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Simple Summary: This study investigates the latest achievements, challenges, and future research
directions of deep learning techniques for lung cancer and pulmonary nodule detection. Hopefully,
these research findings will help scientists, investigators, and clinicians develop new and effective
medical imaging tools to improve lung nodule diagnosis accuracy, sensitivity, and specificity.

Abstract: Medical imaging tools are essential in early-stage lung cancer diagnostics and the mon-
itoring of lung cancer during treatment. Various medical imaging modalities, such as chest X-ray,
magnetic resonance imaging, positron emission tomography, computed tomography, and molecular
imaging techniques, have been extensively studied for lung cancer detection. These techniques
have some limitations, including not classifying cancer images automatically, which is unsuitable
for patients with other pathologies. It is urgently necessary to develop a sensitive and accurate
approach to the early diagnosis of lung cancer. Deep learning is one of the fastest-growing topics in
medical imaging, with rapidly emerging applications spanning medical image-based and textural
data modalities. With the help of deep learning-based medical imaging tools, clinicians can detect
and classify lung nodules more accurately and quickly. This paper presents the recent development
of deep learning-based imaging techniques for early lung cancer detection.

Keywords: lung cancer; medical images; segmentation; classification; deep learning; convolutional
neural network

1. Introduction

Lung cancer is the most frequent cancer and the cause of cancer death, with the
highest morbidity and mortality in the United States [1]. In 2018, GLOBOCAN estimated
approximately 2.09 million new cases and 1.76 million lung cancer-related deaths [2]. Lung
cancer cases and deaths have increased significantly globally [2]. Approximately 85–88%
of lung cancer cases are non-small cell lung carcinoma (NSCLS), and about 12–15% of
lung cancer cases are small cell lung cancer (SCLC) [3]. Early lung cancer diagnosis and
intervention are crucial to increase the overall 5-year survival rate due to the invasiveness
and heterogeneity of lung cancer [4].

Over the past two decades, various medical imaging techniques, such as chest X-ray,
positron emission tomography (PET), magnetic resonance imaging (MRI), computed to-
mography (CT), low-dose CT (LDCT), and chest radiograph (CRG), have been extensively
investigated for lung nodule detection. Although CT is the golden standard imaging tool
for lung nodule detection, it can only detect apparent lung cancer with high false-positive
rates and produces harmful X-ray radiation [5]. LDCT has been proposed to reduce harm-
ful radiation to detect lung cancer [6]. However, cancer-related deaths were concentrated
in subjects undergoing LDCT. 2-deoxy-18F-fluorodeoxyglucose (18F-FDG) PET has been
developed to improve the detection performance of lung cancer [7]. 18F-FDG PET produces
semi-quantitative parameters of tumor glucose metabolism, which is helpful in the diag-
nosis of NSCLC [8]. However, 18F-FDG PET requires further evaluation of patients with
NSCLC. Some new imaging techniques, such as magnetic induction tomography (MIT),
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have been developed for early-stage cancer cell detection [9]. However, this technique lacks
clinical validation of human subjects.

Many computer-aided detection (CAD) systems have been extensively studied for
lung cancer detection and classification [10,11]. Compared to trained radiologists, CAD
systems provide better lung nodules and cancer detection performance in medical images.
Generally, the CAD-based lung cancer detection system includes four steps: image process-
ing, extraction of the region of interest (ROI), feature selection, and classification. Among
these steps, feature selection and classification play the most critical roles in improving the
accuracy and sensitivity of the CAD system, which relies on image processing to capture
reliable features. However, benign and malignant nodule classification is a challenge.
Many investigators have applied deep learning techniques to help radiologists make more
accurate diagnoses [12–15]. Previous studies have confirmed that deep learning-based
CAD systems can effectively improve the efficiency and accuracy of medical diagnosis,
especially for diagnosing various common cancers, such as lung and breast cancers [16,17].
Deep learning-based CAD systems can automatically extract high-level features from orig-
inal images using different network structures than traditional CAD systems. However,
deep learning-based CAD systems have some limitations, such as low sensitivity, high
FP, and time consumption. Therefore, a rapid, cost-effective, and highly sensitive deep
learning-based CAD system for lung cancer prediction is urgently needed.

The deep learning-based lung imaging techniques research mainly includes pulmonary
nodule detection, segmentation, and classification of benign and malignant pulmonary
nodules. Researchers mainly focus on developing new network structures and loss func-
tions to improve the performance of deep learning models. Several research groups have
recently published review papers on deep learning techniques [18–20]. However, deep
learning techniques have developed rapidly, and many new methods and applications
have emerged every year. This research has appeared with content that previous studies
cannot cover.

This paper presents recent achievements in lung cancer segmentation, detection, and
classification using deep learning methods. This study highlights current state-of-the-art
deep learning-based lung cancer detection methods. This paper also highlights recent
achievements, relevant research challenges, and future research directions. The rest of the
paper is structured as follows. Section 2 describes the currently available medical lung
imaging techniques for lung cancer detection; Section 3 reviews some recently developed
deep learning-based imaging techniques; Section 4 presents lung cancer prediction using
deep learning techniques; Section 5 describes the current challenges and future research
directions of deep learning-based lung imaging methods; and Section 6 concludes this study.

2. Lung Imaging Techniques

Medical imaging tools help radiologists diagnose lung disease. Among these medical
imaging approaches, CT offers more advantages, including size, location, characterization,
and lesion growth, which could identify lung cancer and nodule information. 4D CT pro-
vides more precise targeting of the administered radiation, which significantly impacts lung
cancer management [21]. Lakshmanaprabu et al. [22] developed an automatic detection
system based on linear discriminate analysis (LDA) and an optimal deep neural network
(ODNN) to classify lung cancer in CT lung images. The LDA reduced the extracted image
features to minimize the feature dimension. The ODNN was applied and optimized by
a modified gravitational search algorithm to provide a more accurate classification result.
Compared to CT, LDCT is more sensitive to early-stage lung nodules and cancer detection
with reduced radiation. However, it does not help reduce lung cancer mortality. It is
recommended that LDCT be carried out annually for high-risk smokers aged 55 to 74 [23].

PET produces much higher sensitivity and specificity for lung nodule detection than
CT due to reactive or granulomatous nodal disease [24]. PET offers a good correlation with
longer progression times and overall survival rates. 18F-FDG PET has been applied to
diagnose solitary pulmonary nodules [25]. 18F-FDG PET is a crucial in-patient selection
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and advanced NSCLC for radical radiotherapy. PET-assisted radiotherapy offers more
accuracy [26] and manages about 32% of patients with stage IIIA lung cancer [27]. 18F-
FDG PET provides a significant response assessment in patients with NSCLC undergoing
induction chemotherapy.

MRI is the most potent lung imaging tool without ionizing radiation, but it provides
insufficient information with high costs and time-consuming limitations. It failed to detect
about 10% of small lung nodules (4–8 mm in diameter) [28]. MRI with ultra-short echo
time (UTE) can improve signal intensity and reduce lung susceptibility artifacts. MRI with
UTE is sensitive for detecting small lung nodules (4–8 mm) [29]. MRI achieves a higher
lung nodule detection rate than LDCT. MRI with different pulse sequences also improved
lung nodule detection sensitivity. The authors investigated T1-weighted and T2-weighted
MRI to detect small lung nodules [30,31]. Compared to 3T 1.5 MRI, 1.5T MRI is much easier
to identify ground glass opacities [32]. Ground glass opacities were successfully detected
in 75% of subjects with lung fibrosis who received 1.5T MRI with SSFP sequences [33]. MRI
with T2-weighted fast spin echo provides similar or even better performance for ground
glass infiltrate detection in immunocompromised subjects [34].

Several research groups have recently investigated the feasibility of using MIT for lung
disease detection [35,36]. However, due to the lack of measurement systems, expensive
computational electromagnetic models, low image resolution, and some other challenges,
MIT technology still has a long way to go before it can be widely used as a commercial
imaging tool in clinical conditions.

Medical imaging approaches play an essential strategy in early-stage lung cancer
detection and improve the survival rate. However, these techniques have some limita-
tions, including high false positives, and cannot detect lesions automatically. Several CAD
systems have been developed for lung cancer detection [37,38]. As shown in Figure 1, a
CAD-based lung nodule detection system [14] usually consists of three main phases: data
collection and pre-processing, training, and testing. There are two types of CAD systems:
the detection system identifies specific anomalies according to interest regions, and the di-
agnostic system analyses lesion information, such as type, severity, stage, and progression.
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Figure 1. CAD-based lung cancer detection system [14]. The figure is reused from reference [14]; no
special permission is required to reuse all or part of articles published by MDPI, including figures
and tables. For articles published under an open-access Creative Common CC BY license.

3. Deep Learning-Based Imaging Techniques

A deep learning-based CAD system has been reported as a promising tool for the
automatic diagnosis of lung disease in medical imaging with significant accuracy [34–36].
The deep learning model is a neural network model with multiple levels of data represen-
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tation. The deep learning approaches can be grouped into unsupervised, reinforcement,
and supervised learning.

Unsupervised learning does not require user guidance, which analyzes the data and
then sorts inherent similarities between the input data. Therefore, semi-supervised learning
is a mixed model that can provide a win-win situation, even with different challenges.
Semi-supervised learning techniques use both labeled and unlabeled data. With the help of
labeled and unlabeled data, the accuracy of the decision boundary becomes much higher.
Auto-Encoders (AE), Restricted Boltzmann Machines (RBM), and Generative Adversarial
Networks (GAN) are good at clustering and nonlinear dimensionality reduction. A large
amount of labeled data is usually required during training, which increases cost, time, and
difficulty. Researchers have applied deep clustering to reduce labeling and make a more
robust model [39,40].

Convolutional neural networks (CNN), deep convolutional neural networks (DCNN),
and recurrent neural networks (RNN) are the most widely used unsupervised learning
algorithms in medical images. CNN architecture is one of the most widely used supervised
deep learning approaches for lesion segmentation and classification because less pre-
processing is required. CNN architectures have recently been applied to medical images for
image segmentation (such as Mask R-CNN [41]) and classification (such as AlexNet [42] and
VGGNet [43]). DCNN architectures usually contain more layers with complex nonlinear
relationships, which have been used for classification and regression with reasonable
accuracy [44–46]. RNN architecture is a higher-order neural network that can accommodate
the network output to re-input [47]. RNN applies the Elman network with feedback links
from the hidden layer to the input layer, which has the potential to capture and exploit
cross-slice variations to incorporate volumetric patterns of nodules. However, RNN has a
vanishing gradient problem.

The reinforcement learning technique was first applied in Google Deep Mind in
2013 [48]. Since then, reinforcement learning approaches have been extensively investigated
to improve lung cancer detection accuracy, sensitivity, and specificity. Semi-supervised
learning approaches, such as deep reinforcement learning and generative adversarial
networks, use labeled datasets.

Supervised learning usually involves a learning algorithm, and labels are assigned
to the input data according to the labeling data during training. Various supervised
deep learning approaches have been applied to CT images to identify abnormalities with
anatomical localization. These approaches have some drawbacks, such as the large amount
of labeled data required during training, the assumption of fixed network weights upon
training completion, and the inability to be improved after training. Thus, a few-shot
learning (FSL) model is developed to reduce data requirements during training.

4. Lung Cancer Prediction Using Deep Learning

This section presents recent achievements in lung cancer and nodule prediction using
deep learning techniques. The processing includes image pre-processing, lung nodule
segmentation, detection, and classification.

4.1. Imaging Pre-Processing Techniques and Evaluation
4.1.1. Pre-Processing Techniques

The pre-processed images are injected into a deep learning algorithm with specific
architecture and training and tested on the image datasets. The image noise affects the pre-
cision of the final classifier. Several noise reduction approaches, such as median filter [48],
Wiener filter [49], and non-local means filter [50], have been developed for pre-processing
to improve accuracy and generalization performance. After denoising, a normalization
method, such as min-max normalization, is required to rescale the images and reduce the
complexity of image datasets.
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4.1.2. Performance Metrics

Several performance metrics have been used to evaluate the performance of deep learn-
ing algorithms, including accuracy, precision, sensitivity, specificity, F1_score, error, mean
squared error (MSE), receiver operation characteristic (ROC) curve, over-segmentation
rate (OR), under-segmentation rate (UR), Dice similarity coefficient (DSC), Jaccard Score
(JS), average symmetric surface distance (ASD), modified Hausdorff distance (MHD), and
intersection over union (IoU).

Accuracy assesses the capability concerning the results with the existing information
features. Sensitivity is helpful for evaluation when FN is high. Precision is an effective
measurement index when FP is high. The F1_score is applied when the class distribution is
uneven. ROC can tune detection sensitivity. The area under the receiver operating charac-
teristic curve (AUC) has been used to evaluate the proposed deep learning model. Larger
values of accuracy, precision, sensitivity, specificity, AUC, DSC, and JS, and smaller values
of Error, UR, OR, and MHD indicate better performance of a deep learning-based algorithm.

These performance metrics can be computed using the following equations [51,52]:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F1_score =
2TP

2TP + FP + FN
(5)

Error =
FP + FN

TP + TN + FP + FN
(6)

DSC =
2TP

2TP + FP + FN
(7)

JS =
DSC

2 − DSC
(8)

MHD(A, B) =
1

Na
∑

a∈A
min
b∈B

||a − b|| (9)

IoU =
TP

TP + FP + TN
(10)

where TP (true positive) denotes the number of correct positives; TN (true negative)
indicates the number of correct negatives; FP (false positive) means the number of incorrect
positives; FN (false negative) denotes the number of incorrect negatives; B is the target
object region, A denotes ground truth dataset, and Na is the number of pixels in A; IoU
refers to the percentage of the intersection to the union of the ground truth and predicted
areas and is a metric for various object detection and semantic segmentation problems.

4.2. Datasets

Lung image datasets play an essential role in evaluating the performance of deep
learning-based algorithms for lung nodule classification and detection. Table 1 shows
publicly available lung images and clinical datasets for assessing nodule classification and
detection performance.
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Table 1. Lung image dataset.

Reference Dataset Sample Number

[53] Lung image database consortium (LIDC) 399 CT images

[54] Lung image database consortium and image database
resource initiative (LIDC-IDRI) 1018 CT images from 1010 patients

[55] Lung nodule analysis challenge 2016 (LUNA16) 888 CT images from LIDC-IDRI dataset

[56] Early lung cancer action program (ELCAP) 50 LDCT lung images &
379 unduplicated lung nodule CT images

[57] Lung Nodule Database (LNDb) 294 CT images from Centro Hospitalar e
Universitario de São Joãao

[58] Indian Lung CT Image Database (ILCID) CT images from 400 patients

[59] Japanese Society of Radiological Technology (JSRT) 154 nodules & 93 nonnodules with labels

[60] Nederland-Leuvens Longkanker Screenings Onderzoek
(NELSON) CT images from 15,523 human subjects

[61] Automatic nodule detection 2009 (ANODE09) 5 examples & 50 test images

[62] Shanghai Zhongshan hospital database CT images from 350 patients

[63]

Society of Photo-Optical Instrumentation Engineers
in conjunction with the American Association of Physicists

in Medicine and the National Cancer Institute
(SPIE-AAPM-NCI) LungX

60 thoracic CT scans with 73 nodules

[64] General Hospital of Guangzhou military command
(GHGMC) dataset 180 benign & 120 malignant lung nodules

[65] First Affiliated Hospital of Guangzhou Medical University
(FAHGMU) dataset 142 T2-weighted MR images

[66] Non-small cell lung cancer (NSCLC)-Radiomics database 13,482 CT images from 89 patients

[67] Danish lung nodule screening trial (DLCST) CT images from 4104 subjects

[68] U.S. National Lung Screening Trial (NLST) CT images from 1058 patients with lung cancer &
9310 patients with benign lung nodules

4.3. Lung Image Segmentation

Image segmentation aims to recognize the voxel information and external contour
of the region of interest. In medical imaging, segmentation is mainly used to segment
organs or lesions to quantitatively analyze relevant clinical parameters and provide further
guidance for follow-up diagnosis and treatment. For example, target delineation is crucial
for surgical image navigation and tumor radiotherapy guidance.

Lung segmentation plays a crucial role in medical images for lesion detection, in-
cluding thorax extraction (removes artifacts) and lung extraction (identifies the left and
right lungs). Several threshold techniques, such as the threshold method [69], iterative
threshold [70], Otsu threshold [71], and adaptive threshold [72,73], have been investigated
for lung segmentation. Few research groups have investigated segmentation methods
based on region and 3D region growth [74,75]. Kass et al. [76] first introduced the active
contour model, and Lan et al. [77] applied the active contour model for lung segmentation.
These techniques are manual segmentation and have many disadvantages, such as being
relatively slow, prone to human error, scarcity of ground truth, and class imbalance.

Several deep learning approaches have been investigated for lung segmentation.
Wang et al. [78] developed a multi-view CNN (MV-CNN) for lung nodule segmentation,
with an average DSC of 77.67% and an average ASD of 0.24 for the LIDC-IDRI dataset.
Unlike conventional CNN, MV-CNN integrates multiple input images for lung nodule
identification. However, it is difficult for MV-CNN to process 3D CT scans. Thus, a
3D CNN was developed to process volumetric patterns of cancerous nodules [79]. Sun
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et al. [80] designed a two-stage CAD system to segment lung nodules and FP reduction
automatically. The first stage aims to identify and segment the nodules, and the second
stage aims to reduce FP. The system was tested on the LIDC-IDRI dataset and evaluated by
four experienced radiologists. The system obtained an average F1_score of 0.8501 for lung
nodule segmentation.

In 2020, Cao et al. [81] developed a dual-branch residual network (DB-ResNet) that
simultaneously captures the multi-view and multi-scale features of nodules. The pro-
posed DB-ResNet was evaluated on the LIDC-IDRI dataset and achieved a DSC of 82.74%.
Compared to trained radiologists, DB-ResNet provides a higher DSC.

In 2021, Banu et al. [82] proposed an attention-aware weight excitation U-Net (AWEU-
Net) architecture in CT images for lung nodule segmentation. The architecture contains
two stages: lung nodule detection based on fine-tuned Faster R-CNN and lung nodule seg-
mentation based on the U-Net with position attention-aware weight excitation (PAWE) and
channel attention-aware weight excitation (CAWE). The AWEU-Net obtained DSC of 89.79%
and 90.35%, IoU of 82.34%, and 83.21% for the LUNA16 and LIDC-IDRI datasets, respectively.

Dutta [83] developed a dense recurrent residual CNN (Dense R2Unet) based on the
U-Net and dense interconnections. The proposed method was tested on a lung segmen-
tation dataset, and the results showed that the Dense R2UNet offers better segmentation
performance than U-Net and ResUNet.

Table 2 shows the recently developed lung nodule segmentation techniques. Among
these approaches, SVM systems obtained an accuracy range of 92.6–98.1%, CNN-based
systems obtained a specificity range of 77.67–91%, ResNet models obtained a DSC range of
82.74–98.1%, and U-Net segmentation systems achieved an accuracy range of 82.2–99.27%,
precision range of 46.61–98.2%, recall range of 21.43–96.33%, and F1_score range of 24.64–
99.1%, respectively. The DenseNet201 system obtained an accuracy of 97%, a sensitivity of
96.2%, a specificity of 97.5%, an AUC of 0.968, and an F1_score of 96.1%. Several segmenta-
tion methods, including SVM, Dense R2UNet, 3D Attention U-Net, Dense R2UNet, Res
BCDU-Net, U-Net FSL, U-Net CT, U-Net PET, U-Net PET/CT, CNN, and DenseNet201,
achieved high accuracy results (over 94%).

Table 2. Lung nodule segmentation approaches.

Reference Year Method Imaging Datasets Results

[84] 2013 Support vector machine (SVM) CT images Shiraz University of
Medical Sciences Accuracy: 98.1%

[85] 2014 Lung nodule
segmentation CT images 85 patients Accuracy: >90%

[86] 2015 SVM CT images 193 CT images

Accuracy: 94.67% for
benign tumors;

Accuracy: 96.07% for
adhesion tumor

[87] 2015 Bidirectional chain coding
combined with SVM CT images LIDC Accuracy: 92.6%

[88] 2015 Convolutional networks
(ConvNets) CT images 82 patients DSC: 68% ± 10%

[77] 2017 Multi-view convolutional neural
networks (MV-CNN) CT images LIDC-IDRI DSC: 77.67%

[80] 2017 Two-stage CAD CT images LIDC-IDRI F1-score: 85.01%

[89] 2017 3D Slicer chest imaging platform
(CIP) CT images LIDC median DSC: 99%

[90] 2017 Deep computer aided detection
(CAD) CT images LIDC-IDRI Sensitivity: 88%

[91] 2018 3D deep multi-task CNN CT images LUNA16 DSC: 91%

[92] 2018 Improved U-Net CT images LUNA16 DSC: 73.6%
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Table 2. Cont.

Reference Year Method Imaging Datasets Results

[93] 2018
Incremental-multiple resolution
residually connected network

(MRRN)
CT images

TCIA DSC: 74% ± 0.13

MSKCC DSC: 75%±0.12

LIDC DSC: 68%±0.23

[94] 2018 U-Net hematoxylin-eosin-
stained slides

712 lung cancer
patients operated in
Uppsala Hospital,

Stanford TMA cores

Precision: 80%

[95] 2019 Mask R-CNN CT images LIDC-IDRI Average precision:78%

[96] 2020 3D-UNet CT images LUNA16 DSC: 95.30%

[81] 2020 Dual-branch Residual Network
(DB-ResNet) CT images LIDC-IDRI DSC: 82.74%

[97] 2021 End-to-end
deep learning CT images 1916 lung tumors in

1504 patients Sensitivity: 93.2%

[98] 2021 3D Attention U-Net COVID-19
CT images

Fifth Medical Center
of the PLA General

Hospital
Accuracy: 94.43%

[99] 2021 Improved U-Net CT images LIDC-IDRI Precision: 84.91%

[82] 2021
Attention-aware weight excitation

U-Net (AWEU-Net)
CT images LUNA16 DSC: 89.79%

LIDC-IDRI DSC: 90.35%

[83] 2021
Dense Recurrent Residual

Convolutional Neural
Network(Dense R2U CNN)

CT images LUNA Sensitivity: 99.4% ± 0.2%

[100] 2021

Modified U-Net in which the
encoder is replaced with a

pre-trained ResNet-34 network
(Res BCDU-Net)

CT images LIDC-IDRI Accuracy: 97.58%

[101] 2021
Hybrid COVID-19 segmentation

and recognition framework
(HMB-HCF)

X-Ray images COVID-19 dataset
from 8 sources * Accuracy: 99.30%

[102] 2021 Clinical image radionics DL
(CIRDL) CT Images

First Affiliated
Hospital of

Guangzhou Medical
University

Sensitivity: 0.8763

[103] 2021 2D & 3D hybrid CNN CT scans 260 patients with
lung cancer treated Median DSC: 0.73

[104] 2022

Few-shot learning U-Net (U-Net
FSL)

PET/CT images Lung-PET-CT-DX
TCIA

Accuracy: 99.27% ± 0.03

U-Net CT Accuracy: 99.08% ± 0.05

U-Net PET Accuracy: 98.78% ± 0.06

U-Net PET/CT Accuracy: 98.92% ± 0.09

CNN Accuracy: 98.89% ± 0.08

Co-learning Accuracy: 99.94% ± 0.09

[105] 2022 DenseNet201 CT images Seoul St. Mary’s
Hospital dataset Sensitivity: 96.2%

COVID-19 dataset from 8 sources *: COVID-19 Radiography Database, Pneumonia (virus) vs. COVID-19 Dataset,
Covid-19 X-Ray images using CNN Dataset, COVID-19 X-ray Images5 Dataset, COVID-19 Patients Lungs X-Ray
Images 10,000 Dataset, COVID-19 Chest X-Ray Dataset, COVID-19 Dataset, Curated Chest X-Ray Image Dataset
for COVID-19.

4.4. Lung Nodule Detection

Lung nodule detection is challenging because its shape, texture, and size vary greatly,
and some non-nodules, such as blood vessels and fibrosis, have a similar appearance to
lung nodules that often appear in the lungs. The processing includes two main steps:
lung nodule detection and false-positive nodule reduction. Over the past few decades,
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researchers worldwide have extensively investigated machine learning and deep learning-
based approaches for lung nodule detection. Chang et al. [106] applied the support vector
machine (SVM) for nodules classification in ultrasound images. Nithila et al. [107] de-
veloped a lung nodule detection model based on heuristic search and particle clustering
algorithms for network optimization. In 2005, Zhang et al. [108] developed a discrete-time
cellular neural network (DTCNN) to detect small (2–10 mm) juxtapleural and non-pleural
nodules in CT images. The method obtained a sensitivity of 81.25% at 8.29 FPs per scan for
juxtapleural nodule detection and a sensitivity of 83.9% at 3.47 FPs per scan for non-pleural
nodule detection.

Hwang et al. [109] investigated the relationship between CT and commercial CAD to
detect lung nodules. They also studied LDCT images with three reconstruction kernels (B,
C, and L) from 36 human subjects. The sensitivities of 82%, 88%, and 82% for the nodules of
B, C, and L were obtained for all images. Experimental results showed that CAD sensitivity
could be elevated by combining data from 2 different kernels without radiation exposure.
Young et al. [110] studied the effects on the performance of a CAD-based nodule detection
model by reducing the CT dose. The CAD system was evaluated on the NLST dataset and
obtained sensitivities of 35%, 20%, and 42.5% at the initial dose, 50% dose, and 25% dose,
respectively. Tajbakhsh et al. [111] studied massive training ANN (MTANN) and CNN
for lung nodule detection and classification. MTANN and CNN obtained AUCs of 0.8806
and 0.7755, respectively. MTANN performs better than CNN for lung nodule detection
and classification.

Liu et al. [112] developed a cascade CNN for lung nodule detection. The transfer
learning model was applied to train the network to detect nodules, and a non-nodule
filter was introduced to the detection network to reduce false positives (FP). The proposed
architecture effectively reduces FP in the lung nodule detection system. Li et al. [65]
developed a lung nodule detection method based on a faster R-CNN network and an FP
reduction model in thoracic MR images. In this study, a faster R-CNN was developed to
detect lung nodules, and an FP reduction model was developed to reduce FP. The method
was tested on the FAHGMU dataset and obtained a sensitivity of 85.2%, with 3.47 FP
per scan. Cao et al. [113] developed a two-stage CNN (TSCNN) model for lung nodule
detection. In the first stage, a U-Net based on ResDense was applied to detect lung nodules.
A 3D CNN-based ensemble learning architecture was proposed in the second stage to
reduce false-positive nodules. The proposed model was compared with three existing
models, including 3DDP-DenseNet, 3DDP-SeResNet, and 3DMBInceptionNet.

Several 3D CNN models have been developed for lung nodule detection [114–116].
Perez et al. [117] developed a 3D CNN to automatically detect lung cancer and tested the
model on the LIDC-IDRI dataset. The experimental results showed that the proposed
method provides a recall of 99.6% and an AUC of 0.913. Vipparla et al. [118] proposed a
multi-patched 3D CNN with a hybrid fusion architecture for lung nodule detection with
reduced FP. The method was tested on the LUNA16 dataset and achieved a competition
performance metric (CPM) of 0.931. Dutande et al. [119] developed a 2D–3D cascaded CNN
architecture and compared it with existing lung nodule detection and segmentation meth-
ods. The results showed that the 2D–3D cascaded CNN architecture obtained a DCM of 0.80
for nodule segmentation and a sensitivity of 90.01% for nodule detection. Luo et al. [120]
developed a 3D sphere representation-based center-point matching detection network
(SCPM-Net) consisting of sphere representation and center-point matching components.
The SCPM-Net was tested on the LUNA16 dataset and achieved an average sensitivity of
89.2% at 7 FPs per image for lung nodule detection. Franck et al. [121] investigated the
effects on the performance of deep learning image reconstruction (DLIR) techniques on
lung nodule detection in chest CT images. In this study, up to 6 artificial nodules were
located within the lung phantom. Images were generated using 50% ASIR-V and DLIR
with low (DL-L), medium (DL-M), and high (DL-H) strengths. No statistically significant
difference was obtained between these methods (p = 0.987, average AUC: 0.555, 0.561, 0.557,
and 0.558 for ASIR-V, DL-L, DL-M, and DL-H).
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Table 3 shows recently developed lung nodule detection approaches using deep
learning techniques. Among these approaches, the co-learning feature fusion CNN obtained
the best accuracy of 99.29%, which is higher than other lung nodule detection approaches.
Several networks, including 3D Faster R-CNN with U-Net-like encoder, YOLOv2, YOLOv3,
VGG-16, DTCNN-ELM, U-Net++, MIXCAPS, and ProCAN, obtained good accuracy (>90%)
of lung nodule detection.

Table 3. Lung nodule detection approaches.

Reference Year Method Imaging Datasets Results

[122] 2016 3D CNN CT images LUNA16 Sensitivity: >87% at
4 FPs/scan

[123] 2016 2D multi-view convolutional networks
(ConvNets) CT images LIDC-IDRI

Sensitivity: 85.4% at
1 FPs/scan, 90.1% at

4 FPs/scan

[124] 2016 Thresholding method CT images JSRT Accuracy: 96%

[110] 2017 Computer aided detection (CAD) LDCT NLST Mean sensitivity:
74.1%

[125] 2017 3D CNN LDCT KDSB17 Accuracy: 87.5%

[126] 2017 3D Faster R-CNN with U-Net-like encoder CT scans
LUNA16 Accuracy: 81.41%;

LIDC-IDRI Accuracy: 90.44%

[127] 2018 Single-view 2D CNN CT scans LUNA16 metric score: 92.2%

[128] 2018 DetectNet CT scans LIDC Sensitivity: 89%

[129] 2018 3D CNN CT scans KDSB17 Sensitivity: 87%;

[130] 2018
Novel pulmonary nodule detection

algorithm (NODULe) based on 3D CNN CT scans
LUNA16 CPM score: 94.7%

LIDC-IDRI Sensitivity: 94.9%

[131] 2018 Deep neural networks (DNN)
PET images 50 lung cancer patients,

& 50 patients without
lung cancer

Sensitivity: 95.9%

ultralow dose PET Sensitivity: 91.5%

[132] 2018

FissureNet

3DCT COPDGene

AUC: 0.98

U-Net AUC: 0.963

Hessian AUC: 0.158

[133] 2018
DFCN-based cosegmentation

(DFCN-CoSeg)
CT scans 60 NSCLC patients Score: 0.865 ± 0.034;

PET images Score: 0.853 ± 0.063;

[134] 2018 Multi-scale Gradual Integration CNN
(MGI-CNN) CT scans

LUNA16,
V1 dataset includes

551,065 subjects;
V2 dataset includes

754,975 subjects

CPM: 0.908 for the V1
dataset, 0.942 for the

V2 dataset;

[135] 2018
Deep fully CNN (DFCNet)

CT scans LIDC-IDR
Accuracy: 84.58%

CNN Accuracy: 77.6%

[136] 2018 Deep learning–based automatic detection
algorithm (DLAD) CT scans Seoul National

University Hospital Sensitivity: 69.9%

[137] 2018
SVM classifier coupled with a least

absolute shrinkage and selection operator
(SVM-LASSO)

CT scans LIDC-IDRI Accuracy: 84.6%

[138] 2019 CNN CT scans LIDC-IDR
Sensitivity: 88% at

1.9 FPs/scan; 94.01%
at 4.01 FPs/scan

[139] 2019 3D CNN LDCT LUNA16 and Kaggle
datasets

Average metric:
92.1%

[140] 2019 Deep learning model (DLM) based on
DCNN

Chest radiographs
(CXRs)

3500 CXRs contain lung
nodules & 13,711

normal CXRs
Sensitivity: 76.8%
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Table 3. Cont.

Reference Year Method Imaging Datasets Results

[141] 2019 Two-Step Deep Learning CT scans Nagasaki University
Hospital

Sensitivity of 79.6%
with sizes ≤0.6 mm;
Sensitivity of 75.5%

with sizes ≤0.7 mm;

[142] 2019 Faster R-CNN network and false positive
(FP) CT scans FAHGMU Sensitivity: 85.2%

[143] 2019 YOLOv2 with Asymmetric Convolution
Kernel CT scans LIDC-IDRI Sensitivity: 94.25%

[144] 2019 VGG-16 network CT scans LIDC-IDRI Accuracy: 92.72%

[145] 2019 Noisy U-Net (NU-Net) CT scans LUNA16 Sensitivity: 97.1%

[146] 2019 CAD using a multi-scale dot
nodule-enhancement filter CT scans LIDC Sensitivity: 87.81%

[147] 2019 Co-Learning Feature Fusion CNN PET-CT scans 50 NSCLC patients Accuracy: 99.29%

[148] 2019 Convolution networks with attention
feedback (CONAF) Chest radiographs 430,000 CXRs Sensitivity: 78%

[148] 2019 Recurrent attention model with
annotation feedback (RAMAF) Chest radiographs 430,000 CXRs Sensitivity: 74%

[113] 2020 Two-Stage CNN (TSCNN) CT scans LUNA16 & LIDC-IDRI CPM: 0.911

[149] 2020 Deep Transfer CNN and Extreme
Learning Machine (DTCNN-ELM) CT scans LIDC-IDRI &

FAH-GMU Sensitivity: 93.69%;

[150] 2020 U-Net++ CT scans LIDC-IDRI
Sensitivity: 94.2% at
1 FP/scan, 96% at

2 FPs/scan

[151] 2020 MSCS-DeepLN CT scans LIDC-IDRI & DeepLN

[152] 2020 Multi-scale CNN (MCNN) CT scans LIDC-IDRI Accuracy:
93.7% ± 0.3

[153] 2021 Lung Cancer Prediction CNN (LCP-CNN) CT scans U.S. NLST Sensitivity: 99%;

[154] 2021 Automatic AI-powered CAD CT scans 150 images include 340
nodules

mean sensitivity: 82%
for second-reading

mode, 80% for
concurrent-reading

mode

[155] 2021 DNA-derived phage nose (D2pNose)
using machine learning and ANN CT scans Pusan National

University

Detection accuracy:
>75%;

Classification
accuracy: >86%

[156] 2021 Capsule network-based mixture of experts
(MIXCAPS) CT scans LIDC-IDRI Sensitivity: 89.5%;

[157] 2021 CNN with attention mechanism CT scans LUNA16 Specificity: 98.9%

[121] 2021 Deep learning image reconstruction
(DLIR) CT scans LIDC-IDRI

AUC of 0.555, 0.561,
0.557, 0.558 for

ASIR-V, DL-L, DL-M,
DL-H

[58] 2021 2D-3D cascaded CNN CT scans LIDC-IDRI Sensitivity: 90.01%

[120] 2022
3D sphere representation-based

center-points matching detection network
(SCPM-Net)

CT scans LUNA16 Average sensitivity:
89.2%

[158] 2022 YOLOv3 CT scans RIDER Accuracy: 95.17%

[118] 2022 3D Attention CNN CT scans LUNA16 CPM: 0.931

[159] 2022 Progressive Growing Channel Attentive
Non-Local (ProCAN) network CT scans LIDC-IDRI Accuracy: 95.28%
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4.5. Lung Nodule Classification

In recent years, investigators have studied various deep learning techniques to im-
prove the performance of lung nodule classification [160–173]. The sensitivity and speci-
ficity of the SIFT-based classifier and SVM in the classification of pulmonary nodules
reached 86% and 97% [160], 91.38%, and 89.56% [163], respectively. The accuracy, sensitiv-
ity, and specificity of multi-scale CNN and multi-crop CNN in lung nodule classification
were 90.63%, 92.30%, and 89.47% [164], respectively, and 87%, 77%, and 93% [170], re-
spectively. The accuracy of deep-level semantic networks and multi-scale CNN in lung
nodule classification were 84.2% [167] and 86.84% [168], respectively. The CAD system
developed by Cheng et al. [169] achieved the best accuracy of 95.6%, sensitivity of 92.4%,
and specificity of 98.9% in the classification of pulmonary nodules.

The comparative study results showed that the sensitivity and specificity of CNN
and DBN for pulmonary nodule classification are 73.40% and 73.30%, 82.20%, and 78.70%,
respectively [165]. Another comparative study showed that the sensitivity and specificity
of CNN and ResNet in the classification of nodules are 76.64% and 89.50%, 81.97%, and
89.38%, respectively [171]. The combined application of CNN and RNN achieved accu-
racy, sensitivity, and specificity of 94.78%, 94.66%, and 95.14%, respectively, in classifying
pulmonary nodules [172].

In 2019, Zhang et al. [174] used an ensemble learner of multiple deep CNN in CT
images and obtained a classification accuracy of 84% for the LIDC-IDRI dataset. The
proposed classifier achieved better performance than other algorithms, such as SVM, multi-
layer perceptron, and random forests.

Sahu et al. [175] proposed a lightweight multi-section CNN with a classification accu-
racy of 93.18% for the LIDC-IDRI dataset to improve accuracy. The proposed architecture
could be applied to select the representative cross sections determining malignancy that
facilitate the interpretation of the results.

Ali et al. [176] developed a system based on transferable texture CNN that consists
of nine layers to extract features automatically and classify lung nodules. The proposed
method achieved an accuracy of 96.69% ± 0.72%, with an error of 3.30% ± 0.72% and a
recall of 97.19% ± 0.57%, respectively.

Marques et al. [177] developed a multi-task CNN to classify malignancy nodules with
an AUC of 0.783. Thamilarasi et al. [178] proposed an automatic lung nodule classifier
based on CNN with an accuracy of 86.67% for the JSRT dataset. Kawathekar et al. [179]
developed a lung nodule classifier using a machine-learning technique with an accuracy of
94% and an F1_score of 92% for the LNDb dataset.

More recently, Radford et al. [180] proposed deep convolution GAN (DCGAN),
Chuquicusma et al. [181] applied DCGAN to generate realistic lung nodules, and
Zhao et al. [182] applied Forward and Backward GAN (F&BGAN) to classify lung nodules.
The F&BGAN was evaluated on the LIDC-IDRI dataset and obtained the best accuracy of
95.24%, a sensitivity of 98.67%, a specificity of 92.47%, and an AUC of 0.98.

Table 4 shows the recently developed traditional and deep learning-based tech-
niques for classifying lung nodules. Among these methods, CNN variants obtained an
accuracy range of 83.4–99.6%, a specificity range of 73.3–95.17%, a sensitivity range of
73.3–96.85%, and an AUC range of 0.7755–0.9936, respectively. Several methods achieved
high classification accuracy (>95%), including F&BGAN, Inception_ResNet_V2, ResNet152V2,
ResNet152V2+GRU, CSO-CADLCC, ProCAN, Net121, ResNet50, DITNN, and optimal
DBN with an opposition-based pity beetle algorithm. DCNN systems obtained a sensitivity
of 89.3% [183] and an accuracy of 97.3% [184]. The classifier was developed based on the
VGG19 and CNN models and achieved accuracy, sensitivity, specificity, recall, F1_score,
AUC, and MCC above 98%.
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Table 4. Lung nodule classification approaches.

Reference Year Method Imaging Datasets Results

[185] 2014 FF-BPNN CT scans LIDC Sensitivity: 91.4%

[168] 2015 Multi-scale CNN CT scans LIDC-IDRI Accuracy: 86.84%

[166] 2015 CAD using deep features CT scans LIDC-IDRI Sensitivity: 83.35%

[165] 2015 Deep belief network (DBN) CT scans LIDC Sensitivity: 73.4%

[165] 2015 CNN CT scans LIDC Sensitivity:73.3%

[165] 2015 Fractal CT scans LIDC Sensitivity:50.2%

[165] 2015 Scale-invariant feature transform
(SIFT) CT scans LIDC Sensitivity: 75.6%

[186] 2016 Intensity features +SVM CT scans DLCST Accuracy: 27.0%

[186] 2016 Unsupervised features+SVM CT scans DLCST Accuracy: 39.9%

[186] 2016 ConvNets 1 scale CT scans DLCST Accuracy: 84.4%

[186] 2016 ConvNets 2 scale CT scans DLCST Accuracy: 85.6%

[186] 2016 ConvNets 3 scale CT scans DLCST Accuracy: 85.6%

[171] 2017 Multi-crop CNN CT scans LIDC-IDRI Accuracy: 87.14%

[171] 2017 Deep 3D DPN CT scans LIDC-IDRI Accuracy: 88.74%

[171] 2017 Deep 3D DPN+ GBM CT scans LIDC-IDRI Accuracy: 90.44%

[111] 2017 Massive-training ANN (MTANN) CT scans LDCT AUC: 0. 8806

[111] 2017 CNN CT scans LDCT AUC: 0.7755

[187] 2017 Wavelet Recurrent Neural
Network Chest X-Ray

Japanese Society
Radiology and

Technology
Sensitivity: 88.24%

[171] 2017 Multi-crop convolutional neural
network (MC-CNN) CT scans LIDC-IDRI Sensitivity: 77%

[188] 2018
Topology-based phylogenetic
diversity index classification

CNN
CT scans LIDC Sensitivity: 90.70%

[189] 2018 Transfer learning deep 3D CNN CT scans Institution records Accuracy: 71%

[128] 2018 CNN CT scans Kaggle Data
Science Bowl 2017 Sensitivity: 87%

[190] 2018 Feature Representation Using
Deep Autoencoder CT scans ELCAP Accuracy: 93.9%

[112] 2018 Multi-view multi-scale CNN CT scans LIDC-IDRI &
ELCAP

overall classification
rates: 92.3% for

LIDC-IDRI; overall
classification rates:
90.3% for ELCAP

[191] 2018 Wavelet-Based CNN CT scans 448 images include
four categories Accuracy: 91.9%

[192] 2018 Deep ConvNets CT scans LIDC-IDRI Accuracy: 98%

[182] 2018 Forward and Backward GAN
(F&BGAN) CT scans LIDC-IDRI Sensitivity: 98.67%

[174] 2019 Ensemble learner of multiple
deep CNN CT scans LIDC-IDRI Accuracy: 84.0%

[175] 2019 Lightweight Multi-Section CNN CT scans LIDC-IDRI Accuracy: 93.18%
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Table 4. Cont.

Reference Year Method Imaging Datasets Results

[167] 2019 Deep hierarchical semantic CNN
(HSCNN) CT scans LIDC Sensitivity: 70.5%

[193] 2019 Multi-view knowledge-based
collaborative (MV-KBC) CT scans LIDC-IDRI Accuracy: 91.60%

[167] 2019 3D CNN CT scans LIDC Sensitivity: 66.8%

[183] 2019 DCNN CT scans
46 images from
interventional

cytology
Sensitivity: 89.3%

[194] 2019 3D MixNet CT scans LIDC-IDRI &
LUNA16 Accuracy: 88.83%

[194] 2019 3D MixNet +GBM CT scans LIDC-IDRI &
LUNA16 Accuracy: 90.57%

[194] 2019 3D CMixNet+ GBM CT scans LIDC-IDRI &
LUNA16 Accuracy: 91.13

[194] 2019 3D CMixNet+ GBM+Biomarkers CT scans LIDC-IDRI &
LUNA16 Accuracy: 94.17%

[195] 2019
Deep Learning with

Instantaneously Trained Neural
Networks (DITNN)

CT scans Cancer imaging
Archive (CIA) Accuracy: 98.42%

[184] 2020 DCNN CT scans LIDC Accuracy: 97.3%

[196] 2020 CNN CT scans LIDC Sensitivity: 93.4%

[197] 2020 2.75D CNN CT scans LUNA16 AUC: 0.9842

[198] 2020 Two-step Deep Network (TsDN) CT scans LIDC-IDRI Sensitivity: 88.5%

[176] 2020 Transferable texture CNN CT scans LIDC-IDRI &
LUNGx

Accuracy: 96.69% ±
0.72%

[199] 2020 Taguchi-Based CNN X-ray & CT images 245,931 images Accuracy: 99.6%

[200] 2021
Optimal Deep Belief Network

with Opposition-based Pity Beetle
Algorithm

CT scans LIDC-IDRI Sensitivity: 96.86%

[177] 2021 Multi-task CNN CT scans LIDC-IDRI AUC: 0.783

[178] 2021 CNN CT scans JSRT Accuracy: 86.67%

[201] 2021 Inception_ResNet_V2 CT scans LC25000 Accuracy: 99.7%

[201] 2021 VGG19 CT scans LC25000 Accuracy: 92%

[201] 2021 ResNet50 CT scans LC25000 Accuracy: 99%

[201] 2021 Net121 CT scans LC25000 Accuracy: 99.4%

[202] 2021 Improved Faster R-CNN and
transfer learning CT scans Heilongjiang

Provincial Hospital Accuracy: 89.7%

[203] 2021 Three-stream network CT scans LIDC-IDRI Accuracy: 98.2%

[204] 2021 FractalNet CT scans LUNA 16 Sensitivity: 96.68%

[205] 2021 VGG19+CNN X-ray & CT images GitHub Specificity: 99.5%

[205] 2021 ResNet152V2 X-ray & CT images GitHub Specificity: 98.4%

[205] 2021 ResNet152V2+GRU X-ray & CT images GitHub Specificity: 98.7%

[205] 2021 ResNet152V2+Bi-GRU X-ray & CT images GitHub Specificity: 97.8%

[179] 2022 Machine learning CT scans LNDb Accuracy: 94%
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Table 4. Cont.

Reference Year Method Imaging Datasets Results

[159] 2022 Progressively Growing Channel
Attentive Non-Local (ProCAN) CT scans LIDC-IDRI Accuracy: 95.28%

[206] 2022 CNN-based multi-task learning
(CNN-MTL) CT scans LIDC-IDRI Sensitivity: 96.2%

[207] 2022
Cat swarm optimization-based

CAD for lung cancer classification
(CSO-CADLCC)

CT scans Benchmark Specificity: 99.17%

[208] 2022 2-Pathway Morphology-based
CNN (2PMorphCNN) CT scans LIDC-IDRI Sensitivity: 96.85%

Forte et al. [209] recently conducted a systematic review and meta-analysis of the
diagnostic accuracy of current deep learning approaches for lung cancer diagnosis. The
pooled sensitivity and specificity of deep learning approaches for lung cancer detection
were 93% and 68%, respectively. The results showed that AI plays an important role in
medical imaging, but there are still many research challenges.

5. Challenges and Future Research Directions

This study extensively surveys papers published between 2014 and 2022. Tables 2–4
demonstrate that deep learning-based lung imaging systems have achieved high efficiency
and state-of-the-art performance for lung nodule segmentation, detection, and classification
using existing medical images. Compared to reinforcement and supervised learning
techniques, unsupervised deep learning techniques (such as CNN, Faster R-CNN, Mask R-
CNN, and U-Net) are more popular methods that have been used to develop convolutional
networks for lung cancer detection and false-positive reduction.

Previous studies have shown that CT is the most widely used imaging tool in the CAD
system for lung cancer diagnosis. Compared to 2D CNN, 3D CNN architectures provide
more promising usefulness in obtaining representative features of malignant nodules. To
this day, only a few works on 3D CNN for lung cancer diagnosis have been reported.

Deep learning techniques have achieved good performance in segmentation and
classification. However, deep learning techniques still have many unsolved problems
in lung cancer detection. First, clinicians have not fully acknowledged deep learning
techniques for everyday clinical exercise due to the lack of standardized medical image
acquisition protocols. The unification of the acquisition protocols could minimize it.

Second, deep learning techniques usually require massive annotated medical images
by experienced radiologists to complete training tasks. However, it is costly and time
consuming to collect an enormous annotated image dataset, even performed by experi-
enced radiologists. Several methods were applied to overcome the scarcity of annotated
data. For example, transfer learning is a possible way to solve the training problem of
small samples. Another possible method is the computer synthesis of images, such as the
generation of confrontation networks. Inadequate data will inevitably affect the accuracy
and stability of predictions. Therefore, improving prediction accuracy using weak supervi-
sion, transfer learning, and multi-task learning with small labeled data is one of the future
research directions.

Third, the clinical application of deep learning requires high interpretability, but
current deep learning techniques cannot effectively explain the learned features. Many
researchers have applied visualization and parameter analysis methods to explain deep
learning models. However, there is still a certain distance from the interpretable imaging
markers required by clinical requirements. Therefore, investigating the interpretable deep
learning method will be a hot spot in the medical image field.
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Fourth, developing the robustness of the prediction model is a challenging task. Most
deep learning techniques work well only for a single dataset. The image of the same
disease may vary significantly due to different acquisition parameters, equipment, time,
and other factors. This led to poor robustness and generalization of existing deep learning
models. Thus, improving the model structure and training methods by combining brain
cognitive ideas and improving the generalization ability of deep learning is one of the key
future directions.

Finally, some of the current literature has little translation into applicability in clinical
practice due to the lack of experience of non-medical investigators in choosing more
relevant clinical outcomes. Most deep learning techniques were developed by non-medical
professionals with little or no oversight of radiologists, who, in practice, will use these
resources when they become more widely available. As a result, some performance metrics,
such as accuracy, AUC, and precision, which have little meaningful clinical application,
continue to be used and are often the only summary outcomes reported by some studies.
Instead, investigators should always strive to report more relevant clinical parameters,
such as sensitivity and specificity, because they are independent of the prevalence of the
disease and can be more easily translated into practice.

In the future, investigators should pay more attention to the following research di-
rections: (1) develop new convolutional networks and loss functions to improve the per-
formance; (2) weak supervised learning, using a large number of incomplete, inaccurate,
and ambiguous annotation data in the existing medical records to achieve model training;
(3) bring prior clinical knowledge into model training; (4) radiologists, computer scien-
tists, and engineers need to work more closely to develop more realistic and sensitive
models and add more meaning to the research field; (5) single disease identification to
complete disease identification. In clinical examination, only a few cases need to solve
one well-defined problem. For example, clinicians can detect pulmonary nodules in LDCT
and check whether there are other abnormalities, such as emphysema. Solving multiple
problems with one network will not reduce performance in specific tasks. In addition, deep
learning can be explored in some areas where the medical mechanism is not precise, such as
large-scale lung image analysis using deep learning, which is expected to make diagnosing
lung diseases more objective.

6. Conclusions

This paper reviewed recent achievements in deep learning-based approaches for
lung nodule segmentation, detection, and classification. CNN is one of the most widely
used deep learning techniques for lung disease detection and classification, and CT image
datasets are the most frequently used imaging datasets for training networks. The article
review was based on recent publications (published in 2014 and later). Experimental and
clinical trial results demonstrate that deep learning techniques can be superior to trained
radiologists. Deep learning is expected to effectively improve lung nodule segmentation,
detection, and classification. With this powerful tool, radiologists can interpret images more
accurately. Deep learning algorithm has shown great potential in a series of tasks in the
radiology department and has solved many medical problems. However, it still faces many
difficulties, including large-scale clinical verification, patient privacy protection, and legal
accountability. Despite these limitations, with the current trend and rapid development of
the medical industry, deep learning is expected to generate a greater demand for accurate
diagnosis and treatment in the medical field.
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