and Low-
plus (low hypoxia score/low TME score). The score was calculated using the formula below:

Hypoxia/TME Score =
(Hypoxia score + TME score )

2
(3)

Evaluation of prediction accuracy was conducted using the “timeROC” R package
(version 0.4). In addition, the COX regression analysis was performed on a multivariate
means of clinical characteristics, including age, gender, metastasis, and histological type,
to analyze the Hypoxia-TME risk model. An illustration of the predictive model was
presented by nomograms, followed by a calibration curve evaluation.

2.4. DEGs Analysis, Gene Set Enrichment Analysis, and Tumor SOMATIC mutation

Using the “limma” package in R, differentially expressed genes (DEGs) were analyzed.
With the help of the clusterProfiler R package (Version 4.0.4), we performed an enrichment
analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).
Using the “GSVA” (Version 1.40.1) and “gsease” (Version 1.54.0) R packages, 16 immune
cell infiltrations and 13 related functions were revealed. By using previously described
methods, we calculated each tumor’s tumor mutational burden (TMB) score [38].

2.5. Single-Cell Analysis and Chemotherapeutic Response Prediction

To cluster single cells, the Seurat R package version 1.4.0.1 was used (https://github.
com/satijalab/seurat, accessed on 5 May 2022). AUCell was used to calculate hypoxia and
immune pathway AUC scores in each cell [39].

The chemotherapeutic response for each group according to the largest publicly
available pharmacogenomics database [the Genomics of Drug Sensitivity in Cancer (GDSC),
https://www.cancerrxgene.org/, accessed on 25 October 2021]. In order to estimate half of
the maximum inhibitory concentration (IC50), the prediction process was implemented

https://github.com/satijalab/seurat
https://github.com/satijalab/seurat
https://www.cancerrxgene.org/
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using the R package “pRRophetic”. By using the GDSC training set, tenfold cross-validation
was conducted to determine the prediction accuracy [40,41].

2.6. Cell Culture and Cell Lines

Obtaining the human skin fibroblast cell line (HSF) and its culture media was ac-
complished by Fenghui Biotechnology Company of China (Hunan). It was provided by
the American Type Culture Collection (ATCC) that the human synovial sarcoma cell line
(SW-982) be used. We obtained cells from Procell Life Science & Technology Co., Ltd.
(Wuhan, China) that are derived from human liposarcoma (SW872). Cell lines for human
synovial sarcomas (hSS-005R) were created in Hunan Key Laboratory of Tumor Model
and Individualized Medicine. SYO-1 is a cell line provided by Massachusetts General
Hospital, Department of Surgical Oncology. Dulbecco’s modified Eagle medium (DMEM)
(Gibco, NY, USA) was used to culture SW-982, SW-872, hSS-005R, and SYO-1. 1% penicillin-
streptomycin (NCM Biotech. Suzhou, China) and fetal bovine serum (Gibco, NY, USA)
were added to the cell culture medium. Humidified incubators (Thermo Fisher Scientific.
Waltham, MA, USA) were used to maintain cells at 37 ◦C and 5% CO2.

2.7. Quantitative Real-Time PCR

Isolation of total cellular RNA was performed with RNA Express Total RNA Kit
(M050, NCM Biotech. Suzhou, China) [42]. RevertAid First Strand cDNA Synthesis Kit
(Thermo. Waltham, MA, USA) was used to reverse-transcribe the RNA. RT-qPCR was
performed on the StepOne Plus (Applied Biosystems. Waltham, MA, USA) by utilizing
SYBR Green qPCR Master Mix (2×) (Bimake. Houston, TX, USA). RT-qPCR was conducted
using lyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control gene. A
list of primers was given in Table 1.

Table 1. Sequences of the primers used in RT-qPCR.

Gene Sequence of Primer

GAPDH
F 1: CAGGAGGCATTGCTGATGAT

R 2: GAAGGCTGGGGCTCATTT

ACSM5
F: GGACAGGGACTGTGATGATTCC

R: CCCTTGGAGCTAGGGAGTCA

WNT7B
F: GAAGCAGGGCTACTACAACCA
R: CGGCCTCATTGTTATGCAGGT

RAC3
F: TCCCCACCGTTTTTGACAACT

R: GCACGAACATTCTCGAAGGAG

RA9
F: TTTGCCAGAGTTGACGAGGC

R: GCTCATAGGCACTGTTTTCTTCC

MMP13
F: ACTGAGAGGCTCCGAGAAATG

R: GAACCCCGCATCTTGGCTT
1 F: Forward primer; 2 R: Reversed primer.

2.8. Statistical Analysis

The data analysis was carried out using R (Version 4.2.1). To determine whether there
is a difference in gene expression between the two groups, Wilcoxon rank sum tests were
performed, and p values were determined for each gene. To analyze survival, the log-
rank test was performed along with the KM curve. Spearman’s correlation analysis was
conducted to examine gene expression in correlation with survival. Using Fisher’s exact
test, we compared clinical characteristics of two groups. With COX regression analysis,
multivariable factors were evaluated and hazard ratios are calculated with a 95% confidence
interval (CI). There were three statistically significant differences: * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001.
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3. Results
3.1. Identify Hypoxia and TME Differences between Tumor and Normal Tissues

An overview of the study is illustrated in Figure 1. A total of 109 hypoxia-related
genes were studied across STSs and normal tissues (TCGA-SARC and GTEx, Table S2).
A total of 65 genes were upregulated in STS patients, while 28 genes were downregulated
(Figure 2A). STRING’s database was used to create the protein-protein interaction (PPI)
network (Figure 2B). The analysis was used to integrate 94 differential genes (DEGs) into
the PPI network.
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Figure 2. Differentiate hypoxia/TME between normal and tumor tissues. (A) Heatmap of hypoxia-
related DEGs in normal and tumor tissues. (B) PPI network of 94 DEGs. (C) Differential analysis of
immune cells between normal tissues and tumors. (D) Difference analysis of immune function between
normal tissues and tumors. ns, p ≥ 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001.

Quantifying immunity cell infiltration and function signatures were achieved using
a ssGSEA algorithm. An analysis of 28 immune cell types infiltrating and their functions
from 258 SARC patients and 395 non-SARC controls was conducted. The immune cells of
normal and tumor tissues differed significantly, except mast cells (Figure 2C). A significant
difference was also observed between normal tissue and tumors in regard to all immune
functions (Figure 2D).
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3.2. Identify the Prognostic Value of Hypoxia and TME

In order to develop a method that could indicate the status of tumor hypoxic genes
and TME cells, 483 patients were studied. The training cohort consisted of 258 patients
(TCGA-SARC) while the test cohort consisted of 225 patients (GSE30929 and GSE63157).

Prognostic value analysis was performed on 109 hypoxia-related genes and 64 types of
TME cells for patients in the TCGA cohort. An analysis of the effect of 109 hypoxia genes on
prognosis was conducted using univariate Cox regression. We strictly screened seven genes
for further investigation based on p values less than 0.01. As a result of Lasso Cox regression
analysis, six hypoxia genes were identified, and a gene signature was constructed related
to hypoxia (Figure S1A,B). The hypoxia risk score can be calculated using the following
formula: Hypoxia risk score = (0.197549807928693×ENO1) + (−0.206747563778232×IL6R) +
(0.0989750992653028×PGK1) + (0.63033060010372×PLCG1) + (−0.243819387058076×PLCG2)
+ (−0.0215727172904993×PRKCB).

Similarly, 12 TME cells could be identified based on a univariate Cox analysis with a p-
value of 0.05. As a final step, the cellular features associated with TME were calculated by Lasso
analysis with 8 TME cells (Figure S1C,D). The formula for calculating TME risk score: TME risk
score = (−0.723923954×Chondrocytes) + (−27.61708633×CMP) + (−0.893613093×HSC)
+ (−0.068009607×iDC) + (−6.208938889×Macrophages M2) + (4.513782215×Neurons) +
(−2.560169253×NKT) + (1.677057993×Th1 cells).

We divided 258 patients with STSs into the low hypoxia risk group (n = 86) and the
high hypoxia risk group (n = 182) according to the best cut-off point of hypoxia score. Simi-
larly, we divided STSs patients into low TME risk group (n = 182) and high TME risk group
(n = 76) (Figure S2A,B). Principal component analysis (PCA) and t-distribution random
neighborhood embedding (t-sne) can clearly distinguish between the two groups by the
hypoxia classifier, as well as by the TME classifier (Figure S2C). A significant difference
in KM plots between high-risk score groups and low-risk score groups was observed in
both classifiers of the TCGA-SARC dataset. (p < 0.001, Figure 3A,D). Statistics show that
low-risk patients have a statistically longer survival time. For verifying the accuracy of
the hypoxia classifier and TME classifier, we calculated the risk score of GSE30929 and
GSE63157 obtained from the GEO database. PCA and t-SNE also illustrated the optimal
degree of discrimination between the two groups (Figure S2D). A significant reduction in
survival time was found in the groups with high hypoxia (p = 0.004, Figure 3B) and TME
risk (p = 0.013, Figure 3E). Furthermore, tumors with high hypoxia scores exhibited a signif-
icant increase in genes associated with the hypoxia pathway (Figure 3C). Similarly, tumors
with low TME risk had a significant increase in immune pathways (Figure 3E). A significant
contribution of this study is the analysis of single-cell data obtained from 12 synovial sar-
coma patients in order to verify the reliability and necessity of studying hypoxia and TME.
We began by analyzing the T-SNE and annotating the clusters (Figures 3G,H and S3C). It
was observed that hypoxia-causing genes are widely expressed in a wide variety of cells,
while hypoxia-reducing genes are only expressed in immune cells (Figures 3I and S3D).
Furthermore, AUCell results demonstrated that immune pathways are enriched where
immune cells are located, especially NK_cell (Figure 3J).
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Figure 3. The establishment and identification of hypoxia signatures and TME signatures. (A) KM
curve of hypoxia−related signature in training cohort. (B) KM curve of hypoxia−related signature in
testing cohort. (C) GSEA enrichment map of DEGs in hypoxia−related subgroups. (D) KM curve
of TME−related signature in training cohort. (E) KM curve of TME−related signature in testing
cohort. (F) GSEA enrichment map of DEGs in TME-related subgroups. (G–J) Single cell analysis of
GSM3770931 data.

3.3. Establishment of Hypoxia-TME Classifier

As a result of the above results, we considered whether the hypoxia score and TME
score could be combined to further subdivide STS. This is due to the fact that a more precise
subgroup classification can facilitate the discovery of mechanisms and the development
of effective medications. Around immune cells, immune pathways and genes that reduce
hypoxia risk were expressed. Additionally, the hypoxia route was enriched in the hypoxia
high-risk group, whereas the immunological pathway was enriched in the TME low-risk
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group. All of these suggest that combining them will have a greater impact on grouping.
Consequently, the Hypoxia-TME classifier combines the Hypoxia score with the TME score,
resulting in a three-part classification of patients: Highplus (high hypoxia score/high TME
score), Middle (high hypoxia score/low TME score, and low hypoxia score/high TME
score) and Lowplus (low hypoxia score/low TME score). Based on Hypoxia-TME classifier
results in TCGA-SARC cohorts (n = 258), a statistically significant difference was seen in
prognoses (p < 0.001, Figure 4A). We evaluated the model’s performance using the area
under the curve (AUC) of its time-dependent receive operating characteristic (ROC) curve
([AUC]: 1-year = 0.743, 3-year = 0.751, and 5-year = 0.744, Figure 4C). Our validation cohort
of GEO was also grouped in the same way to test Hypoxia-TME’s accuracy. Additionally,
we calculated the AUC and performed survival analysis. The KM curves among the three
groups were significantly different, and the survival time of the Lowplus subgroup was
significantly longer (p = 0.001, Figure 4B). AUCs were generally satisfactory ([AUC]:1-year
[AUC] = 0.692, 3-year = 0.644, 5-year = 0.635, Figure 4D). We added further analysis to the
Middle subgroup, and there is no significant difference between the high-hypoxia/low-
TME and low-hypoxia/high-TME subgroups (Figure S3A,B). Therefore, the follow-up
analysis was based on three subgroups.

We used the limma package to analyze differential transcriptional expression using
log2FC > 1 and p < 0.05. We compared these three groups on a pairwise basis. Our final
selection of differential genes came from the intersection of three sets, totaling 74 DEGs.
In this study, DEGs were combined with clinical features and represented by heatmaps
(Figure 4E). The Lowplus group showed high expression of most genes, indicating that
many of them were protective.

To identify possible hypoxia-TME-related pathways and mechanisms, we further ana-
lyzed these 74 DEGs using GO and KEGG enrichment analysis. Based on GO enrichment
analysis, we found that DEGs were mainly involved in the positive regulation of cell adhe-
sion (GO:0045785), external side of the plasma membrane (GO:0009897) and carbohydrate
binding (GO:0030246) (Figure 4F). In addition, KEGG showed significant enrichment in
DEGs in Viral protein interaction with cytokine and cytokine receptor, chemokine signaling
pathway, and complement and coagulation cascades (Figure 4G).

3.4. Mutation Analysis and Establishment of Hypoxia-TME Prognostic Model

An alluvial diagram illustrated the relationships among cluster distributions according
to the Hypoxia-TME classifier, hypoxia-related risk category, TME-related risk category,
and clinical features (Figure 5A). Hypoxia-TME subgroups were investigated to determine
whether they exhibited different tumor somatic alterations. Based on data from the TCGA-
SARC cohort, the top 20 variant mutations were identified (Figure 5C). It was found that 166
(70.64%) of 237 samples of sarcoma had mutations and that TP53 was the most commonly
mutated gene (37%). In comparison with the other two subgroups, mutations in the
Highplus subgroup were significantly higher. Tumor mutation burden were significantly
associated with increased Hypoxia-TME-related risk score (R = 0.02, p = 0.0026, Figure 5B).
We further analyzed the mutations in the Highplus and Lowplus subgroups, in which
COL5A3, TNR and MUC16 had significant mutational differences (Figures 5D and S3G).
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**, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001.
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Figure 5. Analyzing Hypoxia-TME information to establish a prognosis model. (A) Alluvial diagram
illustrating the relationship of Hypoxia/TME-based cluster distribution, different hypoxia and TME
risk subgroups and clinical characteristics. (B) Relationship between somatic mutation and risk score
in training cohort. (C) The somatic mutation frequency of three risk groups in TCGA-SARC cohort.
(D) Significantly different mutant genes between the Highplus and Lowplus groups. (E) Nomogram
predicting 3-year and 5-year survival rates of STS patients. (F) Calibration curve for predicting OS
rate of STS patients. ns, p ≥ 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001.

As part of the evaluation factors, the risk system was included as part of an attempt to
further study the potential value of its clinical application. The prognostic model was fur-
ther enhanced using multivariate Cox regression analysis, which combined clinical features
and the Hypoxia-TME risk system. Because the Hypoxia-TME model was established, we
intuitively developed this new clear nomogram, which is complementary to the model and
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has clinical utility. (Figure 5E). Based on nomogram calibration, it has been shown that
3-year and 5-year OS rates are reasonably well predicted (Figure 5F).

3.5. Subgroups of Hypoxia-TME Display Distinct Immune Responses

Further investigation of immune response genes in different subgroups was then
conducted from several perspectives: major histocompatibility complex (MHC), inhibitory
immune markers (IIM), activation immune markers (AIM), anti-inflammatory markers,
and pH regulation marker (Figures 6 and S3E,F). In the Highplus subgroup, we observed
significant decreases in the expression of all MHC, most AIM (except CD70), and all IIM
compared with the Lowplus subgroup. It was also noteworthy that there was a significant
gradient between the three subgroups in most of these genes (HLA-B, HLA-C, HLA-F,
HLC-DOB, CD27, CD40, CD226, and BTN3A1). All three subgroups expressed significantly
different levels of IL-10 (anti-inflammatory gene). The Highplus subgroup demonstrated a
lower expression of IL-10 than the other two subgroups. Additionally, CA9 expression was
found to be significantly higher in the Highplus subgroup, which regulates pH.
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Aside from analyzing immune response genes, we also examined immune cells and
functions. By analyzing immune infiltration and function by ssGSEA, we compared the
immune activity of three subgroups. The results indicated that there were significant
differences between the three subgroups in most immune cells (except aDCs) and immune
functions of the TCGA-SARC cohort (Figure 7A,B). An analysis of the test cohort dataset
(n = 225) was also conducted to determine immune activity. Consistent with the results of
the training cohort (Figure 7D,E). Moreover, we looked at how immune cells are related to
risk scores (Figure S4). Whether in the train set or the test set, as a result of the validation
of immune status using ESTIMATE, ImmuneScore, StromalScore, and ESTIMATEScore
were significantly lower in the Highplus subgroup samples as compared to the Lowplus
subgroup samples (Figure 7C,F)
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Figure 7. Subgroups of Hypoxia-TME display distinct immune responses and immune/chemotherapy
sensitivity. (A,D) Comparative analysis of immune cells and immune functions in three different
training risk groups. (B,E) Comparative analysis of immune cells and immune functions in three
different testing risk groups (C) Analyze the immune status of each subgroup in the training set using
ESTIMATE. (F) Analyze the immune status of each subgroup in the testing set using ESTIMATE.
(G) Drugs that are highly effective for the Highplus group. (H) Drugs that are highly effective for the
Lowplus group. ns, p ≥ 0.05; *, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001.

3.6. Treatment Response Prediction with Hypoxia-TME

Considering the excellent grouping results above, it is important to determine treat-
ment methods for each subgroup. In view of the fact that immune/chemotherapy is a
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common treatment for STS, we evaluated the response of three Hypoxia-TME-related risk
subtypes to drugs. Based on a 10-fold cross-validation analysis of the GDSC cell line dataset,
we trained a predictive model using ridge regression with satisfactory predictive accuracy.
According to our results, traditional chemotherapy drugs generally have good efficacy in
the Highplus subgroup, while immunotherapy has a greater possibility in the Lowplus
subgroup. A total of 10 drugs were screened for the Highplus and Lowplus subgroups
(Figure 7G,H). The Highplus subgroup was effectively treated with five of these drugs
(Figure 7G, p < 0.05, Camptothecin, Cisplatin, Cytarabine, Docetaxel, and Doxorubicin).
Subgroup Lowplus responded well to five other drugs (Figure 7H, p < 0.05, Bleomycin,
Erlotinib, Gefitinib, Lapatinib, and Rapamycin).

3.7. Differences in Gene Expression within Subgroups and the Identification of Key Genes

The previous analysis identified 74 DEGs in the three subgroups. Based on a prog-
nostic analysis using a 0.05 p-value, 33 DEGs with prognostic significance were identified
(Figure 8A). A significant difference was found between tumor and normal tissue expres-
sion levels of these 33 genes (Figure 8B). The WNT7B, RAC3, CA9, RAB3B, DLX2, and
MMP13 genes all had a significantly increased expression in tumors and were significantly
associated with poor prognoses. In addition, a significant overexpression of ACSM5 was
observed in tumors, and it was protective of prognosis.
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Figure 8. Identification of key DEGs. (A) Forest map of prognostic-related DEGs. (B) Heatmap
of differential gene expression related to prognosis in normal tissues and tumors (C) Validation
of ACSM5, WNT7B, RAC3, CA9, and MMP13 expression in cell lines by using RT-qPCR. (D) KM
curves of TCGA-SARC patients divided by ACSM5, WNT7B, RAC3, CA9, and MMP13. ns, p ≥ 0.05;
*, 0.01 ≤ p < 0.05; **, 0.001 ≤ p < 0.01; ***, 0.0001 ≤ p < 0.001; **** p < 0.0001.
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Quantitative RT-PCR was used to analyze these genes, and ACSM5, WNT7B, RAC3,
CA9, and MMP13 were all consistent with the data (Figure 8C). According to our pan-cancer
analysis, these five genes differ significantly in most tumors (Figure S5A–E). Finally, we
tested the layering effect of the five genes using TIMER2.0. Segmentation points were based
on the median gene expression. Each gene stratification resulted in significant differences
(Figure 8D).

4. Discussion

Researchers are gaining a deeper understanding of hypoxia and TME in relation to the
prognosis and treatment of cancer patients due to an explosion of research [18,43]. There
are significant differences between normal tissues and tumors in hypoxia genes and TME
cells, according to our results. Despite this, few studies had integrated hypoxia and TME
signatures for predicting prognosis and treatment outcomes. Using the Hypoxia-TME
classifier, we systematically assessed the prognostic and therapeutic value of hypoxic TME
in large STS cohorts.

The first step was to establish the hypoxia signatures and TME signatures. For hypoxia
signature, a protective role for prognosis is played by the hypoxia genes IL6R, PLCG2,
and PRKCB. In single cell analysis, these three genes showed a high expression only in
immune cells, supporting the hypothesis that the infiltration of immune cells benefited the
patient’s prognosis. PRKCB is a regulator of angiogenesis in the hypoxia signature genes [44],
which demonstrates the important role of angiogenesis in tumorigenesis development. The
strong correlation between the regulation of angiogenesis-related factors and immune
cells also improves the strong evidence for the subsequent analysis of TME. However,
many angiogenesis-related genes have not been included in the hypoxic signature, and it
is worthwhile to investigate the relationship between these genes and TME as one of the
future research directions. A favorable role was played by Chondrocytes, CMP, HSC, iDC,
Macrophages M2 and NKT cells among the eight TME cell types in the STS cohorts studied.
In addition to lymphocytes and myeloid cells, nonimmune cells within tumors were also
considered prognostic, providing further support for our hypothesis that nonimmune cells
also influence cancer prognosis. For external verification, we compared the performance of
the two classifiers using fusion data from GSE63157 and GSE30929. Furthermore, GSEA
results revealed significant enriched hypoxia-related pathways in the high hypoxia risk
group, and enriched immune response-related pathways in the low TME risk group.

We then constructed a classifier using Hypoxia/TME, which produces good results
both in training and testing. In three subgroups, 74 DEGs were identified, with the majority
expressed at a high level in the Highplus subgroup. The mutational status of subgroups
was also studied. According to our analysis, the gene mutations in the Highplus subgroup
were significantly higher, and their correlation with the risk score proved our classification
system to be superior. COL5A3, TNR and MUC16 have significant mutational differences
between the Highplus and Lowplus subgroups. These three genes encode proteins that are
inextricably linked to the extracellular matrix; COL5A3 is involved in encoding a fibrillar
collagen molecule [45], TNR encodes a member of the tenascin family of extracellular
matrix glycoproteins [46], and MUC16 encodes a protein belonging to the mucin fam-
ily [47]. Meanwhile, the extracellular matrix is an acidic hypoxic environment. The results
suggest that the causal link between gene mutations and hypoxia in the sarcoma can be
explained by the intrinsic mechanism of these three mutated genes. Additionally, using
a combination of hypoxia/TME risk grouping, we have developed a clinical prediction
model. The significance of risk grouping as a prognostic factor demonstrated that we could
apply our grouping in the clinic.

A further finding revealed that both activating and inhibitory immune markers were
exceptionally high in the Lowplus group. Based on the result, an improved antitumor
immune response is likely to be restored in Lowplus patients through immune checkpoint
blockade. Consequently, the Hypoxia-TME classifier might be applied to cancer patients
stratified before immunotherapy. A statistically higher CA9 expression in the Highplus
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subgroup can also be attributed to an acidic extracellular milieu, which might contribute
to poor tumor differentiation and development as well as increased tumor growth [48,49].
A further demonstration of the classifier’s prediction ability was provided. We also evalu-
ated the immune infiltration status in the training cohort and the testing cohort. There is a
significant increase in immune cell infiltration and immune score in the Lowplus group,
which indicates that our classifier has a comprehensive discrimination ability. To determine
which subgroups are more responsive to treatment, we evaluated the responses of the three
subgroups. The Lowplus group exhibited greater efficacy with drugs such as Bleomycin,
Erlotinib, Gefitinib, Lapatinib, and Rapamycin, while the Highplus group displayed greater
efficacy with drugs such as Camptothecin, Cisplatin, Cytarabine, Docetaxel, and Doxoru-
bicin. The main reasons for different drug sensitivity of tumors include the genomic drivers,
immune system and TME [50]. Our grouping was based on hypoxia and TME, and there
were significant differences in gene mutation among subgroups. Birkbak NJ et al. found
that mutations in the BRCA gene resulted in defective DNA repair and thus predicted
susceptibility to DNA damaging agents; and they also found that accumulation of allelic
imbalance was a marker of platinum sensitivity marker [51]. Our results suggest that the
higher sensitivity to DNA-damaging drugs in the high mutation group (Highplus) may
also be due to mutations in certain genes, and the three genes (COL5A3, TNR and MUC16)
we identified may be related to potential mechanisms of drug sensitivity. As a result of
our grouping, patients’ prognoses can be evaluated, and their precise treatment can also
be facilitated.

In order to further analyze the mechanism, we searched for the key genes that differed
between the three subgroups. Based on 74 DEGs, 33 genes were screened for prognostic
potential. A significant difference was found between the expression of 33 prognosis-related
genes in normal tissues and tumors. Seven genes showed expression differences that were
consistent with the prognosis. In our RT-qPCR analysis, ACSM5, WNT7B, CA9, MMP13,
and RAC3 showed a consistent trend, indicating that our classification accuracy was high.
Based on the median expression of these five genes, we found that the prognosis results
were significantly different, which further explained the importance of these five genes in
the three subgroup differences. Studies have shown that WNT7B, CA9, MMP13, and RAC3
are associated with poor outcomes in sarcomas. In human OS, Wnt inhibitory factor 1 (WIF1)
is epigenetically silenced while Wnt target genes are amplified [52–54]. Molecular pathways
downstream of Wnt ligands play a critical role in tumorigenesis and are evolutionarily
conserved, and Wnt signaling and Loxl2 promote aggressive osteosarcoma [55]. It has
been suggested that CA9 may be used as an intrinsic marker of hypoxia in patients with
deep, large, and high-grade STS, which may lead to a poor prognosis [56]. However, it
needs to be determined whether CA9 is an independent prognostic factor in STS by larger
studies. Several studies have shown that osteosarcomas with high MMP13 expression
have poor outcomes [57,58]. Recently, researchers found that mutations that activate RAC
GTPases were therefore detected at a low frequency in a variety of human cancers [59]. Even
though ACSM5 is rarely studied in STS, it also points the way forward. Four other cancer-
promoting factors may be potential therapeutic targets and research genes in the future.

In our study, we acknowledge that there are some limitations. As an initial step, we
need to confirm Hypoxia-TME signatures in tumor samples (biopsies) using immunofluo-
rescence or flow cytometry. The second step is to perform an in-house cohort evaluation to
further test the performance of the classifier due to the limitations of public datasets.

5. Conclusions

To summarize, displaying the hypoxia and cellular signatures within tumor microen-
vironments can help to predict prognoses. The classifier also identifies the sensitivity of
drugs in STS, so patients will avoid unnecessary side effects associated with medication.
The established nomogram can also improve clinicians’ ability to accurately predict STS
patients’ fate, thereby offering them clinical strategies. Furthermore, we have identified
key genes that will be very useful in exploring future mechanisms and researching future
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directions. In order to uncover the pathways in which these genes function, further research
and validation are required.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14225675/s1, Figure S1. (A) LASSO regression analysis of hypoxia-related genes.
(B) Cross-validation method to select optimal genes. (C) LASSO regression analysis of TME cells.
(D) Cross-validation method to select optimal TME cells. Figure S2. (A,B) The establishment and
identification of hypoxia signatures. (C,D) The establishment and identification of TME signatures.
Figure S3. (A) KM curve of high-hypoxia /low-TME and low-hypoxia/high-TME subgroups in
training cohort. (B) KM curve of high-hypoxia /low-TME and low-hypoxia/high-TME subgroups in
testing cohort. (C) Identification of marker genes in single cells. (D) Expression of hypoxia signature
genes in single cells. (E,F) Relationship between risk score and immune checkpoint. (G) Mutations
in COL5A3, TNR and MUC16 in Highplus and Lowplus subgroups. Figure S4. (A–N) Assess the
relationship between risk score and immune cells. Figure S5. (A–E) Expression analysis of ACSM5,
WNT7B, RAC3, CA9 and MMP13 in Pan-cancer. Table S1. RNA sequence data of TCGA-SARC cohort.
Table S2. Clinical data of TCGA-SARC cohort. Table S3. RNA sequence data of normal soft tissues.
Table S4. RNA sequence data of GSE63157 and GSE30929. Table S5. Survival data from GSE63157
and GSE30929. Table S6. The single-cell dataset of GSM3770931. Table S7. 109 hypoxia-related genes.
Table S8. 64 types of TME cells.
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