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Simple Summary: In contrast to shallow submucosal invasion, colorectal cancer with deep submu-
cosal invasion requires surgical colectomy. However, accurately diagnosing the depth of submucosal
invasion via endoscopy is difficult. We developed a tool to diagnose the depth of submucosal inva-
sion in early colorectal cancer using a convolutional neural network. The diagnostic accuracy of the
constructed tool was as high as that of a skilled endoscopist. Endoscopic image recognition by deep
learning might be able to predict the submucosal invasion depth in early-stage colorectal cancer in
clinical practice.

Abstract: The submucosal invasion depth predicts prognosis in early colorectal cancer. Although
colorectal cancer with shallow submucosal invasion can be treated via endoscopic resection, colorectal
cancer with deep submucosal invasion requires surgical colectomy. However, accurately diagnosing
the depth of submucosal invasion via endoscopy is difficult. We developed a tool to diagnose the
depth of submucosal invasion in early colorectal cancer using artificial intelligence. We reviewed
data from 196 patients who had undergone a preoperative colonoscopy at the Osaka University
Hospital and Osaka International Cancer Institute between 2011 and 2018 and were diagnosed
pathologically as having shallow submucosal invasion or deep submucosal invasion colorectal cancer.
A convolutional neural network for predicting invasion depth was constructed using 706 images
from 91 patients between 2011 and 2015 as the training dataset. The diagnostic accuracy of the
constructed convolutional neural network was evaluated using 394 images from 49 patients between
2016 and 2017 as the validation dataset. We also prospectively tested the tool from 56 patients in
2018 with suspected early-stage colorectal cancer. The sensitivity, specificity, accuracy, and area under
the curve of the convolutional neural network for diagnosing deep submucosal invasion colorectal
cancer were 87.2% (258/296), 35.7% (35/98), 74.4% (293/394), and 0.758, respectively. The positive
predictive value was 84.4% (356/422) and the sensitivity was 75.7% (356/470) in the test set. The
diagnostic accuracy of the constructed convolutional neural network seemed to be as high as that of
a skilled endoscopist. Thus, endoscopic image recognition by deep learning may be able to predict
the submucosal invasion depth in early-stage colorectal cancer in clinical practice.

Keywords: artificial intelligence; colorectal cancer; deep learning; endoscopy; submucosal invasion

1. Introduction

Colorectal cancer (CRC) has the highest cancer-related morbidity and the third highest
mortality worldwide [1–3]. The prognosis of CRC varies based on the depth of tumor inva-
sion. Accordingly, treatment is usually determined based on the degree of progression [3].
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Almost all cases of early CRC are curable by surgery. Furthermore, endoscopic mucosal
resection is possible without a colorectomy, depending on the depth of cancer invasion [4].
The Japanese guidelines divide submucosal (SM) CRC based on the depth of invasion into
shallow SM invasion (SM-s; <1000 µm) and deep SM invasion (SM-d; ≥1000 µm). SM-s
CRC without lymph node metastasis can be treated endoscopically, but SM-d CRC requires
surgery with lymph node dissection [4]. Therefore, an incorrect assessment of the depth of
invasion can result in the need to perform an additional colorectomy after initial endoscopic
treatment. Such measures can lead to complications associated with endoscopic treatment,
delayed surgical treatment, and increased cost [3].

Diagnosis of the depth of invasion of early CRC is difficult. The depth of invasion
is assessed only by endoscopic findings in most cases. Although narrow-band imaging
(NBI), staining, observation of surface and vascular structures with a magnifying endo-
scope, and the use of endoscopic ultrasonography have improved the accuracy of invasion
depth diagnosis, [5–9] the accuracy reported by Japanese experts is only between 59% and
84% [10–12]. Hence, it is necessary to further improve the accuracy of diagnosis of the
invasion depth of CRC using endoscopic findings.

Artificial intelligence (AI) has made dramatic progress in various fields in recent
years, especially through machine learning (ML) [13–16]. Deep learning has also attracted
substantial attention in the field of medicine [17–19]. To date, several AI diagnostic tools
for CRC have been created by AI experts and other special facilities, such as companies
and universities, in collaboration with doctors. However, we believe this approach is
too inaccessible to contribute to diagnosis in general clinical practice. Therefore, in this
study, we developed an AI auxiliary diagnostic support tool requiring only a personal
computer and examined whether it could diagnose the depth of invasion as accurately as
human experts.

2. Materials and Methods
2.1. Patients and Datasets

Patients pathologically diagnosed with SM-s or SM-d CRC after surgical resection
(including additional resection after endoscopic resection) were retrospectively selected
from 256 patients with early-stage CRC who underwent preoperative colonoscopy at the
Osaka University Hospital and Osaka International Cancer Institute between January 2011
and December 2018. Endoscopic images from preoperative colonoscopy performed by a
gastroenterologist or gastroenterological surgeon were selected from the electronic medical
records at the Osaka University Hospital and Osaka International Cancer Institute, Osaka,
Japan. The patient exclusion criteria were head invasion and insufficient pathology or
preoperative laboratory data.

We collected the following information from the patients’ medical records: age, sex,
levels of carcinoembryonic antigen and carbohydrate antigen 19-9, location of the primary
tumor, and pathological findings. Clinicopathological factors were classified according to the
9th edition Union for International Cancer Control Tumor–Node–Metastasis classification.

2.2. Colonoscopy and Endoscopic Images

Colonoscopy was performed for screening or preoperative examination, and images
were captured using standard endoscopes (CF-HQ290I, CF-H290I, PCF-H290I, CF-Q260AI,
CF-H260AI, PCF-Q260AI; Olympus Medical Systems, Co., Ltd., Tokyo, Japan) and standard
endoscopic video systems (EVIS LUCERA; Olympus Medical Systems). Images were
included if they were taken with standard white light, chromoendoscopy using indigo
carmine spraying, crystal violet, and NBI. Images were excluded if they were poor quality
resulting from low insufflation of air, bleeding, halation, blur, defocus, or mucus. At least
one CRC lesion was present in all the images, and multiple images were prepared for the
same lesion to account for differences in angles, distance, and extension of the mucosa.

In addition, we prospectively tested the tool with images from 56 patients with sus-
pected early-stage CRC who underwent preoperative colonoscopy at the Osaka University
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Hospital and Osaka International Cancer Institute between January and December 2018
as a test set and compared the accuracy with that of preoperative endoscopic diagnosis.
The computer diagnosed the images of early CRC as either SM-s or SM-d. The obtained
results were not reported to the endoscopists who performed the endoscopic examination
to ensure that their diagnosis was not influenced. The colonoscopy image did not include
personal information, and only the image of the tumor site was selected.

2.3. Analysis

Deep learning with AI was performed using MATLAB software (MathWorks, R2021a,
Natick, MA, USA) by a convolutional neural network (CNN). During the deep learning pro-
cess, we prevented the network from learning unnecessary information (e.g., backgrounds
containing normal mucosa) by clipping the photographs containing the tumors in the form
of squares [20]. We used occlusion which explicates the contribution of input images and
evaluates an effect on classification results [21]. Differences in clinicopathological factors
between the two groups were analyzed using the chi-square test or Fisher’s exact test.
Continuous variables with parametric distributions were analyzed using Student’s t-test or
analysis of variance. All statistical analyses were performed using JMP software version 16
(SAS Institute Inc., Cary, NC, USA).

3. Results

After selection, images from 196 of 256 patients were evaluated (Figure 1, Table 1).
There were no significant differences between learning and validation sets (Supplementary
Table S1). As the training image dataset for the construction of the CNN, 706 images were
collected from 91 patients who underwent screening or preoperative examinations at the
Osaka University Hospital between January 2011 and December 2015 and were indicated
to have pathologically proven CRC (Figure 2, Table 2). To evaluate the diagnostic accuracy
of the constructed CNN, an independent validation dataset of 394 images were collected
from 49 patients who underwent screening or preoperative examinations at the Osaka
University Hospital between January 2016 and December 2017.
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Figure 1. Study population diagram. Patients were classified into the learning set group, for which
data was collected from 2011 to 2015, and the validation set group, for which data was collected from
2016 to 2017. SM-s: shallow SM invasion (<1000 µm), SM-d: deep SM invasion (≥1000 µm).
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Table 1. Clinicopathological feature.

Variables
Learning Set (2011–2015) Validation Set (2016–2017)

n = 91 n = 49

Age, median (years) * 66 (41–86) 66 (35–84)
Sex (male/female) 59/32 28/21

Location (colon/rectum) 54/37 32/17
Greatest diameter, median (mm) 20 (0–50) 20 (6–66)

Preoperative CEA (≥5/5</NA) (ng/mL) 12/78/1 11/36/2
Preoperative CA19-9 (≥38/38</NA) (ng/mL) 5/85/1 3/44/2
Degree of differentiation (tub1/tub2/others) 57/30/4 29/19/1

Depth of invasion, median (µm) * 2000 (0–9000) 2200 (91–12,000)
Lymph node metastasis (+/−) 7/84 7/42

Lymphatic invasion (+/−) 24/67 16/33
Vascular invasion (+/−) 12/79 7/42

Budding grade (1/2, 3/NA) 54/16/21 37/8/4
* Continuous variables were evaluated. CEA, Carcinoembryonic antigen; CA19-9, Carbohydrate antigen 19-9; tub,
Tubular adenocarcinoma; NA, Not applicable.
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Figure 2. The computer used the 706 images learned by the computer for CNN analysis. The number
of SM-s images was 256 and the number of SM-d images was 450.

Table 2. Clinicopathological features (Learning set 2011–2015).

Variables SM-s
(n = 22)

SM-d
(n = 69) p-Value

Age, median (years) * 66 (41–86) 66 (35–84) 0.846
Sex (male/female) 15/7 44/25 0.706

Location (C/A/T/D/S/R) a 1/2/1/0/7/11 7/14/7/5/10/26 NA
Degree of differentiation

(tub1, 2/others) 22/0 65/4 0.248

Lymphatic invasion (+/−) 4/18 20/49 0.317
Vascular invasion (+/−) 2/20 10/59 0.514
Budding grade (1/2, 3) ** 13/2 41/14 0.322

* Continuous variables were evaluated. ** Not applicable: 7 in SM-s, 14 in SM-d. a Tumor located at cecum (C),
ascending (A), transverse (T), descending (D), sigmoid (S), colon or rectum (R) was determined according to the
Japanese Classification of Colorectal Carcinoma (9th ed). NA: Not assessed; tub, Tubular adenocarcinoma; SM-d,
deep submucosal invasion; SM-s, shallow submucosal invasion.

Of the 394 images in the validation dataset, 98 images from 11 patients were patholog-
ically proven as SM-s CRC, and 296 images from 38 patients were pathologically proven
as SM-d CRC. The CNN identified 321 (87.2%) of the 394 validation set images as SM-d
CRC: 63 images from tumors that were pathologically SM-s CRCs and 258 from tumors
that were pathologically SM-d CRCs. In the retrospective validation set, the sensitivity
of the CNN for diagnosing SM-d CRC compared to SM-s CRC was 87.2% (258/296), the
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specificity was 35.7% (35/98), the accuracy was 74.4% (293/394), and the area under the
curve was 0.758 (Figure 3, Table 3). The percentage of images with incorrect AI diagnosis
focused on other areas than the tumor area was 56.2% for SM-s CRC images and 60.5% for
SM-d CRC images (Supplementary Table S2).
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learning set was 0.971. (B) The area under the curve value of the validation set was 0.758.

Table 3. Results of CNN learning from the validation set.

AI Diagnosis

SM-s SM-d

Pathological classification

SM-s
n = 11

98 images
35 images 63 images

SM-d
n = 38

296 images
38 images 258 images

Sensitivity: 87.2% (258/296), positive predictive value: 80.4% (258/321), accuracy: 74.4% (293/394). CNN,
convolutional neural network; SM-d, deep submucosal invasion; SM-s, shallow submucosal invasion.

Re-verification was performed with the prospective test set of images taken from
clinical practice. For the prospective test set, a total of 560 images were collected from
26 patients at the Osaka University Hospital and 30 patients at the Osaka International
Cancer Institute with early CRC who underwent a preoperative colonoscopy. The sensi-
tivity of the CNN was 75.7% (356/470) and positive predictive value was 84.4% (356/422)
(Table 4A,B).
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Table 4. Prospective test set. (A) Results of CNN learning. (B) Diagnostic accuracy: Clinical diagnosis
vs. AI diagnosis.

(A)

n = 56
560 images

Age, median (years) * 63.8 (38–82)
Sex (male/female) 30/26

Location (C/A/T/D/S/R) a 5/7/9/5/8/22
Degree of differentiation

(tub1/tub2/others) 37/17/2

Lymphatic invasion (+/−) 11/45
Vascular invasion (+/−) 5/51

Budding grade (1/2, 3/NA) 40/14/2

(B)

Clinical diagnosis AI diagnosis

SM-s SM-d SM-s SM-d

Pathological
classification

SM-s
n = 9

90 images
n = 5 n = 4 24 images 66 images

SM-d
n = 47

470 images
n = 17 n = 30 114 images 356 images

* Continuous variables were evaluated. a Tumor located at cecum (C), ascending (A), transverse (T), descending (D),
sigmoid (S), colon or rectum (R) was determined according to the Japanese Classification of Colorectal Carcinoma
(9th ed). Clinical diagnostic sensitivity: 75.7% (356/470), positive predictive value: 84.4% (356/422). AI diagnostic
sensitivity: 63.8% (30/47), positive predictive value: 88.2% (30/34). AI, artificial intelligence; SM-d, deep
submucosal invasion; SM-s, shallow submucosal invasion. AI, artificial intelligence; CNN, convolutional neural
network; tub, Tubular adenocarcinoma; NA, not assessed.

4. Discussion

Most endoscopy techniques use different lights and mucosal stains to diagnose the
depth of invasion in early CRC. However, it is difficult to determine the depth of early
CRC using endoscopy alone [7,22,23]. An inaccurate preoperative diagnosis can lead to the
selection of inappropriate treatment methods, which may affect patient outcomes. If any
tumor remains after mucosal resection and intestinal tract resection is not performed, the
cancer may spread over time. Therefore, improving the diagnostic accuracy of early CRC
invasion depth is necessary to avoid such complications.

The recent dramatic advancements in AI have improved its applicability in various
fields of science [13,14]. ML is a method in which the computer is trained to find helpful
similarities from given data. Deep learning is a type of ML that involves a learning struc-
ture of multiple layers to imitate the brain’s neural network, and it enables computers to
analyze various training images and extract specific clinical features using a backpropa-
gation algorithm. CNN is a type of deep learning network that enables the recognition
of patterns through multilayer learning of image data and automatic extraction of image
features [13,14]. Based on the accumulated clinical features, computers can be used to
diagnose newly acquired clinical images using CNNs. Various types of neural networks
have been developed, and CNNs are known to yield the best performance in the field of
image recognition [16–19].

In this study, the accuracy of the CNN was 74.4%, equivalent to that of expert endo-
scopists. In previous studies, the accuracy of the diagnosis of depth of invasion in early
CRC by endoscopists was 59–84% [10,22]. In our institute, the accuracy of preoperative
diagnosis by endoscopists was 76%. In the validation set, the sensitivity and the positive
predictive value of the CNN for early CRC were 87.2% and 74.4%, respectively. This shows
that the CNN could diagnose the depth of invasion in early CRC as accurately as endoscopy
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experts. However, AI can only use the information in the image, not the image itself. Hence,
it is better to obtain as much information as possible inside the image.

The details of the process of CNN deep learning and the part of the image the CNN
reads and makes decisions about are not clear [24,25]. In this study, we constructed
a program to visualize the part of the image being recognized and diagnosed by AI
with a color map [20]. The areas that the AI focused on for diagnosis can be visualized
with brighter color on the color map. We found that the AI’s image diagnosis took into
account not only the tumor area but also information about the tumor surroundings. We
prepared images that included both a close-up image of the tumor and the immediate tumor
surroundings so that unnecessary information, such as the image background, would not
affect the accuracy of the diagnosis. The created images were then learned by the CNN and
a highly accurate diagnostic support tool was developed for endoscopic diagnosis of SM-d
early CRC. When using colonoscopic images, close-up NBI images and staining methods
such as indigo carmine and crystal violet are preferable for diagnosing the depth of invasion
in early CRC compared to using only images captured with white light [7,22,26–29]. In
this study, white light, NBI, and stained images were all used to assess SM invasion depth.
Of the 1690 images in the total dataset, 1245 were white light images, 194 images were
obtained from NBI, and 251 images were chromoendoscopy images. Although we tried
to improve the accuracy of the deep learning tool using only NBI or stained images, the
accuracy was too low. This can be attributed to the fact that there were few NBI and
stained images for ML. All tumors had had white light images taken. Therefore, it was
possible to obtain a sufficiently accurate diagnosis rate by repeating the learning process
with the expanded dataset. Moreover, there was little difference in AI diagnosis when
using white light and NBI or chromoendoscopy. Furthermore, we obtained nearly the
same diagnostic accuracy as expert endoscopists using auxiliary tools for endoscopic image
diagnosis. Hence, differences in diagnostic accuracy among endoscopic diagnostic doctors
in clinical practice can be reduced using this tool. Further, it is expected that the accuracy of
the CNN will increase as the number of learning cycles increase [15,24]. Therefore, future
studies should increase the number of cases and allow the CNN to learn more endoscopic
images. However, there are many reports on the usefulness of magnified images such as
NBI and stained images compared to white light, and they are utilized in clinical practice.
The depth of the lesion was diagnosed based on the macroscopic type of early CRC in this
study. From the results of this study, we plan to collect uniform standards for endoscopic
images (such as NBI, chromoendoscopy images) to examine diagnostic accuracy [30,31].

Several recent studies have reported the use of CNNs in medical diagnosis with
high rates of diagnostic accuracy. However, as most studies are performed in specialized
AI institutions with dedicated engineering systems, it takes a considerable amount of
time to receive diagnostic results, which is not advantageous in clinical practice. In this
study, we developed a cheap, accessible, and user-friendly tool for use in clinical practice
to perform diagnosis using a CNN with a short turnaround time that requires only a
personal computer. Both retrospective and test sets showed the high accuracy of our CNN
approach. Furthermore, we obtained diagnostic accuracy comparable to that of experienced
endoscopic diagnostic doctors using this auxiliary tool for endoscopic image diagnosis
with the CNN. Hence, this CNN can be used to aid diagnosis in clinical practice.

This study has some limitations. One obvious limitation is the small number of SM-s
cases in this study. There were twice as many SM-d cases as SM-s cases. As a result, the
diagnostic accuracy of the CNN was lower in SM-s cases. On the other hand, it was a high
positive predictive rate depending on the data set and a high false-positive rate. This study
aimed that the endoscopic images were then analyzed by CNN and a helpful diagnostic
tool was developed for endoscopic diagnosis of SM-d CRC. It should be used as supportive
information to determine tumor depth preoperatively, because SM-s could be recognized as
SM-d which is deeper CRC. Further, it is necessary to conduct an examination at multiple
facilities in the future. Second, the color map visualization showed that not only the tumor
area but also the tumor periphery was relevant for the AI diagnostic process. Therefore, it is
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necessary to examine whether the learning of not only endoscopic images of the tumor but
also images including the tumor periphery affects the diagnostic accuracy. Finally, it was
difficult to classify the gross appearance for colorectal cancer. We suspected that AI could
be used to take some shortcut learning and diagnose depth of tumor invasion. However,
this is the cohort study, and we collected data retrospectively. We carefully examined the
study design regarding how to classify the tumor appearance of colorectal cancer. VR-Caps
and CEP are software that can evaluate tissue volume using CT colonoscopy data [32,33].
Using these, we can obtain the best submucosal ground truth depth values and a large
number of corresponding real images, and it is possible to construct new practical models.
In this study, we evaluated the medical records as a retrospective analysis, and there are
preoperative CT data, but not CT-colonography data. If we can handle the CT-colonography
data, combining these applications with CT data and software would allow us to construct
a practical model.

In conclusion, endoscopic image recognition with deep learning using AI may enable
a more accurate diagnosis of SM invasion depth in early-stage CRC. It is necessary to
examine the features of images that can improve the accuracy of diagnosis by collecting
more cases.
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