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Simple Summary: When treating patients with head-and-neck cancer (HNC), in addition to the
primary tumour, commonly involved lymph node (LN) levels are often electively irradiated. This
requires the definition of the elective LN target volume. Because the LN levels that will be included
in the target depend on the clinical situation, and because manual contouring is a laborious task that
can also introduce inter- and intra-observer variation, being able to automate the segmentation of
individual LN levels would reduce the clinical burden and would allow use of contours regardless
of the primary tumor location. We trained and evaluated three patch- and/or voxel-based deep
learning frameworks to segment elective LN levels. Our results suggest that accurate segmentations
can be obtained using an ensemble of patch-based UNets and that this result can be further refined
by sequentially applying a 2.5D, multi-view voxel classification network.

Abstract: Depending on the clinical situation, different combinations of lymph node (LN) levels
define the elective LN target volume in head-and-neck cancer (HNC) radiotherapy. The accurate
auto-contouring of individual LN levels could reduce the burden and variability of manual seg-
mentation and be used regardless of the primary tumor location. We evaluated three deep learning
approaches for the segmenting individual LN levels I-V, which were manually contoured on CT scans
from 70 HNC patients. The networks were trained and evaluated using five-fold cross-validation
and ensemble learning for 60 patients with (1) 3D patch-based UNets, (2) multi-view (MV) voxel
classification networks and (3) sequential UNet+MYV. The performances were evaluated using Dice
similarity coefficients (DSC) for automated and manual segmentations for individual levels, and
the planning target volumes were extrapolated from the combined levels I-V and II-1V, both for
the cross-validation and for an independent test set of 10 patients. The median DSC were 0.80, 0.66
and 0.82 for UNet, MV and UNet+MYV, respectively. Overall, UNet+MV significantly (p < 0.0001)
outperformed other arrangements and yielded DSC = 0.87, 0.85, 0.86, 0.82, 0.77, 0.77 for the combined
and individual level I-V structures, respectively. Both PTVs were also significantly (p < 0.0001)
more accurate with UNet+MV, with DSC = 0.91 and 0.90, respectively. The accurate segmentation of
individual LN levels I-V can be achieved using an ensemble of UNets. UNet+MYV can further refine
this result.

Keywords: computed tomography; deep learning; head-and-neck cancer; lymph nodes; radiation
oncology,' auto-contouring

1. Introduction

Head-and-neck cancer (HNC) radiotherapy (RT) planning frequently includes the
contouring of neck lymph nodes (LN) as a part of the elective RT target volume. However,
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the manual delineation of the elective target volume is a labour-intensive task that is prone
to inter-observer variation [1], despite the availability of delineation guidelines [2], making
automated methods attractive, as an alternative to manual segmentation.

Over the last few years, developments in deep learning approaches have shown im-
pressive results for automated segmentation of organs at risk (OAR) by using convolutional
neural networks (CNN) [3-6] and for pathology detection [7], including the deep learning-
based delineation of elective targets such as the combinations of neck LN levels, which has
only more recently been investigated [8]. Most studies that demonstrated automated LN
segmentation with deep learning, incorporated all LN levels or all of those levels relevant
to the primary HNC location in one structure, rather than focusing on individual LN
levels [7-11]. The methods that segment multiple lymph levels in one structure, however,
are not generalizable to all primary HNC locations and tumour stages and require separate
networks for contouring different combinations of lymph node levels. Therefore, it would
be desirable to have a more general and flexible approach that concurrently and accurately
contours individual LN levels and hence can be used for all HNC patients regardless of the
subtype and the specific lymph levels required for RT treatment planning.

The automated segmentation of the LN levels is a challenging task because of anatom-
ical limitations in the manual reference. The guidelines prescribe delineation based on
anatomical markers in axial slices and assume that no voxels of levels II, IIl and IV can exist
in the same axial plane, irrespective of the curvature and pitch of the neck. In addition, the
LN target volumes do not encompass anatomical structures, but rather the expansions of
groups of LNs.

In this work, three combinations of deep learning networks were investigated to
segment individual LN levels I-V as separate structures. To do this, we evaluated the per-
formance of two CNNSs, alone and in combination. First, since UNet is a widely established
CNN that is used for a variety of imaging-related problems [12] and since it was used in two
other studies for combined lymph structure segmentation [9,13], we included a patch-based
UNet variant as a baseline model configuration. Other works have suggested the use of
voxel-classification methods for individual LN level segmentation using a 3D multi-scale
network [14], as well as 2.5D (multi-view; MV) networks for several segmentation chal-
lenges (multiple sclerosis [15], ocular structures [16], abdominal lymph structures [17],
head-and-neck tumors [18]). Because 2.5D networks may more effectively learn features
in the presence of little data [19] and because voxel classification may better resolve local
ambiguities near level transitions, a multi-view convolutional neural network (MV-CNN)
was included as our second configuration. This method, however, appears limited by a
systematic over-estimation of foreground classes [18]. Therefore, as our third configuration,
UNet was used for foreground segmentation, and subsequently MV was used for classi-
fying the foreground voxels into individual LN levels. This way, the over-estimation of
foreground classes seen in MV models was effectively eliminated.

This work expands the existing literature by demonstrating the feasibility of deep
learning for auto-segmentation for the target definition of individual LN levels I-V towards
a flexible RT planning for locally advanced HNC. Based on earlier work, we estimate that
accurate performance levels are attained for the segmentation of individual LN levels I-V
with Dice similarity coefficient (DSC) of at least 0.8 [9,13,14] and we hypothesize that the
contours can be obtained with such accuracy levels for the majority of patients, using one
or more of the proposed deep learning configurations.

2. Materials and Methods
2.1. Data Acquisition

This retrospective study was exempted from requiring participants’ informed consent
by the medical ethics committee and was performed using the three-dimensional (3D)
planning computed tomography (CT) scans (GE Discovery 590RT, helically scanned) of
70 patients treated between 2019 and 2022 with (chemo-)radiotherapy for locally advanced
HNC, of which 60 were used for training and testing, and 10 were retained for an inde-
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pendent test set. We used isotropic, in-plane acquisition resolutions of [0.92-1.56] mm and
a 2.5 mm slice thickness, except for two cases in which the slice thickness was 1.25 mm.
The CT acquisition dimensions were 512 x 512 x (147 — 361) voxels. Patient-specific
radiotherapy head-and-neck moulds and immobilisation masks were used to position the
patients in a neutral position. Ground truth contours were created for the specific purpose
of this study by manual contouring of individual LN levels I-V according to contouring
guidelines [1], by two experienced radiation oncologists (GJB, MRV). During contouring,
levels IV and V are regarded as the combinations of IVa, IVb and Va, Vb, respectively. No
HNC disease stages or patients with positive LNs were excluded, provided that they had
elective LN levels contoured for at least one side. In patients with only one side contoured,
the LN level contours of the side that contained no diagnosed disease were added, such
that all patients had all individual levels at both sides contoured.

2.2. Pre-Processing

For all patients, planning CTs and structure sets were initially interpolated to the
same isotropic 1.25 mm? voxel spacing by 3rd-order and nearest-neighbour interpolation,
respectively. This spacing was chosen to minimize image interpolations, whilst making
sure the network’s filters were of equal size in each orthogonal plane for all patients.

2.3. Experimental Outline

We investigated the performance of three model configurations, i.e., UNet (Figure 1),
MYV (Figure 1) and UNet+MV (Figure 1). As a baseline reference, we investigated a multi-
class, patch-based UNet, which concurrently classifies all lymph levels as separate classes
in a single step. This was compared to a per-voxel classification approach that uses an MV-
CNN, which is a 2.5D network that uses multiple resolutions of orthogonal views to classify
the voxel where the planes cross. In the interest of time, this model used a preconstructed
mask to provide the network with the information on which voxels it should consider for
segmentation (cyan in Figure 1). Lastly, we investigated a two-step approach, which is
essentially a combination of UNet and MV: we used a single-class UNet for segmenting the
combined structure of LN levels I-V in an initial step, after which MV was applied only to
the detected foreground voxels and classified each voxel in the combined structure into
individual lymph levels UNet+MV. Schematic representations of the used UNet and MV
networks are displayed in the blue and red boxes in Figures 1 and 2, respectively.

2.4. Model Training

Model training, validation and evaluation were performed on four NVIDIA-GeForce
GTX 2080 TI graphics processor units (GPUs), a 64 GB RAM system with an Intel® Core™
i9-9900KF CPU @3.6 GHz processor, using the GPU version of TensorFlow (Version 2.2.0)
with Cuda 10.1 and Python (Version 3.8.10). The TensorBoard (Version 2.2.2) callback was
used for tracking the training and validation scores, whilst only the best model in terms
of DSC was saved. The models were trained using the Adam optimizer [20]. All models
were trained using standard values in Keras, with an initial learning rate of 0.001, 31 = 0.9,
B2 =0.999 and e =1 x 107 To reduce the divergence of the model weights at later stages of
training, an exponential learning rate decay scheduler was used to decrease the learning rate
by 5% with every epoch, up to a minimum of 0.0001. Dropout was switched off at test time.
All models were trained using 5-fold cross-validation, with a train|\test split of 48\12 cases
every fold. To minimize the training variation, we used ensemble learning [9,21-23], where
the highest cumulated in-class segmentation probability of 5 sequentially trained networks
decided the final segmentation map. The training and evaluation times were saved.
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Figure 1. Schematic overview of the experimental outline. UNet (blue boxes) and MV (red boxes) were
used to make three model configurations. In the first configuration, a patch-based UNet segments
the background and LN levels I-V directly from the planning CT. In the second configuration, MV
classifies the background and LN levels I-V voxels from within a preconstructed mask (cyan). In
UNet+MV, a patch-based UNet first segments the combined structure of LN levels I-V. This is
subsequently used as a mask (cyan) for MV to subsequently classify positive voxels into individual
levels I-V. The details of both models are given in Figure 2. Abbreviations: MV: multi-view; CT:
computed tomography.(Also shows in Figure S2).

2.4.1. UNet

The network that was used is an adaptation of a vanilla UNet [12], where residual
blocks were added to reduce the effect from vanishing gradients in deeper layers of the
model [24,25], similar to those used by Millerari et al. [26] Batch normalization was per-
formed after every (3 x 3 x 3) 3D convolution, before the non-linear activation function.
We used patch-based training of the 3D UNet to ensure the network fitted on our video
card [27,28]. During training, patches of 64 x 64 x 64 voxels were sampled randomly from
two pre-defined, unilateral regions of interest (ROI) of 280 x 200 x 280 mm? in volume that
were known to contain the combined structure of LN levels I-V for every patient on each
side. Binary and multi-class dice loss functions were used for optimization. The multi-class
DSC loss was defined as the sum of individual foreground class losses (Equation (1)):

M
DSCjoss = Y, Wiy - DLy, 1)

m=1

Here, W, are the class weights that are calculated using the Python’s scikit-learn
module [29], m ranges from 1 to M and denotes class indices, where M is the number of
classes. DL is the DSC loss, defined as 1 minus the DSC score (Equation (2)):

DLy =1— > 2m 0 Bnl
" | Am| + |Bm|

@)
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Figure 2. Schematic overview of the UNet (blue box) and MV (red box) networks. UNet consists
of an encoder (left) and a decoder (right) pathway that generates binary segmentation maps from
64 cubed voxel patches sampled from planning CTs. MV uses three multi-view branches that build
up to each anatomical plane within a scale block, the output of which is concatenated and used
as the input for the multi-scale branched architecture. The thickness of the convolutional blocks
corresponded with the number of filters used. The number of output classes (M) was six for UNet in
the UNet-only configuration and two for UNet in the UNet+MYV configuration. M was six for MV in
the MV-only configuration and five in the UNet+MV configuration. Abbreviations: MV: multi-view;
ch: number of channels; BN: batch normalization; ReLu: rectified linear unit; f: number of output
filters; M: number of output classes; K: convolution kernel size; S: convolution stride; BN: batch
normalization; p: dropout fraction: CT: computed tomography.

Here, A;; and By, denote the predicted and manual reference binary sets of class m,
respectively. In the case of binary segmentation, DSCj; is reduced to the latter loss function.
For patches that contain a limited amount of foreground voxels, DSCjyss becomes ill-defined
(the denominator in DL, is not constrained to values larger than 0). To ameliorate this, we
used a Gaussian sampling method, where the mean and standard deviation of the x, y and
z coordinates are calculated from the centre of mass of the combined, binary structure of LN
levels I-V of all patients. Subsequently, we used a truncated normal distribution to sample
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patches, such that they were constrained to be entirely within the region of interest. The
weights were initialized using the standard initialization method in Keras (glorot uniform
initialization). The models were optimized for 100 epochs. However, it should be noted
that the use of an epoch in a patch-based setting is arbitrary, because patch sampling is
perfrmed at random, and thus a different sub-set of all data is seen by the network in each
epoch. The number of training pairs seen by the network per epoch was set to 4096, which
corresponded to roughly 34 training patches per side per patient.

2.4.2. Multi-View

MV-CNN is a voxel-wise classification method, for which we predefined which voxels
to classify. For C2, this information was provided by a pre-constructed mask, indicated in
cyan in Figure 1, which was constructed by a uniform expansion of the manual reference
by a margin of 15 mm. This margin was chosen as a balance such that no foreground voxels
would be segmented at the border of this mask, while also minimizing the training and
evaluation times. In contrast, for C3, the pre-constructed mask was determined by the
foreground segmentation result of UNet. Our multi-view network was adapted from a
previous classification study [16]. Batch normalization was applied after every (3 x 3) 2D
convolution layer, before the non-linear activation function. Three context pyramid scales,
0, 1 and 2, were included to incorporate multi-view information from 4, 8 and 16 cm around
the query voxel, respectively. This was done by sampling every, every other and every
fourth voxel for scales 0, 1 and 2, respectively, for each view. Fewer pyramid scales yielded
inferior results, and more pyramid scales would cause the field of view to fall far outside
the ROL The loss function used for voxel classification was categorical cross-entropy (CCE;
Equation (3)):

A
H(p,q) Z a,m) log(q(a,m)) ®)

I} ME

where p(a,m) represents a reference distribution of 2 € A, given by the manual annotations,
q(a,m) is a query distribution, A is a set of observations, m denotes class indices and
ranges from 1 to M, and M is the number of classes. The network was optimized for
1000 epochs (batch size = 32). In every epoch, a different random sub-set of at maximum
20% of all training pairs was sampled to allow for varied training and validation. Random
over-sampling of minority classes was applied to reduce the effects of class imbalance.

2.4.3. Data Augmentation

Data augmentations were the same for all models and were performed on the fly.
Augmentation involved random flipping, rotation and contrast adaptation, with chances
of each augmentation occurring being 50%, 40% and 40%, respectively. Flipping was
carried out in the left-right direction. Rotation was applied in either the sagittal or the
transversal plane, with an angle that was uniformly sampled from [—5, +5 degrees]. Rotated
images were acquired by 3rd order spline interpolation for the CT image and by nearest-
neighbour interpolation for the corresponding segmentation maps. The default window
level center (Cc) [width (Cw)] was 0 [700], as was previously used for lymph structure
segmentation [9]. If contrast adaptation was applied, alternative window level center, and
width were sampled from normal distributions, with uc = 0; oc = 3% x 700 and pw = 700;
ow = 3% X 700, respectively.

2.5. Post-Processing

In all segmentation maps, the combined structure of LN levels I-V was post-processed
with hole filling and by subsequently removing all but the largest connected components.
To investigate the agreement in the resulting planning target volumes (PTV), the resulting
segmentations of combined structures of LN levels I-V and II-IV were expanded by a
margin of 4 mm and were denoted as PI-PV and PII-PIV. These two PTVs were chosen
because they were used for planning the majority of HNC sub-types.
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2.6. Evaluation and Statistical Analysis

The evaluation of a full 3D image by UNet was achieved by sliding the 64 x 64 x 64
UNet field of view over the image with stride 32 and subsequently only evaluating the
central 32 x 32 x 32 voxels. By doing this, we ensured that the network had sufficient
context for reliable inferences, while also making sure that each voxel was classified exactly
once. The spatial performance of all models was measured by using DSC, Hausdorff
distance (HD) and mean surface distance (MSD) between predictions and manual contours
and between the PTVs that resulted from the predictions and manual contours. Because
the measures were not normally distributed upon histogram inspection and omnibus
test of normality [30], the differences in spatial performance were evaluated by a two-
sided Wilcoxon signed-rank test. Bonferroni correction was applied for each model and
spatial metric separately to account for multiple comparisons. The volumetric agreement was
assessed with intra-class correlation [31] (ICC; two-way mixed effects, single measurement,
consistency) coefficients and volume outside of the manual contour. Finally, cases with a
median DSC in the lowest quartile of the UNet+MYV configuration were qualitatively reviewed
by GJB. Cases from each quartile (Q1-Q3), as well as several informative examples, were
chosen for display, such as one patient who underwent laryngectomy surgery. This case
was included during training to maximize the number of training samples but was omitted
from the calculations of the model performance metrics, because the anatomical landmarks
normally required for manual contouring were not present in this patient’s anatomy.

2.7. Independent Validation

To assess the model generalizability, the two best performing models (UNet and
UNet+MV) were tested on the independent test set of 10 patients. These were unique sam-
ples that were not seen or used during the model development. For this independent test-
ing, the UNet and UNet+MV models were re-trained using the complete cross-validation
dataset (60 patients) as the training data. All training and evaluation settings were identical
to the cross-validation setting.

3. Results

In the cross-validation set, the mean age - standard deviation was 64.0 &= 10.4 (N = 49)
and 58.5 £ 4.9 (N = 11) for males and females, respectively. UNet and UNet+MV showed
better agreement with the manual reference than MV for the complete LN structure, all
individual LN levels and both PTVs (Table 1). UNet+MYV typically showed the better
segmentation performance of the combined LN structure, individual levels II-IV and both
PTV structures (Figures 3-6; Table 1). In addition, UNet+MV showed the highest volumetric
agreement with the manual reference for all structures (Figure 4). Overall, UNet+MV signifi-
cantly (p < 0.0001) outperformed the other models, with the DSCs (median [interquartile range
(Q1-Q3)]) of all individual LN structures present in the dataset being 0.804 [0.763-0.814], 0.658
[0.616-0.678] and 0.821 [0.769-0.831] for the models UNet, MV and UNet+MYV, respectively.
Even with some deformation, e.g., patient not aligned straight in the mask, median-level DSC
results were attained (e.g., Figure 3, second column). MV often (Figure 3, Ax. 1 and Cor.
1 rows) overestimated the segmented combined LN volume medjially.

UNet+MYV showed significantly higher DSCs for the complete LN level I-V structure,
individual levels II-IV and both PTV structures (Figure 5, p-values in figure). However,
UNet showed higher spatial agreement with the manual reference for LN level I. The
transitions of LN levels II-III by UNet+MV typically agreed most strongly with the manual
reference. All models commonly disagreed with the manual reference on the caudal and
cranial ends of LN level V. In addition, there existed a substantial disagreement on the
lateral and dorsal ends of this structure in the model predictions. The models benefitted
marginally from ensembling all model configurations for all classes, as the results from the
model ensembles were more consistent (Table 1). The models were optimized for a median
[range] of 10.3 [9.6-10.9] h, except for MV-only, which was optimized for 19.8 [18.7-21.2] h.
The inference time for all UNet models was 2.1 [1.8-2.4] minutes, whereas the MV inference
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time, which is proportional to the size of the input mask, was 6.0 [5.4-7.0] and 1.0 [0.8-1.3]
minutes per patient for the MV-only and UNet+MV configurations, respectively.

Table 1. The reported values denote the range of median DSCs produced by five individual models

and ensemble model combinations of UNet, MV and UNet+MYV configurations after post-processing.

Ensemble results that showed higher spatial agreement than the most accurate individual model

are denoted in bold. Ensembles increased result consistency and typically outperformed any of

the standalone models for all configurations. Abbreviations: MV: multi-view; Ind. individual; Ens:

ensemble; LN: lymph node.
Cross-Validation Independent Test
UNet MV UNet+MV UNet UNet+MV

Ind. Ens. Ind. Ens. Ind. Ens. Ens. Ens.
LNI-V [0.850-0.852] 0.857 [0.692-0.706] 0.708 [0.860-0.862] 0.867 0.846 0.865
LNI [0.849-0.855] 0.860 [0.682-0.695] 0.700 [0.851-0.856] 0.857 0.856 0.852
LNII [0.827-0.834] 0.840 [0.702-0.720] 0.726 [0.856-0.858] 0.862 0.824 0.850
LN III [0.771-0.781] 0.781 [0.628-0.653] 0.656 [0.802-0.812] 0.810 0.755 0.825
LN1IV [0.714-0.746] 0.748 [0.559-0.585] 0.583 [0.757-0.764] 0.764 0.743 0.724
LNV [0.738-0.751] 0.754 [0.572-0.604] 0.610 [0.753-0.761] 0.763 0.697 0.707
PI-PV [0.897-0.898] 0.899 [0.779-0.788] 0.798 [0.899-0.900] 0.908 0.892 0.904
PII-PIV [0.887-0.891] 0.892 [0.768-0.782] 0.788 [0.899-0.900] 0.902 0.893 0.892

By visually comparing the model and manual reference contour pairs in the worst-
performing quartile (N = 15), several trends were observed. First, the manual reference
was judged to be suboptimal (i.e., not according to the contouring guidelines; Figure 6A-E)
for at least one level in 6/15 cases. In these six patients, one, four, two, one and three
inaccuracies were found in each respective LN level I-V. Second, the level II-III transitions
predicted by UNet+MV were typically more accurate than those obtained from the manual
reference, and UNet+MYV also often outperformed UNet at this transition (Figure 6F-I).
Third, the predictions of LN level II by UNet and UNet+MYV were visually more accurate
than those of the manual reference at the cranial limit (Figure 6]). Fourth, the automated
methods showed a large variation in disagreement with the manual reference for LN
level V (Figure 6A,E,H,I,L). In cases where the automated methods showed considerable
disagreement with the manual reference, pitch, rotation and/or tilt were often underlying
confounders (Figure 6K-M), especially for LN level V (Figure 6M), or there were anatomical
variations such as malnourishment (Figure 6F) and laryngectomy (with fewer anatomical
landmarks available; Figure 6N-O)). Cases with a coronal tilt showed disagreement in
contralateral structures of the same level (Figure 6M). Among cases of the first quartile,
there were no particularities in the manual reference.

In the independent test, the mean age & standard deviation was 66.3 + 10.1 (N =7)
and 64.3 £ 13.6 (N = 3) years for males and females, respectively. The median [interquartile
range (Q1-Q3)] DSCs of all individual LN level structures were 0.769 [0.703-0.834] and
0.809 [0.729-0.852] by the UNet and UNet+MYV configurations, respectively, and differed
significantly (p < 0.0001). UNet+MV showed significantly higher DSCs for the complete
I-V structure, LN levels II and III, as well as both extrapolated PTVs (Table 1; Figure 7). For
reference, volumetric performances of the independent test set are included in Figure S1.
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Figure 3. Example segmentations selected from the first (Q1), second (Q2) and third (Q3) quartile in
terms of DSC averaged over individual LN levels I-V. The filled region is the manual reference. The
solid, dashed and dotted lines correspond to the predictions of the model configurations of UNet,
MYV and UNet+MV, respectively. LN levels I-V are indicated in pink, blue, green, red and yellow,
respectively. The low average DSC in Q1 was in part attributed to an error in the manual reference
level III-IV transition. Abbreviations: DSC: dice similarity coefficient; LN: lymph node.
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Figure 4. Predicted and manual reference volumes for all structures. Abbreviations: ICC: intra-class
correlation (two-way mixed, single measures, consistency).
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Figure 5. Spatial performances of UNet, MV and UNet+MV model configurations for DSC, HD
and MSD measures. Statistical significance marking of the MV configuration was omitted because
differences between MV and other model configurations were always significant. Structures for which
differences between UNet and UNet+MV were statistically significant are denoted by significance
bars. *: p < 0.05; **: p < 0.01; **: p < 0.001; ***: p < 0.0001; Abbreviations: DSC: dice similarity
coefficient; MV: multi-view; HD: Hausdorff distance; MSD: mean surface distance.
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Figure 6. Examples from the worst-performing quartile samples in terms of DSC averaged over
individual LN levels I-V. The filled region is the manual reference. The solid, dashed and dotted lines
correspond to the predictions of the UNet, MV and UNet+MV model configurations, respectively.
LN levels I-V are indicated in pink, blue, green, red and yellow, respectively. Arrows indicate specific
locations of interest. Abbreviations: DSC: dice similarity coefficient; LN: lymph node.
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Figure 7. UNet and UNet+MV spatial model performances in the independent test. Structures
for which differences between model configurations were statistically significant are denoted by
significance bars. ***: p < 0.001; ****: p < 0.0001; Abbreviations: DSC: Dice similarity coefficient; MV:
multi-view.

4. Discussion

Our results suggest that accurate contours of individual LN levels I-V can be obtained
using UNet (complete I-V structure median DSC = 0.859; individual structure DSC = 0.804),
and that these results can be further refined by using a UNet+MYV sequential model (complete
I-V structure DSC = 0.866; individual structure DSC = 0.821). Despite a limited gain compared
to UNet, UNet+MV exhibited a significantly better spatial performance for the complete I-V
structure, individual levels II-IV and both PTV structures, and better volumetric performance
for all structures. Comparable results were achieved using an independent test set for the
model configurations UNet and UNet+MYV, suggesting that the models have the ability to
generalize beyond the data used for model training and development.

These results, however, should be interpreted with some care. A review of patients
with a median DSC in the lowest quartile (N = 15) highlighted cases where the automated
methods were factually closer to the truth than the manual reference, due to inconsistencies
in the manual reference that arose from patient angulation and anatomical limitations
in contouring guidelines (Figure 6A-M). In addition, all models were considerably less
accurate for levels IV and V. Several factors may have contributed to this. First, it is known
that DSC is dependent on the structure size [32]; therefore, the small volumes of the levels
IV-V likely negatively influenced DSC, which was especially true for malnourished patients
(Figure 6M). Such a case was observed in the independent test, where LN level V had
a manual reference volume below the typical range (5 mL) and was almost completely
missed (Figure 7; Figure S1-LN level V). Second, despite the measures that were taken to
prevent most patient angulation during scanning, considerable patient angulation was
sometimes seen. This could be due to anatomical variations and to some patients” inability
to lie with their head down. This may also have contributed to a larger variation in
the manual reference and may have led to disagreements between the predictions and
the manual reference. This problem has recently been addressed in another study by
Weissmann et al. [13]. Because the contouring guidelines do not take into account the
curvature of the neck and the patient’s pitch, tilt and rotation, it can be argued that the
predictions may be more factually “correct” than the manual reference when this is the
case. Alternatively, if the goal of DL methods is to emulate the contouring guidelines,
the networks could be trained using explicit information of slice orientation. Variations
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in slice plane orientation are especially problematic for level V, because, for example, the
lower axial end of this structure contour in the manual reference is defined by the “plane
just below the transverse cervical vessel” [2,33]. This caused larger inconsistencies in the
manual reference for LN-level V highly pitched patients, compared to patients with other
levels. The same holds for the contralateral structures from the same level for patients with
a coronal tilt. The current guidelines prescribe level contours of both sides starting at the
same axial slice clinically, even though the tilt leads to different predictions for either side
for the automated methods. Similarly, although predictions generally show disagreement
in the caudal end of level IV and both axial ends and dorsal borders of level V, it should
not be concluded that predictions are inaccurate for these regions. Rather, the way that
the contouring guidelines were set up can cause peculiarities for patients with large pitch
and/or tilt when comparing with more standardized, automated methods. Although it
could seem like the rational step to take, it is not a given fact that redefining contouring
guidelines to be less dependent on anatomical landmarks in a certain slice and patient
angulation would be better for the clinical practice. Such guidelines would be more labour-
intense for the clinician, which will need to consider more strongly the 3D information of
the patient. However, such an approach may result in more accurate data, which in the
long run, will be more informative to the network and result in more consistent contours.

To put the results of this study into perspective, we compared our results to others in
the relevant literature on automated lymph level segmentation of combined lymph levels,
which reported a mean DSC range of 0.64-0.82 [34] Commercially available contouring soft-
ware (Limbus Contour build 1.0.22) was evaluated for the neck lymph nodal structures [11],
but it was reported that the performance could still be improved (mean DSC = 0.75). Car-
denas et al. reported an accurate segmentation performance of the combined LN level
I-V and II-1V clinical target volumes (CTV; both DSC = 0.90) [9], but it should be noted
that an inspection of example segmentations suggested that these structures more closely
resembled PTV structures from our institute. We believe that our finding of PTV overlap of
UNet and UNet+MV (PTV I-V and II-IV DSCs = 0.91, 0.90, respectively) is in line with,
if not better than, the segmented structures reported by Cardenas et al. To the best of our
knowledge, the work of Van der Veen et al. [14] was the first to involve the automated
segmentation of individual levels I and V and reported segmentation accuracies (without
expert intervention) of DSC = 0.73, 0.61 and 0.79 for levels I and V and the combined
II-1V structure, respectively. Interestingly, however, these results seem to more closely
resemble the results obtained with our second configuration (level I, V DSCs = 0.70, 0.61,
respectively). This is not unexpected, because the MV configuration involves a direct voxel
classification method that uses multiple scales, similar to the proposed method by Van der
Veen et al., but differs in the 2.5D convolution kernel, whereas Van der Veen et al. used a
fully 3D kernel.

The model application times are sufficient for clinical use, but can still be improved.
Typical whole-image full segmentation by UNet takes time in the order of seconds, but since
this UNet was trained in a patch-based fashion, it required application to all parts of the
image, such that each part of the image was seen by the 32 x 32 x 32 center patch exactly
once. This procedure was not optimized for speed and could likely still be accelerated
considerably. Similarly, the MV models were not optimized for speed. For example, when
processing neighbouring voxels, there existed much overlap between the extracted patches,
even though each patch was extracted separately in the current implementation.

Our research has some limitations. First, we only indirectly investigated the implica-
tions of model predictions for RT treatment planning by investigating the overlap of the
two predicted PTVs with the manual reference. Future work may investigate whether the
predicted volumes lead to improved dose—volume histograms in OARs and target volumes
when using them in a treatment planning system. Second, we did not include LN levels VI
and VII because these are less frequently clinically used. Since these are central levels and
require a larger region of interest to be considered for learning, deep learning frameworks
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aiming to include these structures may focus on patch-based training with sampling from
both sides simultaneously or by defining two left/right and one central ROL

5. Conclusions

We demonstrated that a UNet can accurately (DSC > 0.8) segment individual LN levels
I-V for the majority of patients and that this result can be further refined by using a UNet
for the segmentation of foreground structures, followed by a sequential voxel classification
network. With this generalized approach, any set of lymph levels can be combined to
define patient-specific LN level target structures. When dealing with angulated patients,
one should be aware that the current contouring guidelines can lead to situations where
the LN level contours may become inconsistent, which may be prevented by using more
standardized, automated deep learning methods. Future work should investigate whether
clinically acceptable RT plans can be obtained using predicted contours.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14225501 /51, Figure S1: Predicted and manual reference
volumes for all structures resulting from the independent test set. Abbreviations: ICC: intra-class
correlation (two-way mixed, single measures, consistency). Figure S2: Graphical representation of
the summary of this work.
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