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Simple Summary: Identification of tumor cell surface targets is vital for chimeric antigen receptor-
T cell (CAR-T) therapies and antibody drug conjugates (ADCs). This study utilized the Cancer
Genome Atlas (TCGA) database to perform a series of conditional screenings of tumor-specific surface
proteins. Accordingly, we found a tumor tissue-specific gene set associated with the survival of cancer
patients. Furthermore, these tumor-specific surface proteins can function to render the ability of
tumor cells to metastasize. Correlation analysis revealed that these overexpressed membrane proteins
were positively correlated, which suggests they maybe potential dual-drug targets. Our findings
reveal the significance of tumor cell surface targets in CAR-T- and ADC-related drug development.

Abstract: Tumor cells can be recognized through tumor surface antigens by immune cells and
antibodies, which therefore can be used as drug targets for chimeric antigen receptor-T (CAR-T)
therapies and antibody drug conjugates (ADCs). In this study, we aimed to identify novel tumor-
specific antigens as targets for more effective and safer CAR-T cell therapies and ADCs. Here, we
performed differential expression analysis of pan-cancer data obtained from the Cancer Genome
Atlas (TCGA), and then performed a series of conditional screenings including Cox regression
analysis, Pearson correlation analysis, and risk-score calculation to find tumor-specific cell membrane
genes. A tumor tissue-specific and highly expressed gene set containing 3919 genes from 17 cancer
types was obtained. Moreover, the prognostic roles of these genes and the functions of these highly
expressed membrane proteins were assessed. Notably, 427, 584, 431 and 578 genes were identified
as risk factors for LIHC, KIRC, UCEC, and KIRP, respectively. Functional enrichment analysis
indicated that these tumor-specific surface proteins might confer tumor cells the ability to invade
and metastasize. Furthermore, correlation analysis displayed that most overexpressed membrane
proteins were positively correlated to each other. In addition, 371 target membrane protein-coding
genes were sifted out by excluding proteins expressed in normal tissues. Apart from the identification
of well-validated genes such as GPC3, MSLN and EGFR in the literature, we further confirmed
the differential protein expression of 23 proteins: ADD2, DEF6, DOK3, ENO2, FMNL1, MICALL2,
PARVG, PSTPIP1, FERMT1, PLEK2, CD109, GNG4, MAPT, OSBPL3, PLXNA1, ROBO1, SLC16A3,
SLC26A6, SRGAP2, and TMEM65 in four types of tumors. In summary, our findings reveal novel
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tumor-specific antigens, which could be potentially used for next-generation CAR-T cell therapies
and ADC discovery.

Keywords: pan-cancer analysis; tumor-specific antigens (TSAs); chimeric antigen receptor-T (CAR-T)
cell; antibody drug conjugates (ADCs)

1. Introduction

Cancer is the second leading cause of death all over the world with 9.96 million deaths
every year [1]. Although tumor cells can be recognized and eliminated by immune surveil-
lance, the immune system may lose efficacy due to the immune suppressive environment
induced by tumor cells by altered gene expression, such as mutations and copy number
variations [2,3]. The specific proteins encoded by these altered genes expressed on the
surface of the tumor cells can shield the tumor cells to evade immune system clearance [4,5].
On the other hand, these tumor specific membrane proteins can be used as drug targets
for cancer immunotherapy [6,7], which reactivates the anti-tumor immune response to
eradicate tumors.

Nowadays, cancer immunotherapies. such as immune checkpoint blocking therapy
(ICB) have been introduced into multiple lines of cancer treatment with great success [8].
Recently, two targeted immune-related therapeutic approaches based on tumor surface
antigens (TSAs) have emerged in the cancer immunotherapy research field. The first ap-
proach use the antibody drug conjugates (ADCs), a drug class represented by attaching
3–8 molecules of a potent cytotoxic agent to a monoclonal antibody, which targets specific
TSAs [9]. The second approach is the chimeric antigen receptor-T (CAR-T) cell therapy [10].
During the T cell engineering process, the expanded T lymphocytes are modified to recog-
nize specific tumor-associated antigens and then transferred back into the cancer patients
to eradicate the tumor cells [11]. Current CAR-T therapies mainly focus on CD19 [12],
CD20 [13], BCMA [14], MUC1 [15], GD2 [16], CSPG4 [17], HER2 [18], EGFR [19], FAP [20]
etc., and have achieved great success in pre-clinical assays or clinical applications. How-
ever, there are still many limitations in current TSA-based immunotherapies for tumors,
particularly solid tumors [21]. It is mostly due to the lack of specific TSAs (unlike the sce-
narios in hematologic malignancies, which have specific and well-validated TSAs) [22,23]
or heterogenous TSA expression in solid tumors [24,25]. Another major challenge of TSA-
based immunotherapies is the “on-target, off-tumor toxicity” effects [26]. Thus, it is quite
crucial to identify specific TSAs that are abundantly expressed in tumor cells and less or
not expressed in normal tissue cells, to limit the potential toxic and adverse effects.

Here, we exploited the publicly available Cancer Genome Atlas (TCGA) databases
to identify specific TSAs in various cancer types. Firstly, we identified highly expressed
genes present on the tumor cell surface. Secondly, we performed a survival analysis to
select genes that were significantly associated with survival outcomes in cancer patients.
In addition, we analyzed the function and correlation of these genes and the prognostic
value of the correlated genes with survival rates of cancer patients. To sum up, our work
identified specific TSAs that might serve as useful targets for CAR-T cell therapies, ADCs,
or co-targeting strategies for the treatment of solid tumors.

2. Materials and Methods
2.1. Data Source
2.1.1. TCGA

Gene expression of 17 types of tumor samples were collected from TCGA on the Uni-
versity of California Santa Cruz (UCSC) Xena website (https://xenabrowser.net/ (accessed
on 1 September 2020)) in fragments per kilobase million (FPKM) (See Table 1 for detailed
sample numbers). Human membrane protein information was obtained from the databases:
Membranome (https://membranome.org/ (accessed on 1 September 2020)) [27,28] and
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Uniprot (https://www.uniprot.org/ (accessed on 1 September 2020)) [29]. Human im-
mune cell biomarkers were obtained from the database: CellMarker, and the membrane
proteins on the immune cells were excluded [30]. The RNA expression data of 54 human
normal tissues were obtained from the GTEx (Genotype–Tissue Expression) project data
set (V8 release) [31].

Table 1. The numbers of tumor and normal samples used in the study.

Cancer Type Abbreviation

TCGA CPTAC

Tumor
Sample

Normal
Sample

Tumor
Sample

Normal
Sample PDC Study ID

Bladder urothelial carcinoma BLCA 411 19
Breast invasive carcinoma BRCA 1104 113 133 18 PDC000120

Colon adenocarcinoma COAD 471 41 95 100 PDC000116
Cholangiocarcinoma CHOL 36 9

Esophageal carcinoma ESCA 162 11
Head and neck squamous cell

carcinoma HNSC 502 44

Kidney chromophobe KICH 65 24
Kidney renal clear cell

carcinoma KIRC 535 72 110 84 PDC000127

Kidney renal papillary cell
carcinoma KIRP 289 32

Liver hepatocellular
carcinoma LIHC 374 50 165 165 PDC000198

Lung adenocarcinoma LUAD 526 59 113 102 PDC000153
Lung squamous cell carcinoma LUSC 501 49 110 104 PDC000224

Prostate adenocarcinoma PRAD 499 52
Rectum adenocarcinoma READ 167 10
Stomach adenocarcinoma STAD 375 32

Thyroid carcinoma THCA 510 58
Uterine corpus endometrial

carcinoma UCEC 548 35 100 49 PDC000125

2.1.2. CPTAC (Clinical Proteomic Tumor Analysis Consortium)

The protein expression abundance data of a total of 7 types of cancer tissues were
obtained from the CPTAC database. The detailed cancer types and sample numbers are
shown in Table 1.

2.2. Differential Expression Analysis
2.2.1. TCGA

A rank-sum test was used to analyze the differential expression of membrane protein-
coding genes between tumor and normal samples. A threshold of Log2FoldChange
(Log2FC) was greater than 1.00 and the adjusted p value was less than 0.01.

2.2.2. CPTAC

Taking into account the missing values of protein abundance in the CPTAC data, we
first deleted genes whose expression was missing in more than 10% of samples of the tumor
(i.e., if there are 100 samples for tumor A, and the expression of gene 1 is missing in more
than 10 samples, we deleted the gene), and then filtered the missing values through the
K-nearest neighbor method (k = 10). Finally, the relative normalized protein expression
abundance profiles of 7 cancers were obtained. Since the protein abundance levels were
normalized and log transformed, the difference in the expression abundance was calculated
as the abundance in the tumor tissue minus the abundance in the normal tissue via the
rank-sum test.

https://www.uniprot.org/
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2.3. Enrichment Analysis

A hypergeometric test was used to analyze the enrichment relationship between high-
expression and high-risk membrane protein-coding genes in the tumor tissues according to
the ten cancer hallmarks [32].

2.4. Survival Analysis
2.4.1. Log-Rank Test

The tumor patients were divided into a high-expression group and a low-expression
group by the mean value of membrane protein expression. A log-rank test was used to com-
pare the survival rates of these two groups of patients using the R package “Survfit” [33].

2.4.2. Multivariate/Univariate Cox Regression

Multivariate Cox regression was used to analyze the impact of membrane protein
pairwise combinations on the survival rates of the cancer patients. Hazard ratios (HR) of
each membrane protein based on the expression levels of the protein in the sample and
the prognostic information of the patient were analyzed through univariate cox regression.
Among them, the genes with HR > 1.00 were considered to be poor prognostic factors for
the cancer patients.

2.5. Risk-Score System Establishment

Each gene score was constructed as the selected gene expression level (exp) multiplied
by its regression coefficient (β) obtained from the univariate Cox regression model. Each
patient’s prognostic risk-score was calculated as the sum of two gene scores; the formula is
as follows [34,35]:

Risk score = expgene1 ∗ βgene1 + expgene2 ∗ βgene2 (1)

Based on this formula, the risk-score of each sample was calculated (Table S2). Accord-
ing to the median risk-score, the patients were divided into a high-risk or low-risk group.
The prognostic differences of these two groups were calculated by a log-rank test.

2.6. Correlation Analysis

We analyzed the correlation between every two membrane proteins by Pearson corre-
lation. The visualization process was depicted using the R package “corrplot”.

3. Results
3.1. Identification of Up-Regulated Tumor Cell Membrane Proteins

To analyze the TSAs in tumor tissues, we first identified the membrane protein-coding
genes with up-regulated expression levels through a series of pan-cancer screenings. Firstly,
the expression profiles of mRNA were obtained from the TCGA database by excluding the
data from the cancer types with less than three normal controls (Figure 1A). Secondly, we
further selected the tumor cell membrane-coding genes by intersecting the filtered immune
cell markers genes and the cell membrane protein-coding genes (Figure 1B). Finally, we
examined the potential utility of these membrane genes as drug targets (Figure 1C).

In the first step of the analysis, we found that 3919 membrane proteins were differ-
entially expressed in most tumor samples, compared with their corresponding adjacent
normal tissues (Figures 2A and S1). Specifically, we found that the number of up-regulated
membrane proteins was larger than that of the down-regulated genes in the 17 cancer types,
such as cholangiocarcinoma (CHOL) (up vs. down: 1117:166), stomach adenocarcinoma
(STAD) (up vs. down: 252:198), head and neck squamous cell carcinoma (HNSC) (up vs.
down: 357:261), kidney renal clear cell carcinoma (KIRC) (up vs. down: 717:427), liver hep-
atocellular carcinoma (LIHC) (up vs. down: 684:109), lung adenocarcinoma (LUAD) (up vs.
down: 478:304) and esophageal carcinoma (ESCA) (up vs. down: 96:78) (Figures 2B and S1).
We further illustrated a heatmap to demonstrate the up-regulated membrane proteins in
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tumor tissues (Figure 2A). Furthermore, a volcano plot shows the differential expression of
these target membrane protein-coding genes, which are listed in Table 2.

3.2. Most Highly Expressed Membrane Protein-Coding Genes Could Serve as Risk Factors for
Cancer Patients

To further explore the impact of these highly expressed membrane proteins of the
tumor tissues on the prognosis of the tumor patients, Cox risk regression analysis of these
genes was applied to the patients from TCGA (Table S1). Additionally, we found that most
of these membrane proteins were risk factors for tumors. To be specific, 427, 584, 431 and
578 genes were identified as risk factors for LIHC, KIRC, UCEC (uterine corpus endometrial
carcinoma), and kidney renal papillary cell carcinoma (KIRP), respectively (Figure 2C). The
detailed prognostic values of the membrane proteins have been summarized for further
verification in Table S1. To confirm the reliability of the previous analysis, we searched
for whether these target proteins are currently used in TSA-based therapy with solid
evidence and found that most membrane proteins we identified were consistent with the
published data (Table 3). Furthermore, these tumor cell membrane proteins were either
highly expressed in tumors or prognostic risk factors for tumor patients. Furthermore,
some of them have been proven to be drug targets in solid tumors, such as GPC3 in liver
cancer [36], MSLN in gastric cancer, and EGFR in glioma (Figure 2D).
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from the TCGA database. (B) Thresholds were set to screen the expression profile of membrane
proteins (C) Visual analysis was used to evaluate the potential functions of the target genes.
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Table 2. The surface proteins with high-expression and high-risk in various cancer types. 
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BLCA CHRNA1, DRD5, HCN2, LRP8, RAC3, SLC1A6 6 
BRCA FIBCD1, MAFA, PCDHA1, RGS9BP, SEZ6, ULBP2 6 

Figure 2. Tumor-specific high-expression and high-risk surface proteins in TCGA tumor tissues.
(A) Heatmap plot displays the differential expression analysis of the tumor tissue-specific highly
expressed membrane proteins. A FC > 2, and the adjusted p value less than 0.01 is considered
statistically significant. (B) Membrane proteins displayed poor prognosis in cancer patients. A HR > 1,
and the adjusted p value less than 0.01 was considered statistically significant. (C) Stacked bar blot
showed the categories of 3919 membrane proteins: up-regulation (up), down-regulation (down), no
change significance (not), and missing data (NaN). (D) The color block diagram shows the FC and
HR of the target proteins, all colored squares are statistically significant.

3.3. Function Enrichment Analysis of the Selected Membrane Proteins

To gain deeper insight into the potential functions of these selected membrane proteins,
we comprehensively analyzed their functions according to the ten cancer hallmarks, such
as invasion and metastasis, etc. [59]. Membrane proteins with higher expression used for
functional enrichment analysis are detailed in Table 2. Hypergeometric analysis of these
genes demonstrated that they were mainly involved in the invasion and metastasis of the
tumor cells (Figure 3).
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Table 2. The surface proteins with high-expression and high-risk in various cancer types.

Cancer High-Expressed and High-Risk Membrane Proteins in Pan-Cancer Total

BLCA CHRNA1, DRD5, HCN2, LRP8, RAC3, SLC1A6 6

BRCA FIBCD1, MAFA, PCDHA1, RGS9BP, SEZ6, ULBP2 6

CHOL RAET1E, RTBDN, TMEM17 3

COAD ASPHD1, CCDC78, CLDN6, DLL3, ELFN1, GABRD, GJA3, GNGT1, GPC2, KREMEN2, LIME1,
LRRN4, MC1R, PANX2, PCP2, S1PR5, SLC16A8, SLC6A1, SYT8, TMEM213, TRPV4, UNC5A 22

ESCA OR2W6P 1

HNSC AMIGO2, DCBLD1, DSCAM, EMR1, FRMD5, MCEMP1, OLR1, OR11H7, OR5M11, RTN4R,
TMEM92 11

KICH ADAM2, CSPG5, GSDMC, KCNC1, LRRTM3, MELK, SIGLEC15, TMPRSS11D 8

KIRC

ADAM11, ADAM12, ADAM8, ADD2, AGER, AQP9, ARHGEF39, ASGR1, ASIC3, ATP1A3, BEST1,
BEST4, BTNL10, C20orf141, C9orf172, CABP7, CACNA2D4, CACNB1, CATSPER1, CCDC78, CD72,
CDHR4, CDK5R2, CEACAM4, CELSR3, CLEC12B, CLEC2B, CLEC2D, CNIH2, CNTNAP1, CPNE7,
CYTH4, DEF6, DLK2, DOK3, DRD4, EFNA3, EMR1, ENO2, FAP, FCGR1B, FCGR1C, FCRL2, FCRL5,

FFAR3, FMNL1, FPR2,GABRE, GAD2, GGT2, GNG13, GPC2, GPR171, GPR19, GPR45, GPR84,
GPR97, GPRIN1, GRIK4, GRIN2D, GRM2, GRM4, GSDMB, IGFLR1, IGLC6, IGLC7, IGLJ1, IL20RB,
IL31RA, JPH3, KCNIP2, KCNN4, KIAA1324, KLRC4, KREMEN2, LAT, LAT2, LILRA6, LSMEM1,
LTB4R, LTB4R2, LY6H, MARCO, MB21D1, MC1R, MCEMP1, MELK, MICALL2, MILR1, MMP17,
MUC12, MUC3A, NPFFR1, NPY4R, NTM, NTNG2, OPN4, OR11H7, OR13A1, OR2B6, OSCAR,

OTOF, PAQR6, PARVG, PCDHGC5, PDE6C, PIK3R6, PILRB, PLB1, PLEKHN1, PLXDC1, PLXNB3,
PRAME, PRKCG, PRR7, PRRT2, PSD2, PSTPIP1, PTPRN, RASL10A, RELT, RLTPR, RTP5, SCNN1D,

SIGLEC16, SLAMF8, SLAMF9, SLC16A8, SLCO5A1, SMIM23, SPHK1, STAC3, STX1B, TBC1D3B,
TBC1D3F, TBC1D3L, TMPRSS6, TNFRSF25, TNFSF14, TPBGL, TRABD2A, TRBV28, TREML1,

TRPM2, TRPM8, TTYH1, ZGRF1, ZP1

148

KIRP
ADAM18, ADD2, ASIC3, CALN1, CDH17, CHRNA5, DLL3, GABRD, GJB4, GPA33, GPR19, GPRIN1,

HTR1D, HTR3A, IL20RB, KIAA0319, KREMEN2, MELK, MFSD2B, OTOF, PTPRN, RTBDN,
TMPRSS15, TNFSF9, ZP1

25

LIHC

ABCC5, ADAM22, ANKRD13B, ANKRD27, ARHGEF39, ATP8A2, BAIAP2L2, BFSP1, CACNA1S,
CD109, CDH10, CDK5R1, CHRNA5, CLCN2, CLEC2L, CNTNAP1, CSMD1, CSPG5, CT83, DAGLA,

DDN, DUSP15, EFCAB7, EFNA3, EFNA4, EFNA5EGF, ENTPD2, EPHA6, FAM171A2, FIBCD1,
FLVCR1, GABRA3, GDPD2, GJD4, GLDN, GLP1R, GNG4, GNGT1, GPR156, GPRC5D, GPRIN1,

GPSM2, GRIN2D, GRM4, GSDMC, IGSF3, KCNE5, KCNQ3, KCTD7, KISS1R, KITLG, LRP12, LRP4,
LRP8, LYSMD4, MAGEE1, MAPT, MELK, MEP1A, OR52E6, OR8A1, OR8G3P, OSBPL3, P2RY4,

PDE6A, PIK3R6, PLXNA1, PLXNA3, PRR7, PRSS42, PTK7, PTPRN, PVRL1, RACGAP1, RAET1E,
RNF144A, ROBO1, SAPCD2, SEMA4F, SHISA7, SLC16A3, SLC22A6, SLC26A2, SLC26A6, SLC30A8,
SLC36A1, SLC38A6, SLC47A2, SLC7A1, SOCS7, SRGAP2, STX1A, STXBP5L, TBC1D30, TMEM206,

TMEM213, TMEM65, TMEM67, TMEM81, TNFRSF11A, TREM2, TYRO3, XKR3, ZP3

105

LUAD

ABCC2, ALPI, BAIAP2L2, C20orf141, CDH17, CDK5R1, CLDN14, DSG3, ENTPD2, FERMT1,
GDPD2, GJA3, GJB2, GJB3, GJB4, GPR37, GPR78, GPR87, GPRIN1, GRIK2, HCN2, HTR1D, IL20RB,
KCNV1, KIAA1549L, LGR4, LY6K, LYPD3, MELK, MFI2, OR10J6P, OR1F1, PLEK2, PTPRH, RAET1L,

RHCG, RHOV, S100P, SAPCD2, SLCO1B3, STYK1, TMPRSS11E, TRPA1, UNC5D

44

PRAD GPC2, KISS1R, NECAB2, PCDHA2, PCDHA9, SLC17A4 6

READ ATP6V0A4 1

STAD ADAM12, CLDN9, HTR1F, KIAA1549L, MCEMP1, NOX4, OR10A5, OR6A2, SLC22A16, TREML4 10

THCA DRD5, EFNA2, LHFPL5, MAST1, MCEMP1, NKD2, OR1F1, PCDHA2, PCDHA5, RTBDN, SLAMF9 11

UCEC

ADAM18, ALPK2, ATP1A3, CABP7, CAMKV, CDH18, CDK5R2, CELSR3, CLDN6, CLDN9, DLL3,
DSG1, GAL, GNG3, GPR110, GPR158, GPR19, GRIN2B, HEPHL1, HRH3, HTR3A, HTR3E, HTR6,

KCNK9, KCNQ3, KCNS1, KIAA1549L, KLRG2, LIPH, MAFA, MAL, MAST1, MEP1A, MUC17,
MUC3A, NKAIN1, NKAIN4, NTSR1, OTOG, P2RY2, PLA2G4F, PTPRN, RAC3, SHISA9, SLC12A3,

SLC16A10, SLCO4C1

47
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Table 3. Targets that have been reported for CAR-T therapy in solid tumors.

Protein Name Cancer Type Reference

CLDN6 Testicular, ovarian, uterine and lung adenocarcinoma [37]
CD276 Anaplastic meningioma [38]
CA9 Metastatic Renal Cell Carcinoma [39]

GPC3 Hepatocellular Carcinoma [40,41]
PDPN Glioblastomas [42]
ALPP Colorectal cancer [43]

ANTXR1 Triple-negative breast cancer [44]
CLDN18 Gastric cancer [45]

EGFR Glioblastoma, Pancreatic carcinoma [46,47]
HER2 Glioblastoma [48]

FOLH1 Prostate cancer [49]
GUCY2C Colorectal cancer [50]
IL13RA2 Glioblastoma [51]
PODXL Pancreatic carcinoma [52]
PSCA Prostate cancer [53]
PTK7 Lung cancer [54]

FOLR1 Ovarian Cancer [55]
MSLN Gastric cancer, Pancreatic Carcinoma [56,57]
MUC1 MUC1-positive cancer cells [58]

3.4. Paired Membrane Proteins Displayed More Precise Prognostic Value

To further investigate the combinatorial effects of these genes on the survival of the
cancer patients, we established a risk scoring system using a formula containing the gene
expression levels and the regression coefficients from the univariate Cox regression model
(Table S2). We found that the combined analysis of these genes displayed greater accuracy
in predicting the prognostic outcomes of the cancer patients (Table S1 and Figure 4A,B).
For example, the prognostic risk stratification power was improved by the following
combination of groups, such as SEZ6 and ULBP1, ULBP2 and MAFA, and PCDHD1 and
MAFA, compared with the results when the genes were individually analyzed.
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Figure 4. Survival analysis of individual or paired specific high-expression and poor prognosis-
associated membrane surface protein-coding genes in BRCA patients. (A). KM curves display the
prognostic roles of the selected membrane protein-coding genes in cancer patients. (B). KM curves
display the prognostic roles of the selected membrane protein-coding genes in cancer patients. The
red lines indicate the high-expression group. The blue color lines indicate the low-expression group.
High-expression and low-expression groups were divided by the mean value of the gene expression.
p < 0.05 was considered significantly different.
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3.5. The Highly Expressed Cell Surface Proteins of the Tumor Tissues were Highly Correlated

To investigate whether these membrane proteins were correlated, we calculated the
association among the membrane proteins in the 17 tumor types through a Pearson’s
correlation test. As shown in Figures 5 and S2, the membrane proteins identified previously
were significantly positively correlated with most membrane proteins in every tumor type
(Figures 5 and S2).
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3.6. Identification of TSAs That Are Expressed Less in Normal Tissues

To further investigate the potential “on-target, off-tumor toxicity” effect of these
proteins, we obtained the expression levels of the 371 target membrane protein-coding



Cancers 2022, 14, 5674 11 of 18

genes (See Table 2 for details) from 54 normal human tissues from the GTEx database. The
cumulative distribution analysis demonstrated that the TPM expression levels of most
genes were logarithmically distributed between −2 and 1.60 (Figure S3). We defined the
genes with expression levels greater than or equal to 1.60 as high-expression genes, while
genes with expression levels less than 1.60 as low-expression genes. According to this
threshold, the genes were divided into two categories (Figure S3). Our results indicated
that 184 genes were expressed less in these tissues (Figure 6) and the other 187 genes, which
were specifically and highly expressed in some normal tissues (Figure 7). The genes in
part one were relatively highly expressed in all brain tissues, while the genes in part two
were widely expressed in all tissues. The genes in part three were mainly expressed in the
human epidermis, mucous membranes, and glands. The genes in part four were highly
expressed in blood cells, lymphocytes, and the spleen (Figure 7).
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3.7. Validation of Protein Expression of the Selected Genes

To further validate our above findings, we checked the protein expression levels of
the obtained genes from the CPTAC tumor protein database (CPTAC, Clinical Proteomic
Tumor Analysis Consortium). We identified the expression levels of 23 proteins in four
types of tumors (To be specific, KIRC: 8 proteins, LUAD: 3 proteins, LIHC: 11 proteins,
UCEC: 1 protein) (Figure 8). It was found that eight proteins (ADD2, DEF6, DOK3, ENO2,
FMNL1, MICALL2, PARVG, and PSTPIP1) in KIRC cancer were more highly expressed
in tumor tissues (100%), compared with normal tissues. The expression of two proteins
(FERMT1, and PLEK2) in LUAD cancer were higher in tumor tissues (66.6%) than in normal
tissues. The expression of nine proteins (CD109, GNG4, MAPT, OSBPL3, PLXNA1, ROBO1,
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SLC16A3, SLC26A6, SRGAP2, and TMEM65) in LIHC cancer were higher in tumor tissues
(81.82%) than in normal tissues (Figure 8).
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4. Discussion

The identification of antigens specifically expressed on the surface of tumor cells is
vital for the design of adoptive T cell therapy and ADCs. Our study found that there were
various highly expressed membrane proteins in a variety of tumor types (17 cancer types),
which were also significantly associated with the survival rate of patients. These findings
expand the recent document that identified 200 genes as breast cancer subtype-specific
targets by differential expression analysis of RNA-seq data from TCGA [60].

In our discovery, 184 genes were lowly expressed in normal tissues, which further
supports the advantage of our strategy in identifying potential targets. Some of them
were proved to be successful targets with significant curative effects on some malignant
hematological tumors, such as anti-CD19 CAR-T therapy for the treatment of chronic
lymphocytic leukemia [61], and anti-CTL019 CAR-T therapy for the treatment of relapsed
and refractory B-cell acute lymphoblastic leukemia [62]. In addition, CD66c, CD318,
TSPAN8, and CLA were identified as candidate targets for CAR-T therapy in a pancreatic
tumor patient-derived xenograft model [63].

Our enrichment analysis identified the relationship of these highly expressed surface
proteins and the human immune status, which has a great advantage over the findings
from Schreiner et al. Although they could predict the surface antigens of several hemato-
logical tumors which may be more applicable across cancer types, they did not exclude the
potential adverse effects on immune cells, which may dampen the efficacy of the targets
discovery [64]. For example, although the CAR-T therapy targeting CD276 was applied
for the treatment of tumors [65], it may cause the death of dendritic cells since CD276 is
also expressed in dendritic cells [66]. In addition, our screening methods also excluded
CD66c, which was screened out by Schäfer D et al, because of its expression in granulo-
cytes [67]. Furthermore, we excluded the use of the CAR-T target of gliomas: CD70 [68],
which can consistently activate T cells and lead to T cell dysfunction [69]. The expression
of DLL3 on the tumor tissues of patients with invasive breast cancer can promote the
infiltration of immune cells, including plasma cells, CD8 T cells, CD44 memory-activated
cells, macrophages, and T regulatory cells [70]. Amir et al., demonstrated that MUC-1 was
a target for MUC1-positive cancer cells [58]. Stephen et al. developed an engineered CAR-T
cells targeting the HER2+ glioma cells, which also improved disease control in patients
with glioma [48]. In sum, our target membrane proteins are ubiquitously lowly expressed
in normal tissues. Therefore, it may reduce the immune-associated adverse events during
the application of CAR-T or ADCs in cancer treatment [71].

Correlation analysis further demonstrated that the surface proteins with poor prog-
nosis were significantly correlated with each other, which suggests that the effects of
the surface proteins on tumor progression may not work independently but coordinate
with each other. In general, the paired target membrane proteins could be good potential
candidates for dual-target CAR-T therapy and ADCs with fewer side effects [72].

Since the selected surface protein-coding genes were closely associated with each other,
we speculated that the selected surface proteins could share a similar transcription pattern.
When choosing specific types of surface proteins as drug targets, the off-targets side effects
may be prevented by controlling the activation of engineered T cells using integrated
multi-input signals [3,73]. Bispecific CAR-T cells targeting PD-L1 and MUC16 have an
enhanced killing effect on ovarian cancer cells and significantly prolong the survival time of
tumor-bearing mice [74]. CAR-T cells with CEA and MSLN as dual targets can accurately
locate the tumor site and have higher toxicity to pancreatic malignancy [75]. Consistently,
we found the surface proteins that can be used to design bispecific CAR-T cells or ADCs
targeting common solid tumors through big data analysis.

In spite of the limited data in the protein database, we still validated the protein
expression levels of some of the selected genes. These results make it more convincing
that the identified tumor surface protein genes may be potential targets for CAR-T cell
therapies and ADCs. Further integration of proteomic information may boost the discovery
of TSAs because the post-modification of proteins such as glycosylation, and lipidation,
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have also been identified as a source of tumor surface antigens by liquid chromatography–
mass spectrometry [76,77].

5. Conclusions

In sum, our study revealed some potential tumor-specific surface proteins for the
rational design of TSA-based immunotherapies. These findings might pave the way for a
comprehensive and efficient approach to construct novel CAR-T cells and ADCs in pre-
clinical animal studies and clinical practice by utilizing tumor-specific surface proteins as
multi-target binding sites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14225674/s1, Figure S1: Analysis of the differential ex-
pression of membrane protein-coding genes; Figure S2: Pearson correlation analysis of the signif-
icantly high-expression and high-risk membrane protein-coding genes in some tumor tissues in
TCGA; Figure S3: Cumulative distribution of the expression of 371 candidate membrane proteins.
The red dashed line was determined to separate the differential expression patterns of these genes;
Table S1: The information on the results of HR, FC, Correlation and Prognosis of individual or paired
genes; Table S2: Patients’ risk scores calculated for gene pairs based on the risk score system.

Author Contributions: X.L., J.Z. and W.Z. conducted major analytical work. W.Y. and L.Z. provided
meaningful methodological suggestions. H.L. and L.L. provided ideas and designed experiments.
W.-W.C. and J.W. made critical edits in the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: The research was supported by the National Key R&D Program of China (2019YFA0906100
and 2020YFA0804100) and the National Natural Science Foundation of China (32170919 and 92042305).
Shenzhen Institute of Synthetic Biology Scientific Research Program (JCHZ20210003). Shenzhen
Science and Technology Program (KQTD20210811090115019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data sets analyzed during the current study are available from
the UCSC Xena website: https://xenabrowser.net/ (accessed on 1 September 2020), Membranome
database: https://membran-ome.org/ (accessed on 1 September 2020) and Uniprot database: https:
//www.uniprot.org/ (accessed on 1 September 2020). Human immune cell biomarkers can be
obtained from the CellMarker database: http://biocc.hrbmu. edu.cn/CellMarker/ (accessed on 1
September 2020) and human normal tissues expression data can be collected from the GTEx database:
http://gtexportal.org/ (accessed on 1 September 2020).

Acknowledgments: We thank Qiyuan Li for his assistance and bioinformatics support in this research.

Conflicts of Interest: The authors declare no competing interest.

References
1. Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019,

20, 1033. [CrossRef] [PubMed]
2. Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [CrossRef]

[PubMed]
3. Li, H.; van der Leun, A.M.; Yofe, I.; Lubling, Y.; Gelbard-Solodkin, D.; van Akkooi, A.C.J.; van den Braber, M.; Rozeman, E.A.;

Haanen, J.; Blank, C.U.; et al. Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within
Human Melanoma. Cell 2019, 176, 775–789.e18. [CrossRef]

4. Feng, M.; Jiang, W.; Kim, B.Y.S.; Zhang, C.C.; Fu, Y.X.; Weissman, I.L. Phagocytosis checkpoints as new targets for cancer
immunotherapy. Nat. Rev. Cancer 2019, 19, 568–586. [CrossRef] [PubMed]

5. Chao, M.P.; Weissman, I.L.; Majeti, R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications.
Curr. Opin. Immunol. 2012, 24, 225–232. [CrossRef]

6. Urabe, F.; Kosaka, N.; Ito, K.; Kimura, T.; Egawa, S.; Ochiya, T. Extracellular vesicles as biomarkers and therapeutic targets for
cancer. Am. J. Physiol. Cell Physiol. 2020, 318, C29–C39. [CrossRef]

7. Li, H.; Ye, C.; Ji, G.; Han, J. Determinants of public T cell responses. Cell Res. 2012, 22, 33–42. [CrossRef]

https://www.mdpi.com/article/10.3390/cancers14225674/s1
https://www.mdpi.com/article/10.3390/cancers14225674/s1
https://xenabrowser.net/
https://membran-ome.org/
https://www.uniprot.org/
https://www.uniprot.org/
http://biocc.hrbmu
http://gtexportal.org/
http://doi.org/10.3390/ijms20051033
http://www.ncbi.nlm.nih.gov/pubmed/30818786
http://doi.org/10.1146/annurev.immunol.22.012703.104803
http://www.ncbi.nlm.nih.gov/pubmed/15032581
http://doi.org/10.1016/j.cell.2018.11.043
http://doi.org/10.1038/s41568-019-0183-z
http://www.ncbi.nlm.nih.gov/pubmed/31462760
http://doi.org/10.1016/j.coi.2012.01.010
http://doi.org/10.1152/ajpcell.00280.2019
http://doi.org/10.1038/cr.2012.1


Cancers 2022, 14, 5674 16 of 18

8. Paijens, S.T.; Vledder, A.; de Bruyn, M.; Nijman, H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol.
Immunol. 2021, 18, 842–859. [CrossRef]

9. Thomas, A.; Teicher, B.A.; Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016, 17, e254–e262. [CrossRef]
10. Nguyen, A.; Johanning, G.; Shi, Y. Emerging Novel Combined CAR-T Cell Therapies. Cancers 2022, 14, 1403. [CrossRef]
11. Ellis, G.I.; Sheppard, N.C.; Riley, J.L. Genetic engineering of T cells for immunotherapy. Nat. Rev. Genet. 2021, 22, 427–447.

[CrossRef]
12. Turtle, C.J.; Hanafi, L.A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.;

Budiarto, T.M.; et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 2016,
126, 2123–2138. [CrossRef] [PubMed]

13. Zhang, W.Y.; Wang, Y.; Guo, Y.L.; Dai, H.R.; Yang, Q.M.; Zhang, Y.J.; Zhang, Y.; Chen, M.X.; Wang, C.M.; Feng, K.C.; et al.
Treatment of CD20-directed Chimeric Antigen Receptor-modified T cells in patients with relapsed or refractory B-cell non-
Hodgkin lymphoma: An early phase IIa trial report. Signal Transduct. Target. Ther. 2016, 1, 16002. [CrossRef] [PubMed]

14. Xu, J.; Wang, Q.; Xu, H.; Gu, C.; Jiang, L.; Wang, J.; Wang, D.; Xu, B.; Mao, X.; Wang, J.; et al. Anti-BCMA CAR-T cells for treatment
of plasma cell dyscrasia: Case report on POEMS syndrome and multiple myeloma. J. Hematol. Oncol. 2018, 11, 128. [CrossRef]

15. Wilkie, S.; van Schalkwyk, M.C.; Hobbs, S.; Davies, D.M.; van der Stegen, S.J.; Pereira, A.C.; Burbridge, S.E.; Box, C.; Eccles,
S.A.; Maher, J. Dual targeting of ErbB2 and MUC1 in breast cancer using chimeric antigen receptors engineered to provide
complementary signaling. J. Clin. Immunol. 2012, 32, 1059–1070. [CrossRef] [PubMed]

16. Mount, C.W.; Majzner, R.G.; Sundaresh, S.; Arnold, E.P.; Kadapakkam, M.; Haile, S.; Labanieh, L.; Hulleman, E.; Woo, P.J.;
Rietberg, S.P.; et al. Potent antitumor efficacy of anti-GD2 CAR T cells in H3-K27M(+) diffuse midline gliomas. Nat. Med. 2018,
24, 572–579. [CrossRef] [PubMed]

17. Harrer, D.C.; Dörrie, J.; Schaft, N. CSPG4 as Target for CAR-T-Cell Therapy of Various Tumor Entities-Merits and Challenges. Int.
J. Mol. Sci. 2019, 20, 5942. [CrossRef] [PubMed]

18. Morgan, R.A.; Yang, J.C.; Kitano, M.; Dudley, M.E.; Laurencot, C.M.; Rosenberg, S.A. Case report of a serious adverse event
following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. J. Am. Soc.
Gene Ther. 2010, 18, 843–851. [CrossRef]

19. Feng, K.; Guo, Y.; Dai, H.; Wang, Y.; Li, X.; Jia, H.; Han, W. Chimeric antigen receptor-modified T cells for the immunotherapy of
patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer. Sci. China Life Sci. 2016, 59, 468–479.
[CrossRef]

20. Lo, A.; Wang, L.S.; Scholler, J.; Monslow, J.; Avery, D.; Newick, K.; O’Brien, S.; Evans, R.A.; Bajor, D.J.; Clendenin, C.; et al.
Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells. Cancer Res. 2015, 75, 2800–2810.
[CrossRef]

21. Schubert, M.L.; Schmitt, M.; Wang, L.; Ramos, C.A.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-effect management of chimeric
antigen receptor (CAR) T-cell therapy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 34–48. [CrossRef] [PubMed]

22. Wang, H.; Kaur, G.; Sankin, A.I.; Chen, F.; Guan, F.; Zang, X. Immune checkpoint blockade and CAR-T cell therapy in hematologic
malignancies. J. Hematol. Oncol. 2019, 12, 59. [CrossRef]

23. Boyiadzis, M.M.; Dhodapkar, M.V.; Brentjens, R.J.; Kochenderfer, J.N.; Neelapu, S.S.; Maus, M.V.; Porter, D.L.; Maloney, D.G.;
Grupp, S.A.; Mackall, C.L.; et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies:
Clinical perspective and significance. J. Immunother. Cancer 2018, 6, 137. [CrossRef] [PubMed]

24. Miliotou, A.N.; Papadopoulou, L.C. CAR T-cell Therapy: A New Era in Cancer Immunotherapy. Curr. Pharm. Biotechnol. 2018,
19, 5–18. [CrossRef] [PubMed]

25. Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates.
Nat. Rev. Drug Discov. 2017, 16, 315–337. [CrossRef]

26. Autio, K.A.; Boni, V.; Humphrey, R.W.; Naing, A. Probody Therapeutics: An Emerging Class of Therapies Designed to Enhance
On-Target Effects with Reduced Off-Tumor Toxicity for Use in Immuno-Oncology. Clin. Cancer Res. 2020, 26, 984–989. [CrossRef]

27. Lomize, A.L.; Lomize, M.A.; Krolicki, S.R.; Pogozheva, I.D. Membranome: A database for proteome-wide analysis of single-pass
membrane proteins. Nucleic Acids Res. 2017, 45, D250–D255. [CrossRef]

28. Lomize, A.L.; Hage, J.M.; Pogozheva, I.D. Membranome 2.0: Database for proteome-wide profiling of bitopic proteins and their
dimers. Bioinformatics 2018, 34, 1061–1062. [CrossRef]

29. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [CrossRef]
30. Zhang, X.; Lan, Y.; Xu, J.; Quan, F.; Zhao, E.; Deng, C.; Luo, T.; Xu, L.; Liao, G.; Yan, M.; et al. CellMarker: A manually curated

resource of cell markers in human and mouse. Nucleic Acids Res. 2019, 47, D721–D728. [CrossRef]
31. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in

humans. Science 2015, 348, 648–660. [CrossRef] [PubMed]
32. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef] [PubMed]
33. Shakur, A.H.; Huang, S.; Qian, X.; Chang, X. SURVFIT: Doubly sparse rule learning for survival data. J. Biomed. Inform. 2021,

117, 103691. [CrossRef] [PubMed]
34. Huang, R.; Li, Z.; Zhu, X.; Yan, P.; Song, D.; Yin, H.; Hu, P.; Lin, R.; Wu, S.; Meng, T.; et al. Collagen Type III Alpha 1 chain

regulated by GATA-Binding Protein 6 affects Type II IFN response and propanoate metabolism in the recurrence of lower grade
glioma. J. Cell. Mol. Med. 2020, 24, 10803–10815. [CrossRef]

http://doi.org/10.1038/s41423-020-00565-9
http://doi.org/10.1016/S1470-2045(16)30030-4
http://doi.org/10.3390/cancers14061403
http://doi.org/10.1038/s41576-021-00329-9
http://doi.org/10.1172/JCI85309
http://www.ncbi.nlm.nih.gov/pubmed/27111235
http://doi.org/10.1038/sigtrans.2016.2
http://www.ncbi.nlm.nih.gov/pubmed/29263894
http://doi.org/10.1186/s13045-018-0672-7
http://doi.org/10.1007/s10875-012-9689-9
http://www.ncbi.nlm.nih.gov/pubmed/22526592
http://doi.org/10.1038/s41591-018-0006-x
http://www.ncbi.nlm.nih.gov/pubmed/29662203
http://doi.org/10.3390/ijms20235942
http://www.ncbi.nlm.nih.gov/pubmed/31779130
http://doi.org/10.1038/mt.2010.24
http://doi.org/10.1007/s11427-016-5023-8
http://doi.org/10.1158/0008-5472.CAN-14-3041
http://doi.org/10.1016/j.annonc.2020.10.478
http://www.ncbi.nlm.nih.gov/pubmed/33098993
http://doi.org/10.1186/s13045-019-0746-1
http://doi.org/10.1186/s40425-018-0460-5
http://www.ncbi.nlm.nih.gov/pubmed/30514386
http://doi.org/10.2174/1389201019666180418095526
http://www.ncbi.nlm.nih.gov/pubmed/29667553
http://doi.org/10.1038/nrd.2016.268
http://doi.org/10.1158/1078-0432.CCR-19-1457
http://doi.org/10.1093/nar/gkw712
http://doi.org/10.1093/bioinformatics/btx720
http://doi.org/10.1093/nar/gkaa1100
http://doi.org/10.1093/nar/gky900
http://doi.org/10.1126/science.1262110
http://www.ncbi.nlm.nih.gov/pubmed/25954001
http://doi.org/10.1016/j.cell.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21376230
http://doi.org/10.1016/j.jbi.2021.103691
http://www.ncbi.nlm.nih.gov/pubmed/33610882
http://doi.org/10.1111/jcmm.15705


Cancers 2022, 14, 5674 17 of 18

35. Ouyang, Z.; Li, G.; Zhu, H.; Wang, J.; Qi, T.; Qu, Q.; Tu, C.; Qu, J.; Lu, Q. Construction of a Five-Super-Enhancer-Associated-Genes
Prognostic Model for Osteosarcoma Patients. Front. Cell Dev. Biol. 2020, 8, 598660. [CrossRef]

36. Li, J.; Xiang, L.; Wang, Q.; Ma, X.; Chen, X.; Zhu, Y.; Yang, Y.; Huang, L.; He, H.; Xu, L.; et al. Highly Potent Immunotoxins
Targeting the Membrane-distal N-lobe of GPC3 for Immunotherapy of Hepatocellular Carcinoma. J. Cancer 2022, 13, 1370–1384.
[CrossRef]

37. Reinhard, K.; Rengstl, B.; Oehm, P.; Michel, K.; Billmeier, A.; Hayduk, N.; Klein, O.; Kuna, K.; Ouchan, Y.; Wöll, S.; et al. An RNA
vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 2020, 367, 446–453. [CrossRef]

38. Tang, X.; Liu, F.; Liu, Z.; Cao, Y.; Zhang, Z.; Wang, Y.; Huang, J.; Fan, S.; Zhao, S.; Chen, Y.; et al. Bioactivity and safety of
B7-H3-targeted chimeric antigen receptor T cells against anaplastic meningioma. Clin. Transl. Immunol. 2020, 9, e1137. [CrossRef]

39. Lamers, C.H.; Sleijfer, S.; van Steenbergen, S.; van Elzakker, P.; van Krimpen, B.; Groot, C.; Vulto, A.; den Bakker, M.; Oosterwijk,
E.; Debets, R.; et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and
management of on-target toxicity. Mol. Ther. J. Am. Soc. Gene Ther. 2013, 21, 904–912. [CrossRef]

40. Wu, X.; Luo, H.; Shi, B.; Di, S.; Sun, R.; Su, J.; Liu, Y.; Li, H.; Jiang, H.; Li, Z. Combined Antitumor Effects of Sorafenib and
GPC3-CAR T Cells in Mouse Models of Hepatocellular Carcinoma. Mol. Ther. J. Am. Soc. Gene Ther. 2019, 27, 1483–1494.
[CrossRef]

41. Shi, D.; Shi, Y.; Kaseb, A.O.; Qi, X.; Zhang, Y.; Chi, J.; Lu, Q.; Gao, H.; Jiang, H.; Wang, H.; et al. Chimeric Antigen Receptor-
Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clin. Cancer Res. Off. J. Am. Assoc.
Cancer Res. 2020, 26, 3979–3989. [CrossRef] [PubMed]

42. Shiina, S.; Ohno, M.; Ohka, F.; Kuramitsu, S.; Yamamichi, A.; Kato, A.; Motomura, K.; Tanahashi, K.; Yamamoto, T.; Watanabe,
R.; et al. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains. Cancer Immunol. Res. 2016,
4, 259–268. [CrossRef] [PubMed]

43. Li, X.; Berahovich, R.; Zhou, H.; Liu, X.; Li, F.; Xu, S.; Wei, Y.; Ouaret, D.; Bodmer, W.; Wu, L.; et al. PLAP -CAR T cells mediate
high specific cytotoxicity against colon cancer cells. Front. Biosci. 2020, 25, 1765–1786. [CrossRef]

44. Byrd, T.T.; Fousek, K.; Pignata, A.; Szot, C.; Samaha, H.; Seaman, S.; Dobrolecki, L.; Salsman, V.S.; Oo, H.Z.; Bielamowicz, K.; et al.
TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res. 2018, 78, 489–500.
[CrossRef] [PubMed]

45. Jiang, H.; Shi, Z.; Wang, P.; Wang, C.; Yang, L.; Du, G.; Zhang, H.; Shi, B.; Jia, J.; Li, Q.; et al. Claudin18.2-Specific Chimeric Antigen
Receptor Engineered T Cells for the Treatment of Gastric Cancer. J. Natl. Cancer Inst. 2019, 111, 409–418. [CrossRef] [PubMed]

46. Goff, S.L.; Morgan, R.A.; Yang, J.C.; Sherry, R.M.; Robbins, P.F.; Restifo, N.P.; Feldman, S.A.; Lu, Y.C.; Lu, L.; Zheng, Z.; et al. Pilot
Trial of Adoptive Transfer of Chimeric Antigen Receptor-transduced T Cells Targeting EGFRvIII in Patients With Glioblastoma. J.
Immunother. 2019, 42, 126–135. [CrossRef]

47. Liu, Y.; Guo, Y.; Wu, Z.; Feng, K.; Tong, C.; Wang, Y.; Dai, H.; Shi, F.; Yang, Q.; Han, W. Anti-EGFR chimeric antigen receptor-
modified T cells in metastatic pancreatic carcinoma: A phase I clinical trial. Cytotherapy 2020, 22, 573–580. [CrossRef]

48. Ahmed, N.; Brawley, V.; Hegde, M.; Bielamowicz, K.; Kalra, M.; Landi, D.; Robertson, C.; Gray, T.L.; Diouf, O.; Wakefield,
A.; et al. HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma: A Phase 1
Dose-Escalation Trial. JAMA Oncol. 2017, 3, 1094–1101. [CrossRef]

49. Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-
Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication.
Mol. Ther. J. Am. Soc. Gene Ther. 2018, 26, 1855–1866. [CrossRef]

50. Magee, M.S.; Kraft, C.L.; Abraham, T.S.; Baybutt, T.R.; Marszalowicz, G.P.; Li, P.; Waldman, S.A.; Snook, A.E. GUCY2C-directed
CAR-T cells oppose colorectal cancer metastases without autoimmunity. Oncoimmunology 2016, 5, e1227897. [CrossRef]

51. Sharma, P.; Debinski, W. Receptor-Targeted Glial Brain Tumor Therapies. Int. J. Mol. Sci. 2018, 19, 3326. [CrossRef] [PubMed]
52. Kaneko, M.K.; Ohishi, T.; Kawada, M.; Kato, Y. A cancer-specific anti-podocalyxin monoclonal antibody (60-mG(2a)-f) exerts

antitumor effects in mouse xenograft models of pancreatic carcinoma. Biochem. Biophys. Rep. 2020, 24, 100826. [CrossRef]
[PubMed]

53. Priceman, S.J.; Gerdts, E.A.; Tilakawardane, D.; Kennewick, K.T.; Murad, J.P.; Park, A.K.; Jeang, B.; Yamaguchi, Y.; Yang, X.;
Urak, R.; et al. Co-stimulatory signaling determines tumor antigen sensitivity and persistence of CAR T cells targeting PSCA+
metastatic prostate cancer. Oncoimmunology 2018, 7, e1380764. [CrossRef]

54. Jie, Y.; Liu, G.; Feng, L.; Li, Y.; E, M.; Wu, L.; Li, Y.; Rong, G.; Li, Y.; Wei, H.; et al. PTK7-Targeting CAR T-Cells for the Treatment of
Lung Cancer and Other Malignancies. Front. Immunol. 2021, 12, 665970. [CrossRef] [PubMed]

55. Ao, X.; Yang, Y.; Li, W.; Tan, Y.; Guo, W.; Ao, L.; He, X.; Wu, X.; Xia, J.; Xu, X.; et al. Anti-αFR CAR-engineered NK-92 Cells
Display Potent Cytotoxicity Against αFR-positive Ovarian Cancer. J. Immunother. 2019, 42, 284–296. [CrossRef] [PubMed]

56. Lv, J.; Zhao, R.; Wu, D.; Zheng, D.; Wu, Z.; Shi, J.; Wei, X.; Wu, Q.; Long, Y.; Lin, S.; et al. Mesothelin is a target of chimeric antigen
receptor T cells for treating gastric cancer. J. Hematol. Oncol. 2019, 12, 18. [CrossRef] [PubMed]

57. Beatty, G.L.; O’Hara, M.H.; Lacey, S.F.; Torigian, D.A.; Nazimuddin, F.; Chen, F.; Kulikovskaya, I.M.; Soulen, M.C.; McGarvey, M.;
Nelson, A.M.; et al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases
in a Phase 1 Trial. Gastroenterology 2018, 155, 29–32. [CrossRef]

http://doi.org/10.3389/fcell.2020.598660
http://doi.org/10.7150/jca.66978
http://doi.org/10.1126/science.aay5967
http://doi.org/10.1002/cti2.1137
http://doi.org/10.1038/mt.2013.17
http://doi.org/10.1016/j.ymthe.2019.04.020
http://doi.org/10.1158/1078-0432.CCR-19-3259
http://www.ncbi.nlm.nih.gov/pubmed/32371538
http://doi.org/10.1158/2326-6066.CIR-15-0060
http://www.ncbi.nlm.nih.gov/pubmed/26822025
http://doi.org/10.2741/4877
http://doi.org/10.1158/0008-5472.CAN-16-1911
http://www.ncbi.nlm.nih.gov/pubmed/29183891
http://doi.org/10.1093/jnci/djy134
http://www.ncbi.nlm.nih.gov/pubmed/30203099
http://doi.org/10.1097/CJI.0000000000000260
http://doi.org/10.1016/j.jcyt.2020.04.088
http://doi.org/10.1001/jamaoncol.2017.0184
http://doi.org/10.1016/j.ymthe.2018.05.003
http://doi.org/10.1080/2162402X.2016.1227897
http://doi.org/10.3390/ijms19113326
http://www.ncbi.nlm.nih.gov/pubmed/30366424
http://doi.org/10.1016/j.bbrep.2020.100826
http://www.ncbi.nlm.nih.gov/pubmed/33088928
http://doi.org/10.1080/2162402X.2017.1380764
http://doi.org/10.3389/fimmu.2021.665970
http://www.ncbi.nlm.nih.gov/pubmed/34475869
http://doi.org/10.1097/CJI.0000000000000286
http://www.ncbi.nlm.nih.gov/pubmed/31261167
http://doi.org/10.1186/s13045-019-0704-y
http://www.ncbi.nlm.nih.gov/pubmed/30777106
http://doi.org/10.1053/j.gastro.2018.03.029


Cancers 2022, 14, 5674 18 of 18

58. Rajabzadeh, A.; Rahbarizadeh, F.; Ahmadvand, D.; Kabir Salmani, M.; Hamidieh, A.A. A VHH-Based Anti-MUC1 Chimeric
Antigen Receptor for Specific Retargeting of Human Primary T Cells to MUC1-Positive Cancer Cells. Cell J. 2021, 22, 502–513.
[CrossRef]

59. Zhou, J.; Li, X.; Zhang, M.; Gong, J.; Li, Q.; Shan, B.; Wang, T.; Zhang, L.; Zheng, T.; Li, X. The aberrant expression of rhythm
genes affects the genome instability and regulates the cancer immunity in pan-cancer. Cancer Med. 2020, 9, 1818–1829. [CrossRef]

60. Schettini, F.; Barbao, P.; Brasó-Maristany, F.; Galván, P.; Martínez, D.; Paré, L.; De Placido, S.; Prat, A.; Guedan, S. Identification
of cell surface targets for CAR-T cell therapies and antibody-drug conjugates in breast cancer. ESMO Open 2021, 6, 100102.
[CrossRef]

61. Fraietta, J.A.; Lacey, S.F.; Orlando, E.J.; Pruteanu-Malinici, I.; Gohil, M.; Lundh, S.; Boesteanu, A.C.; Wang, Y.; O’Connor, R.S.;
Hwang, W.T.; et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic
lymphocytic leukemia. Nat. Med. 2018, 24, 563–571. [CrossRef]

62. Vairy, S.; Garcia, J.L.; Teira, P.; Bittencourt, H. CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute
lymphoblastic leukemia. Drug Des. Dev. Ther. 2018, 12, 3885–3898. [CrossRef] [PubMed]

63. Schäfer, D.; Tomiuk, S.; Küster, L.N.; Rawashdeh, W.A.; Henze, J.; Tischler-Höhle, G.; Agorku, D.J.; Brauner, J.; Linnartz, C.; Lock,
D.; et al. Identification of CD318, TSPAN8 and CD66c as target candidates for CAR T cell based immunotherapy of pancreatic
adenocarcinoma. Nat. Commun. 2021, 12, 1453. [CrossRef] [PubMed]

64. Schreiner, P.; Velasquez, M.P.; Gottschalk, S.; Zhang, J.; Fan, Y. Unifying heterogeneous expression data to predict targets for
CAR-T cell therapy. Oncoimmunology 2021, 10, 2000109. [CrossRef] [PubMed]

65. Theruvath, J.; Sotillo, E.; Mount, C.W.; Graef, C.M.; Delaidelli, A.; Heitzeneder, S.; Labanieh, L.; Dhingra, S.; Leruste, A.; Majzner,
R.G.; et al. Locoregionally administered B7-H3-targeted CAR T cells for treatment of atypical teratoid/rhabdoid tumors. Nat.
Med. 2020, 26, 712–719. [CrossRef] [PubMed]

66. Zhang, G.; Dong, Q.; Xu, Y.; Yu, G.; Zhang, X. B7-H3: Another molecule marker for Mo-DCs? Cell. Mol. Immunol. 2005, 2, 307–311.
67. Nair, K.S.; Zingde, S.M. Adhesion of neutrophils to fibronectin: Role of the cd66 antigens. Cell. Immunol. 2001, 208, 96–106.

[CrossRef] [PubMed]
68. Jin, L.; Ge, H.; Long, Y.; Yang, C.; Chang, Y.E.; Mu, L.; Sayour, E.J.; De Leon, G.; Wang, Q.J.; Yang, J.C.; et al. CD70, a novel target

of CAR T-cell therapy for gliomas. Neuro-Oncology 2018, 20, 55–65. [CrossRef]
69. Lantto, R.; Nasi, A.; Sammicheli, S.; Amu, S.; Fievez, V.; Moutschen, M.; Pensieroso, S.; Hejdeman, B.; Chiodi, F.; Rethi, B. Increased

extrafollicular expression of the B-cell stimulatory molecule CD70 in HIV-1-infected individuals. AIDS 2015, 29, 1757–1766.
[CrossRef]

70. Yuan, C.; Chang, K.; Xu, C.; Li, Q.; Du, Z. High expression of DLL3 is associated with a poor prognosis and immune infiltration in
invasive breast cancer patients. Transl. Oncol. 2021, 14, 101080. [CrossRef]

71. Ding, Z.C.; Habtetsion, T.; Cao, Y.; Li, T.; Liu, C.; Kuczma, M.; Chen, T.; Hao, Z.; Bryan, L.; Munn, D.H.; et al. Adjuvant IL-7
potentiates adoptive T cell therapy by amplifying and sustaining polyfunctional antitumor CD4+ T cells. Sci. Rep. 2017, 7, 12168.
[CrossRef] [PubMed]

72. Zhang, X.; Cheng, C.; Sun, W.; Wang, H. Engineering T Cells Using CRISPR/Cas9 for Cancer Therapy. Methods Mol. Biol. 2020,
2115, 419–433. [CrossRef] [PubMed]

73. Sau, S.; Alsaab, H.O.; Bhise, K.; Alzhrani, R.; Nabil, G.; Iyer, A.K. Multifunctional nanoparticles for cancer immunotherapy: A
groundbreaking approach for reprogramming malfunctioned tumor environment. J. Control. Release Off. J. Control. Release Soc.
2018, 274, 24–34. [CrossRef] [PubMed]

74. Li, T.; Wang, J. Therapeutic effect of dual CAR-T targeting PDL1 and MUC16 antigens on ovarian cancer cells in mice. BMC
Cancer 2020, 20, 678. [CrossRef] [PubMed]

75. Zhang, E.; Yang, P.; Gu, J.; Wu, H.; Chi, X.; Liu, C.; Wang, Y.; Xue, J.; Qi, W.; Sun, Q.; et al. Recombination of a dual-CAR-modified
T lymphocyte to accurately eliminate pancreatic malignancy. J. Hematol. Oncol. 2018, 11, 102. [CrossRef]

76. DeLucia, D.C.; Lee, J.K. Identification of Cell Surface Targets for CAR T Cell Immunotherapy. Methods Mol. Biol. 2020, 2097, 45–54.
[CrossRef]

77. Kuhlmann, L.; Cummins, E.; Samudio, I.; Kislinger, T. Cell-surface proteomics for the identification of novel therapeutic targets in
cancer. Expert Rev. Proteom. 2018, 15, 259–275. [CrossRef]

http://doi.org/10.22074/cellj.2021.6917
http://doi.org/10.1002/cam4.2834
http://doi.org/10.1016/j.esmoop.2021.100102
http://doi.org/10.1038/s41591-018-0010-1
http://doi.org/10.2147/DDDT.S138765
http://www.ncbi.nlm.nih.gov/pubmed/30518999
http://doi.org/10.1038/s41467-021-21774-4
http://www.ncbi.nlm.nih.gov/pubmed/33674603
http://doi.org/10.1080/2162402X.2021.2000109
http://www.ncbi.nlm.nih.gov/pubmed/34858726
http://doi.org/10.1038/s41591-020-0821-8
http://www.ncbi.nlm.nih.gov/pubmed/32341579
http://doi.org/10.1006/cimm.2001.1772
http://www.ncbi.nlm.nih.gov/pubmed/11333142
http://doi.org/10.1093/neuonc/nox116
http://doi.org/10.1097/QAD.0000000000000779
http://doi.org/10.1016/j.tranon.2021.101080
http://doi.org/10.1038/s41598-017-12488-z
http://www.ncbi.nlm.nih.gov/pubmed/28939858
http://doi.org/10.1007/978-1-0716-0290-4_23
http://www.ncbi.nlm.nih.gov/pubmed/32006414
http://doi.org/10.1016/j.jconrel.2018.01.028
http://www.ncbi.nlm.nih.gov/pubmed/29391232
http://doi.org/10.1186/s12885-020-07180-x
http://www.ncbi.nlm.nih.gov/pubmed/32689954
http://doi.org/10.1186/s13045-018-0646-9
http://doi.org/10.1007/978-1-0716-0203-4_2
http://doi.org/10.1080/14789450.2018.1429924

	Introduction 
	Materials and Methods 
	Data Source 
	TCGA 
	CPTAC (Clinical Proteomic Tumor Analysis Consortium) 

	Differential Expression Analysis 
	TCGA 
	CPTAC 

	Enrichment Analysis 
	Survival Analysis 
	Log-Rank Test 
	Multivariate/Univariate Cox Regression 

	Risk-Score System Establishment 
	Correlation Analysis 

	Results 
	Identification of Up-Regulated Tumor Cell Membrane Proteins 
	Most Highly Expressed Membrane Protein-Coding Genes Could Serve as Risk Factors for Cancer Patients 
	Function Enrichment Analysis of the Selected Membrane Proteins 
	Paired Membrane Proteins Displayed More Precise Prognostic Value 
	The Highly Expressed Cell Surface Proteins of the Tumor Tissues were Highly Correlated 
	Identification of TSAs That Are Expressed Less in Normal Tissues 
	Validation of Protein Expression of the Selected Genes 

	Discussion 
	Conclusions 
	References

