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Simple Summary: Previous survival-prediction studies have had several limitations, such as a lack
of comprehensive clinical data types, testing only in limited machine-learning algorithms, or a lack
of a sufficient external testing set. This lung-cancer-survival-prediction model is based on multiple
data types, multiple novel machine-learning algorithms, and external testing. This predicted model
demonstrated a higher performance (ANN, AUC, 0.89; accuracy, 0.82; precision, 0.91) than previous
similar studies.

Abstract: A well-established lung-cancer-survival-prediction model that relies on multiple data types,
multiple novel machine-learning algorithms, and external testing is absent in the literature. This study
aims to address this gap and determine the critical factors of lung cancer survival. We selected non-
small-cell lung cancer patients from a retrospective dataset of the Taipei Medical University Clinical
Research Database and Taiwan Cancer Registry between January 2008 and December 2018. All
patients were monitored from the index date of cancer diagnosis until the event of death. Variables,
including demographics, comorbidities, medications, laboratories, and patient gene tests, were
used. Nine machine-learning algorithms with various modes were used. The performance of the
algorithms was measured by the area under the receiver operating characteristic curve (AUC). In total,
3714 patients were included. The best performance of the artificial neural network (ANN) model was
achieved when integrating all variables with the AUC, accuracy, precision, recall, and F1-score of
0.89, 0.82, 0.91, 0.75, and 0.65, respectively. The most important features were cancer stage, cancer
size, age of diagnosis, smoking, drinking status, EGFR gene, and body mass index. Overall, the ANN
model improved predictive performance when integrating different data types.

Keywords: lung cancer; survival; prediction models; real-world data; artificial intelligence;
machine learning
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1. Introduction

Lung cancer is the leading cause of cancer deaths worldwide [1]. Globally, there
were around 2.21 million new cases of lung cancer and 1.80 million fatalities in 2020 [2].
One study reported that lung cancer incidence and mortality rates were 22.2 and 18.0 per
100,000 people in 2020, respectively [3,4]. Lung cancer can be divided clinically into two
types based on histological features: non-small-cell lung cancer (NSCLC) and small-cell
lung cancer (SCLC). NSCLC is the most common among them, accounting for 80–90% of
lung cancers [5]. Cell deterioration and metastasis are slower in NSCLC than in SCLC.
Around 70% of patients are diagnosed at an advanced stage, making surgical resection and
complete treatment challenging [6,7].

Artificial intelligence (AI) has been increasingly used in medical research and clinical
practice [8,9]. The accurate prediction of disease prognosis and the outcome of drug
treatment, which may serve as a reference for treatment decision-making and drug selection,
has become an essential topic in the clinical medicine [9,10]. Developing disease-risk and
prognosis-prediction models using machine-learning or deep-learning algorithms with big
data is a major area of AI-based academic research in the medical field [10,11]. Studies
have used machine-learning and/or deep-learning algorithms to develop lung cancer risk
and prognosis-prediction models [12–15]. Among them, Lai et al. [16] used 15 biomarkers
with clinical data (including gene expression) from 614 patients to develop a deep neural
network to predict the five-year overall survival of NSCLC patients.

This study aimed to develop survival-prediction models for lung cancer patients using
a large number of samples, different data types, various machine-learning algorithms, and
external testing. In addition to the basic clinical data (including demographic informa-
tion, disease condition, comorbidity, and current medication), we examined the role of
laboratory and genomic test results, which are generally not easy to obtain in predicting
lung cancer survival. Moreover, we also explored the important predictors for developing
prediction models.

2. Methods
2.1. Study Design and Data Source

We conducted a retrospective study in which we obtained data from the Taiwan Can-
cer Registry (TCR) database and the Taipei Medical University Clinical Research Database
(TMUCRD). The TCR database was established in 1979 and is managed by Taiwan’s Health
Promotion Administration, Ministry of Health and Welfare. It covers 98% of Taiwanese can-
cer patients and includes diagnosis and other related information. The TMUCRD retrieved
data from various electronic medical records (EHR) of three hospitals, Taipei Medical Uni-
versity Hospital (TMUH), Wan-Fang Hospital (WFH), and Shuang-Ho Hospital (SHH). The
database contains the electronic medical record data of 3.8 million people from 1998 to 2020,
including structured data (e.g., basic information of patients, medical information, test
reports, diagnosis results, treatment process, surgery, and medication history) and unstruc-
tured data (e.g., progress notes, pathology reports, and medical imaging reports) [17]. This
study has been approved by the Joint Institute Review Board of Taipei Medical University
(TMU-JIRB), Taipei, Taiwan (approval number N202101080). All the data were anonymous
before conducting analysis.

2.2. Cohort Selection

This study selected patients with lung cancer (ICD-O-3 code: C33, C34) from 2008
to 2018 in the TCR database. Exclusion criteria included individuals under 20 years old,
SCLC patients, and patients who did not have any medical history in the three hospitals
(TMUH, WFH, SHH). Thus, a total of 3714 patients were included in this study, including
960 patients from TMUH, 1320 from WFH, and 1434 from SHH (Figure S1 in the
Supplementary Materials).
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2.3. Outcome Measurement

We ascertained the study outcomes using TMUCRD EHR and vital status data from
the Taiwan Death Registry (TDR) [18]. We used the diagnosis date of NSCLC as the index
date, and the outcome of this study was death within two years following diagnosis. Data
were censored at the date of death or loss to follow-up, insurance termination, or the study’s
end on 31 December 2018.

2.4. Feature Selection

Based on a literature review and consultation with clinicians, we selected features that
may lead to the mortality of NSCLC patients to build prediction models. These features
consisted of:

1. Demographic information: age, gender, body mass index (BMI), smoking, drinking;
2. Cancer conditions: tumor size and cancer stage;
3. Comorbidities: cardiovascular problems (i.e., myocardial infarction (MI), congestive

heart failure (CHF), peripheral vascular disease (PVD), and cardiovascular disease
(CVD)), dementia, chronic obstructive pulmonary disease (COPD), rheumatic disease,
peptic ulcer disease (PUD), renal disease, liver disease, diabetes, anemia, depression,
hyperlipidemia, hypertension, Parkinson’s disease, and Charlson Comorbidity Index
(CCI) score. These conditions were considered if they were diagnosed in at least two
outpatient claims or one hospitalization over a year before the cancer diagnosis date.

4. Medications: alimentary tract and metabolism, blood and blood-forming organs,
cardiovascular system, genitourinary system and hormones, musculoskeletal system,
nervous system, and respiratory system. We measured patients who had used med-
ications by receiving them for more than a month (i.e., 30 days) during a year (i.e.,
360 days) before the index date.

5. Laboratory tests: basophil, blood urea nitrogen (BUN), calcium, cholesterol, chloride,
creatinine, eosinophil, ferritin, glucose AC, HbA1c, HCT, HGB, potassium, lym-
phocyte, MCH, MCHC, MCV, monocyte, sodium, neutrophil, platelet (PLT), RBC,
triglyceride, and WBC. We only selected laboratory tests with a missing rate of less
than 70% values a year before or a month after the index date.

6. Genomic tests: ALK, EGFR, KRAS, PDL1, and ROS1. We collected genomic tests if
patients had ever taken one a month after the cancer diagnosis date.

2.5. Development of the Algorithms

This study established prediction models based on four modes and different algorithms:

• The primary mode (e.g., Mode 1) included demographic information, cancer condi-
tions, comorbidities, and medications.

• The second mode (Mode 2) included the data from Mode 1 and the laboratory tests.
• The third mode (Mode 3) included the data from Mode 1 and genomic tests.
• The fourth mode (Mode 4) considered all the above features.

This study aims to predict the survival of lung cancer patients; therefore, the problem
can be formulated as a classification model as it could occur in the same patients. We
used possible machine-learning techniques such as logistic regression (LR), linear discrimi-
nant analysis (LDA), light gradient-boosting machine (LGBM), gradient-boosting machine
(GBM), extreme gradient boosting (XGBoost), random forest (RF), AdaBoost, support
vector machine (SVC), and artificial neural network (ANN). These methods are briefly
introduced below.

Logistic Regression (LR): This is a discrete choice model that models the relationship
between a response and multiple explanatory variables and is based on the concept of
probability [19]. It is widely used and more practical in fields such as biostatistics, clinical
medicine, and quantitative psychology. Its Equation (1) is:

y =
e(b0+b1X)

1 + e(b0+b1X)
(1)
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where x is the input value, y is the predicted output, b0 is the bias or intercept term, and b1
is the coefficient for input (x). In this study, we used the LR function with the parameter C
(inverse of regularization strength) of 0.0001 to reduce the model’s overfitting.

Linear Discriminant Analysis (LDA): This is generally used to classify patterns be-
tween two classes; however, it can be extended to multiple patterns. LDA assumes that
all classes are linearly separable, and according to the multiple linear discrimination func-
tions representing several hyperplanes in the feature space are created to distinguish the
classes [20]. In this study, we set the parameters’ shrinkage to ‘0’ and the solver to ‘lsqr’ to
improve estimation and classification accuracy.

Light Gradient-Boosting Machine (LGBM): This is a gradient-boosting framework
that uses tree-based learning algorithms. It is designed to be distributed and efficient
with the following advantages: faster training speed and higher efficiency; lower memory
usage; better accuracy; support of parallel, distributed, and GPU learning; and capability
to handle large-scale data [21]. The model’s class_weight parameter was set as ‘balanced’,
which uses the output’s value to automatically adjust weights inversely proportional to
class frequencies in the input data. The learning_rate, l1 regularization—reg_alpha, and
l2 regularization—reg_lambda parameters were set as 0.05, 0.1, and 0.1, respectively.

Gradient-Boosting Machine (GBM): Gradient-boosting regression trees produce com-
petitive, highly robust, and interpretable procedures for regression and classification. The
ability of TreeBoost procedures to give a quick indication of potential predictability, coupled
with their extreme robustness, makes them a useful preprocessing tool that can be applied
to imperfect data [22]. The default parameters were used in this model.

Extreme Gradient Boosting (XGBoost): XGBoost, an efficient and scalable implementa-
tion of the gradient-boosting framework, is a machine-learning system for tree boosting.
The scalability of XGBoost is attributed to several critical systems and algorithmic optimiza-
tions. These innovations include a novel tree-learning algorithm for handling sparse data;
a theoretically justified weighted quantile sketch procedure allows the handling of instance
weights in approximate tree learning [23]. The default parameters were used in this model.

Random Forest (RF): RF is an ensemble-learning method that operates by constructing
many small scales of classification modules (most often decision trees) at the training time.
The model outputs the class that combines the result of the individual modules based on
some voting algorithms [24]. In this study, we set the parameters as follows: n_estimators
(the number of trees) of 500, max_depth of 10, min_samples_split of 400, and class_weight of
0.5 for each class.

AdaBoost: The AdaBoost algorithm is an iterative procedure that combines several
weak classifiers to approximate the Bayes classifier C∗(x). AdaBoost builds a classifier, e.g.,
a classification tree that produces class labels, starting with the unweighted training sample.
If a training data point is misclassified, the weight of that data point is increased (boosted).
A second classifier is built using the new weights, which are no longer equal. Again,
misclassified training data have their weights boosted, and the procedure is repeated [25].
The number of estimators (n_estimators) used was 100.

Support Vector Machine (SVC): This is a machine-learning algorithm that can be ap-
plied to linear and nonlinear data. SVC transforms the original data to a higher dimension,
from which it can use the super vectors in the training data set to find the hyperplane for
categorizing the data. An SVC mainly identifies the hyperplane with the most significant
margin, e.g., the maximum marginal hyperplane, to achieve higher accuracy [26]. The SVC
can be represented by the following Equation (2):

f (x) =
N

∑
i=1

(α∗i − αi)K(x, xi) + B (2)

where K(x, xi) is the kernel function, αi, α∗i ≥ 0 are the Lagrange multipliers, and B is a bias
term. In this study, we used a linear kernel for computations.
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Artificial Neural Network (ANN): This is a learning algorithm vaguely inspired by
biological neural networks. Computations are structured in terms of an interconnected
group of artificial neurons, and these neutrons process information using a connectionist
approach to computation. They are usually used to model complex relationships between
inputs and outputs, find patterns in data, or capture the statistical structure [27]. The
number of hidden layers with the number of neurons in each layer was set at 3 and 16,
respectively. Additionally, for each layer, the l2 regularization of 0.01 and the ‘relu’ activation
were used in the study. We set the ‘softmax’ activation for the output layer. We also
used the ‘Adam’ optimizer, a highly performant stochastic gradient descent algorithm, and
‘binary_crossentropy’ as the binary classification outcome for the loss function.

2.6. Evaluating the Algorithms

The training dataset contained the data of patients from TMUH and WFH. The strati-
fied 5-fold cross-validation was applied in the training set to assess the different machine-
learning models’ performance and general errors. In other words, patients in the training
set were divided into five groups, each used repeatedly as the internal validation set. We
recruited data from SHH and used it for the external testing dataset to generalize the model.

The performance of the algorithms was measured by the area under the receiver
operating characteristic curve (AUC), accuracy, sensitivity (recall), specificity, positive
predictive value (PPV, precision), negative predictive value (NPV), and F1-score. We
defined the best model using the highest AUC by comparing various models based on the
external testing set. Furthermore, we analyzed the feature’s contribution (i.e., the feature’s
importance) of the best model using SHAP values (SHapley Additive exPlanations) [28].

All the data processing was performed using MSSQL server 2017 (Redmond, WA,
USA), and the model training and testing were performed using Python version 3.8 (Wilm-
ington, DE, USA) with scikit-learn version 1.1 (Paris, France) [29].

3. Results
3.1. Baseline Characteristics of Patients

We identified 3714 eligible lung cancer patients diagnosed for the first time and regis-
tered at the TCR. Among those patients, 2280 patients were included in the training dataset,
whereas 1434 were in the testing dataset. Demographic characteristics, comorbidities,
tumor size, tumor stage, genomic tests, medication uses, and laboratory tests are presented
in Table 1. The mean (standard deviation, SD) ages and BMI of cohort patients were
68 (13.7) and 23.4 (4.33), respectively. Most of the patients were male (57.5%) with late-stage
lung cancer (i.e., stage IV, 54.8%), and patients were less likely to smoke (26.7%) or drink
(11%). The cohort of patients had comorbidities related to hypertension (19.8%), hyper-
lipidemia (13.9%), COPD (16.1%), and CVD problems (11.6%). The follow-up durations
for the cohort patients were a mean (SD) of 2.25 (2.47) years and a median (interquartile
range (IQR)) of 1.41 [0.46–3.04] years. Detailed information is shown in Table S1 in the
Supplementary Materials.

Table 1. Basic Characteristics of the Study Cohort.

Features Overall
n = 3714

Training Set a

n = 2280
Testing Set b

n = 1434

Male, N (%) 2136 (57.5) 1258 (55.2) 878 (61.2)
Age, Mean (SD), yrs. 68.0 (13.7) 67.9 (13.8) 68.0 (13.4)

BMI, Mean (SD), kg/m2 23.4 (4.33) 23.4 (3.93) 23.4 (4.81)
Smoking, N (%)

No 1170 (31.5) 710 (31.1) 460 (32.1)
Yes 993 (26.7) 523 (22.9) 470 (32.8)

Unknown 1551 (41.8) 1047 (45.9) 504 (35.1)
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Table 1. Cont.

Features Overall
n = 3714

Training Set a

n = 2280
Testing Set b

n = 1434

Drinking, N (%)
No 1750 (47.1) 983 (43.1) 767 (53.5)
Yes 408 (11.0) 247 (10.8) 161 (11.2)

Unknown 1556 (41.9) 1050 (46.1) 506 (35.3)
Tumor size, cm

Mean (SD) 4.23 (2.45) 4.11 (2.39) 4.46 (2.55)
Median [IQR] 3.8 [2.4–5.5] 3.6 [2.3–5.5] 4.0 [2.5–5.7]

Cancer stage, N (%)
0 11 (0.3) 10 (0.4) 1 (0.1)
I 533 (14.4) 348 (15.3) 185 (12.9)
II 139 (3.7) 88 (3.9) 51 (3.6)
III 527 (14.1) 330 (14.5) 197 (13.7)
IV 2034 (54.8) 1207 (52.9) 827 (57.7)

Missing 470 (12.7) 297 (13.0) 173 (12.1)
Genomic Test
ALK, N (%)

Negative 681 (18.3) 457 (20.0) 224 (15.6)
Positive 39 (1.1) 21 (0.9) 18 (1.3)

Unknown 2994 (80.6) 1802 (79.0) 1192 (83.1)
EGFR, N (%)

Negative 842 (22.7) 473 (20.7) 369 (25.7)
Positive 787 (21.2) 467 (20.5) 320 (22.3)

Unknown 2085 (56.1) 1340 (58.8) 745 (52.0)
KRAS, N (%)

Negative 45 (1.2) 32 (1.4) 13 (0.9)
Positive 5 (0.1) 2 (0.1) 3 (0.2)

Unknown 3664 (98.7) 2246 (98.5) 1418 (98.9)
PDL1, N (%)

Negative 269 (7.2) 149 (6.5) 120 (8.4)
Positive 66 (1.8) 42 (1.8) 24 (1.7)

Unknown 3379 (91.0) 2089 (91.6) 1290 (90.0)
ROS1, N (%)

Negative 288 (7.8) 287 (12.6) 1 (0.1)
Positive 29 (0.8) 27 (1.2) 2 (0.1)

Unknown 3397 (91.4) 1966 (86.2) 1431 (99.8)
Comorbidity, N (%)

CVD problems 432 (11.6) 296 (13.0) 136 (9.5)
Dementia 124 (3.3) 71 (3.1) 53 (3.7)

COPD 599 (16.1) 391 (17.1) 208 (14.5)
Rheumatic disease 28 (0.75) 16 (0.7) 12 (0.8)

PUD 365 (9.8) 246 (10.8) 119 (8.3)
Renal disease 128 (3.4) 92 (4.0) 31 (2.2)
Liver disease 211 (5.7) 147 (6.4) 64 (4.5)

DM 372 (10.0) 248 (10.9) 124 (8.6)
Anemia 107 (2.9) 76 (3.3) 31 (2.2)

Depression 245 (6.6) 175 (7.7) 70 (4.9)
Hyperlipidemia 516 (13.9) 385 (16.9) 131 (9.1)

Hypertension 736 (19.8) 503 (22.1) 233 (16.2)
Parkinson’s disease 50 (1.3) 29 (1.3) 21 (1.5)

Charlson Comorbidity Index (CCI)
Mean (SD) 3.08 (2.07) 3.13 (2.19) 2.97 (1.86)

Median [IQR] 3.0 [2.0–4.0] 3.0 [2.0–4.0] 3.0 [2.0–4.0]
Follow-up, yrs.

Mean (SD) 2.25 (2.47) 2.44 (2.61) 1.96 (2.19)
Median [IQR] 1.41 [0.46–3.04] 1.51 [0.53–3.36] 1.24 [0.38–2.64]
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Table 1. Cont.

Features Overall
n = 3714

Training Set a

n = 2280
Testing Set b

n = 1434

Medications, N (%)
Alimentary tract and metabolism 591 (15.9) 394 (17.3) 197 (14.7)
Blood and blood-forming organs 446 (12.0) 293 (12.9) 153 (11.3)

Cardiovascular system 675 (18.2) 448 (19.6) 227 (16.9)
Genitourinary system and hormones 132 (3.6) 74 (3.2) 58 (4.3)

Musculoskeletal system 252 (6.8) 141 (6.2) 111 (8.3)
Nervous system 391 (10.5) 254 (11.1) 137 (10.2)

Respiratory system 319 (8.6) 226 (9.9) 93 (6.9)
Laboratory Test, Mean (SD)

Basophil 0.50 (0.40) 0.53 (0.42) 0.48 (0.39)
BUN 19.4 (14.9) 18.8 (13.1) 20.5 (17.6)

Creatinine 1.05 (0.98) 1.02 (0.90) 1.10 (1.07)
Eosinophil 1.89 (2.31) 2.03 (2.59) 1.76 (1.97)

HCT 38.3 (5.69) 38.5 (5.61) 37.9 (5.80)
HGB 12.9 (1.97) 13.0 (1.91) 12.7 (2.05)

K 3.99 (0.56) 4.02 (0.53) 3.95 (0.60)
Lymphocyte 18.7 (9.98) 19.6 (9.55) 17.8 (10.3)

MCH 29.9 (3.02) 29.9 (3.03) 29.8 (3.00)
MCHC 33.6 (0.95) 33.7 (0.96) 33.6 (0.94)
MCV 88.6 (7.61) 88.5 (7.64) 88.7 (7.57)

Monocyte 7.45 (2.90) 7.42 (2.93) 7.48 (2.87)
Na 137 (4.46) 137 (4.39) 137 (4.53)

Neutrophil 71.3 (11.9) 70.2 (11.4) 72.3 (12.2)
PLT 263 (109) 258 (100) 269 (121)
RBC 4.35 (0.68) 4.38 (0.67) 4.29 (0.69)
WBC 9.72 (5.38) 9.16 (4.16) 10.6 (6.80)

Note: SD, Standard deviation; yrs., Years; IQR, Interquartile Range; BMI, Body mass index; COPD, Chronic
obstructive pulmonary disease; PUD, Peptic ulcer disease; CVD, Cardiovascular; DM, Diabetes; BUN, Blood urea
nitrogen; HCT, Hematocrit; HGB, Hemoglobin; K, Potassium; MCH, Mean corpuscular hemoglobin; MCHC,
Mean corpuscular hemoglobin concentration; MCV, Mean corpuscular volume; Na, Sodium; PLT, Platelet; RBC,
Red blood count; WBC, White blood count; a The training set included the data from Taipei Medical University
and Wan-Fang hospitals; b The testing set included the data from Shuang Ho hospital.

3.2. The Performances of Different Prediction Models

The performances of different prediction models are shown in Table 2. In Mode 1,
the highest AUC of 0.88 was observed for the ANN model (i.e., accuracy, 0.82; preci-
sion, 0.90; recall, 0.75; and F1-score, 0.64), followed by the GBM and RF models with an
AUC of 0.83 and 0.82, respectively. In Mode 3, the best performance was found with
an AUC of 0.89 for the ANN model (i.e., accuracy, 0.83; precision, 0.89; recall, 0.81; and
F1-score, 0.64). The following AUCs were observed 0.85 for LGBM, GBM, and 0.84 for
RF models. Moreover, when considering all features in Mode 4, we found that the best
model was the ANN model with an AUC of 0.89 (i.e., accuracy, 0.82; precision, 0.91;
recall, 0.75; and F1-score, 0.65). Figures 1 and 2 show the ROC curves of different predic-
tion models in four modes. Detailed information on the various models’ measurements
(i.e., sensitivity, specificity, PPV, NPV, accuracy, and F1-score) is shown in Table S2 in the
Supplementary Materials.
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Table 2. Performance of various Prediction Models by Modes.

Modes Models AUC
Training

AUC
Testing Accuracy Precision Recall F1-score

Mode 1

LR 0.70 0.72 0.65 0.88 0.64 0.75
LDA 0.78 0.78 0.71 0.90 0.70 0.80

LGBM 0.98 0.81 0.73 0.92 0.72 0.81
GBM 0.96 0.83 0.75 0.91 0.76 0.84

XGBoost 0.99 0.80 0.75 0.90 0.77 0.84
RF 0.90 0.82 0.72 0.92 0.70 0.80

AdaBoost 0.94 0.81 0.73 0.91 0.72 0.81
SVC 0.78 0.78 0.71 0.89 0.72 0.79

ANN * 0.89 0.88 0.82 0.90 0.75 0.64

Mode 2

LR 0.74 0.75 0.60 0.93 0.53 0.67
LDA 0.81 0.79 0.71 0.90 0.70 0.80

LGBM 0.99 0.83 0.78 0.91 0.79 0.86
GBM 0.96 0.84 0.78 0.91 0.80 0.87

XGBoost 1.00 0.81 0.78 0.90 0.81 0.86
RF 0.92 0.83 0.69 0.94 0.64 0.76

AdaBoost 0.95 0.80 0.74 0.90 0.76 0.83
SVC 0.81 0.79 0.70 0.91 0.68 0.78

ANN * 0.89 0.89 0.80 0.91 0.75 0.64

Mode 3

LR 0.70 0.73 0.65 0.88 0.63 0.74
LDA 0.80 0.81 0.75 0.91 0.76 0.83

LGBM 0.98 0.85 0.80 0.92 0.81 0.87
GBM 0.96 0.85 0.79 0.92 0.79 0.86

XGBoost 1.00 0.83 0.79 0.91 0.80 0.86
RF 0.91 0.84 0.72 0.93 0.69 0.80

AdaBoost 0.95 0.83 0.79 0.91 0.80 0.86
SVC 0.80 0.81 0.75 0.90 0.75 0.83

ANN * 0.89 0.89 0.83 0.89 0.81 0.64

Mode 4

LR 0.74 0.75 0.61 0.93 0.53 0.67
LDA 0.83 0.82 0.76 0.90 0.77 0.84

LGBM 0.99 0.86 0.81 0.92 0.83 0.88
GBM 0.97 0.85 0.79 0.92 0.81 0.87

XGBoost 1.00 0.84 0.77 0.92 0.77 0.85
RF 0.93 0.85 0.75 0.93 0.73 0.82

AdaBoost 0.96 0.83 0.76 0.92 0.75 0.83
SVC 0.83 0.81 0.75 0.90 0.76 0.84

ANN * 0.89 0.89 0.82 0.91 0.75 0.65
Note: LR, Logistic Regression; LDA, Linear Discriminant Analysis; LGBM, Light Gradient Boosting Machine;
GBM, Gradient Boosting Machine; XGBoost, Extreme Gradient Boosting; RF, Random Forest; SVC, Support Vector
Machine; ANN, Artificial Neural Network; *, Best model based on AUC values.

Figure 3 shows the top 20 important features of the ANN model in Mode 4. The most
important features were the cancer stage, size, age of diagnosis, smoking, and EGFR gene.
In other words, patients with advanced cancer stage, large cancer size, older age, and
smoking behavior had a higher risk of death within two years. The SHAP value presented
the important features of the GBM model in Mode 4 and was consistent with the ANN
model, such as cancer stage, age at diagnosis, cancer size, and smoking status (Figure S2 in
the Supplementary Materials).
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4. Discussion

In recent years, the prediction of cancer patients’ survival has attracted the medical
community’s attention in various countries because it can facilitate medical decision mak-
ing, strengthen the relationship between doctors and patients, and improve the quality of
medical care. Rapid progress in the development of AI based on machine learning has led
to more diversified applications of AI in the field of precision medicine. Based on previ-
ously published studies on machine-learning algorithms to build prediction models for the
survival of lung cancer patients [12,14–16], this study further compared the performance of
various novel machine-learning algorithms. In addition, we also analyzed the relationship
between the diversity of features and the accuracy of prediction results and determined the
most important features affecting lung cancer survival.

Studies using multiple data types and multiple novel machine-learning algorithms
simultaneously are limited. In previous studies on lung cancer prediction, most of them
used a single machine-learning (e.g., RF [30]) or deep-learning (e.g., NN [14–16]) algorithm
or a few basic machine-learning algorithms (e.g., LR, SVM, decision tree, RF, GBM [12,31])
to develop prediction models. Our results showed that the ANN model had the high-
est AUC value (it was the most suitable tool for survival prediction). In contrast, the
AUC value of the traditional LR algorithm exhibited the lowest performance (it had the
lowest predictive ability). Lai Y.H. et al. [16] presented a deep neural network to predict
the overall survival of NSCLC patients. They obtained a good predictive performance
(AUC = 0.82, accuracy = 75.4%) by integrating microarray and clinical data. While only
using basic clinical data (demographics, comorbidities, and medications), our predicted
model demonstrated a higher performance (ANN, AUC, 0.88; accuracy, 0.82; precision,
0.90, recall, 0.75, and F1-score, 0.64). Furthermore, when combining other variables, such
as laboratory and genomic tests, the AUC values of the predicted model were better
(based on the external testing, the AUCs of the ANN model in Mode 1 and Mode 4 were
0.88 and 0.89, respectively; the AUCs of LGBM model in Mode 1 and Mode 4 were 0.81
and 0.86, respectively; the AUCs of the RF model in Mode 1 and Mode 4 were 0.82 and
0.85, respectively).

In this study, we explored the variables that might affect the predictive performance
of the survival model. As expected, these variables were highly correlated to the mortality
of lung cancer patients, such as advanced cancer stage, tumor size, age at diagnosis, and
smoking and drinking status [32]. Our findings also showed that lymphocytes, platelets,
and neutrophils tests were associated with the likelihood of lung cancer survival [33]. Thus,
lymphocytes play an essential role in producing cytokines, inhibiting the proliferation of
cancer cells, and provoking cytotoxic cell death [34]. In words, a decrease in lymphocyte
count may predict worse survival in cancer patients. Neutrophils are recruited with
cytokines released by the tumor microenvironment, enhancing carcinogenesis and cancer
progression [35]. Platelets modulate the tumor microenvironment by releasing factors
contributing to tumor growth, invasion, and angiogenesis [36]. Another study by Wang J.
et al. [37] reported that lung cancer patients with a higher BMI have prolonged survival
compared to those with a lower BMI. The same was true for our study’s results, which
may be due to the poor nutrition and weight loss caused by respiratory diseases [38], such
as COPD.

There are limitations to this study. First, although the study used data from various
clinical settings (e.g., TMUH and WFH for establishing the prediction model and SHH for
conducting an external test) located in the north of Taiwan, the results may not directly
apply to lung cancer patients in other regions. Future studies may need to consider
validating the model using data from other areas. Second, this study used retrospective
data for development and validation. Further experiments with a prospective study design
in clinical settings are needed. Third, to obtain a highly accurate prediction, we developed
the machine-learning algorithms with binary outcomes (i.e., survival and death) rather than
expected continuous outcomes (i.e., length of survival) for the NSCLC patients. Further
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studies should be conducted with larger sample sizes to deal with continuous outcomes for
lung cancer survival.

5. Conclusions

In summary, to observe the expected survival of NSCLC patients during a two-year
period, we designed an artificial neural network model with high AUC, precision, and recall.
Moreover, integrating different data types (especially laboratory and genomic data) led to
better predictive performance. Further research is necessary to determine the feasibility of
applying the algorithm in the clinical setting and explore whether this tool could improve
care and outcomes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14225562/s1, Figure S1: Cohort Selection Process; Figure S2:
Feature Importance of the GBM Prediction Model of Mode 4; Table S1: Detailed Demographic
Characteristics of Cohort Patients; Table S2: Detailed Performance of various Prediction Models
by Modes.
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NSCLC Non-small cell lung cancer
SCLC Small cell lung cancer
AI Artificial intelligence
TCR Taiwan Cancer Registry
TDR Taiwan Death Registry
TMUCRD Taipei Medical University Clinical Research Database
TMUH Taipei Medical University Hospital
WFH Wan-Fang Hospital
SHH Shuang-Ho Hospital
BMI Body mass index
MI Myocardial infarction
CHF Congestive heart failure
PVD Peripheral vascular disease
CVD Cardiovascular disease
COPD Chronic obstructive pulmonary disease
PUD Peptic ulcer disease
CCI Charlson Comorbidity Index
BUN Blood urea nitrogen
PLT Platelet
LR Logistic regression
LDA Linear discriminant analysis
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LGBM Light gradient boosting machine
GBM Gradient boosting machine
XGBoost Extreme gradient boosting
RF Random forest
SVC Support vector machine
ANN Artificial neural network
AUC The area under the receiver operating characteristic curve
PPV Positive predictive value
NPV Negative predictive value
SHAP Shapley additive explanations
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