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Simple Summary: Accumulating evidence indicates the existence of cancer stem cells (CSCs) sub-
populations which fuel cancer growth and maintain stemness in different cancers. In addition to
the genetic and phenotypic variabilities that differentiate CSCs from non-CSCs counterparts, CSCs
adopt a flexible metabolic strategy to sustain their oncogenic and stemness properties, in order to
survive and propagate in a hostile tumor microenvironment (TME). TME factors and metabolites
exert context-dependent influence on cancer stemness. In addition, the metabolic landscape in TME
is complicated by the crosstalk between CSCs and tumor-infiltrating cells. In this review, we will
summarize the metabolic interaction between CSCs and various microenvironmental factors and
review how this interplay regulates cancer stemness and tumorigenesis.

Abstract: An increasing body of evidence suggests that cancer stem cells (CSCs) utilize reprogrammed
metabolic strategies to adapt to a hostile tumor microenvironment (TME) for survival and stemness
maintenance. Such a metabolic alteration in CSCs is facilitated by microenvironmental cues including
metabolites such as glucose, amino acids and lipids, and environmental properties such as hypoxic
and acidic TME. Similarly, metabolites uptake from the diet exerts critical imprints to the metabolism
profile of CSCs and directly influence the maintenance of the CSC population. Moreover, CSCs
interact with tumor-infiltrating cells inside the CSC niche to promote cancer stemness, ultimately
contributing to tumor development and progression. Understanding the underlying mechanisms of
how CSCs employ metabolic plasticity in response to different microenvironmental cues represents a
therapeutic opportunity for better cancer treatment.

Keywords: cancer stem cells; cancer metabolism; tumor microenvironment; plasticity

1. Introduction

Emerging evidence has suggested that tumor cells inside a tumor bulk are heteroge-
nous with variable genetic, phenotypic and functional profiles [1]. Among which, subpopu-
lations of tumor cells with enhanced tumor-initiating and self-renewal abilities, termed can-
cer stem cells (CSCs), have been identified and characterized in multiple cancer types [2–7].
Growing studies have reported compelling evidence that CSCs are the root of tumor ini-
tiation [8], progression [9], relapse [10], and metastasis [11], which pinpoint CSCs to be a
potential therapeutic target for curative cancer treatment.

CSCs reside in the tumor microenvironment (TME) where heterogeneous cell popula-
tions interact with one another [12]. The interaction through the secretion and uptake of
various types of molecules results in either promotion or suppression of tumor develop-
ment and progression [13]. Metabolites have been recognized as one of the critical signaling
molecules that facilitate the metabolic interaction among different cells in the TME [14].
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Reprogramming cellular metabolism is considered as one of the core hallmarks of
cancer [15,16], by which cancer cells harness the advantage of metabolic adaptations to
produce energy or new biomass and sustain uncontrolled proliferation and viability [17,18].
CSCs, like most cancer cells, are able to reprogram their metabolism to better adapt to the
environmental changes [19]. However, how CSCs respond differently compared with their
non-CSCs counterparts under different microenvironmental cues has not been systemi-
cally reviewed. In light of this, the metabolic plasticity of CSCs in response to different
microenvironment factors will be summarized.

2. Metabolites as Signaling Messengers between CSCs and TME

Extracellular metabolites could exert either tumor-promotive or -suppressive effect
in different cancers (Table 1). Their availabilities could direct the intracellular signaling
pathways for the regulation of tumorigenesis and cancer stemness.

Table 1. The effect and regulation of extracellular metabolites on cancer stemness in different cancers.

Metabolite Effect Cancer Type Mechanism

Glucose

Promotive [20] Breast cancer [+]Glucose→MicroRNA miR424 activity ↓ →
Tumorigenesis & cell invasion ↑

Promotive [21] Ovarian cancer
[+]Glucose→ OXPHOS ↑ → CSC phenotype
[−]Glucose→Maintenance of CSC phenotype in
CD44+CD117+ CSCs

Inhibitory [22] Hepatocellular carcinoma [−]Glucose→ FUT1 expression ↑ → Stemness ↑

Glutamine

Promotive [23] Gastric cancer [+]Glutamine→ Glutamine transporter SNAT2 ↑ →
Stemness ↑

Inhibitory [24] Ovarian cancer [−]Glutamine→ ROS ↑ →MAPK/ERK ↑ → DPR1
phosphorylation ↑ → Stemness ↑

Inhibitory [25] Hepatocellular carcinoma [−]Glutamine→ Rictor/mTORC2 ↑ → Stemness ↑

Inhibitory [26] Glioblastoma [−]Glutamine→ CD133+ CSC population ↑

Promotive [27] Non-small cell lung cancer [+]Glutamine→ ROS ↓ → β-catenin↑ → Stemness ↑

Amino acids

Promotive
(Serine) [28] Oncogenic epidermal stem cells

[+]Serine→ De novo serine synthesis ↓ →
α-ketoglutarate production ↓ → Repressive histone
modification H3K27me3 ↑ → Stemness ↑

Promotive
(Glycine) [29] Colorectal cancer [+]Glycine→Wnt signaling→ Stemness ↑

Promotive [30] Acute myeloid leukemia [+]Amino acids→ ROS ↓ → CSC population ↑

Lactate

Promotive [31] Glioma [+]Lactate→ OXPHOS ↑ → Aggressiveness and
stemness ↑

Promotive [32] Oral squamous cell carcinoma [+]Lactate→ Epithelial-mesenchymal transition↑ →
Stemness ↑

Promotive [33] Hepatocellular carcinoma [+]Lactate→ H3 histone lactylation→
Tumorigenesis ↑

Promotive [34] Lung cancer [+]Lactate→ Pyruvate metabolism reprogramming→
Cell proliferation and survival

Fatty acid

Promotive
(Palmitoleic/oleic fatty acid) [35] Ovarian cancer [+]Palmitoleic/oleic acid→ Ferroptosis ↓ →

CSC population ↑

Promotive [30,36] Acute myeloid leukemia [+]Fatty acid uptake→ Energy metabolism ↑ →
Maintenance of CSC population

Promotive (Palmitic acid) [37] Breast cancer [+]Palmitic acid→ Self-renewal and proliferation ↑

Adenosine
Promotive [38] Glioblastoma [+]Adenosine→ Aggressive CSC phenotype ↑

Promotive [39] Lung cancer [+]Adenosine→Metastasis

Ketone body
Promotive [40] Breast cancer [+]Ketone body→ OXCT1/2↑ → Cancer stemness ↑

Suppressive [41] Hepatocellular carcinoma [−]Ketone (β-HB)→mTOR pathway→
Tumorigenesis

↑ Increase/Activation; ↓ Decrease/Suppression; + Increase in abundance; − Decrease in abundance;→ Cause.
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2.1. Availabilities of Metabolites in the TME Direct CSC Properties

Glucose, as the primary energy-producing metabolite, has been shown in different can-
cers to either promote or suppress CSCs. A study observed that hyperglycaemia resulted
in enhanced invasion and stemness of breast CSCs by reducing the tumor suppressing mi-
croRNA miR-424 [20]. However, other studies suggested that CSCs might also expand their
population and maintain their stemness under restricted glucose availability in the TME.
CD44+CD117+ CSCs isolated from epithelial ovarian cancer patients showed increased
glucose uptake while CSC phenotype could still be maintained under glucose deprivation
environment [21]. Similarly, a recent study conducted by our group found that glucose
deprivation could promoted cancer stemness and drug resistance, concomitant with an
increase population of CD133+ liver CSCs [22]. These studies indicate that extracellular
glucose is a key regulator for cancer stemness, but its effect is context-dependent.

Amino acids are another important group of metabolites which influence CSC stem-
ness [42]. Glutamine is an abundant amino acid fueling the tricarboxylic acid (TCA) cycle
and supporting the biosynthesis of other metabolites [43]. Although glutamine dependence
in cancer cells has been extensively investigated [44], limited studies have explored the role
of glutamine in CSCs until recent years. Preferential up-regulation of glutamine transporter
SNAT2 in gastric CSCs led to an increased glutamine uptake and thereby promoted cancer
stemness in gastric cancer [23]. In ovarian cancer, deprivation of glutamine promoted
cancer stemness possibly through mitochondrial fragmentation resulted from increased
phosphorylation of mitochondrial regulator DRP1 [24]. In liver cancer, fresh patient tumor
samples with more necrotic areas had lower glutamine concentration and a higher OCT4
expression [25]. Primary glioblastoma cultures with CD133 expression showed a reduced
glutamine uptake and utilization and displayed a more mesenchymal-like signature com-
pared with CD133 negative counterparts [26]. In addition to glutamine, other amino acids
were shown to regulate cancer stemness. Baksh et al., reported that reducing extracellular
serine level led to the differentiation of epidermal stem cells which were shown to be the ori-
gin of squamous cell carcinoma [28]. Terasaki et al., reported the stemness-promotive role
of glycine which could support epithelial-mesenchymal transition in colorectal CSCs [29].
Leukemic stem cells (LSCs) isolated from primary human acute myeloid leukemia (AML)
specimens with low reactive oxygen species (ROS) levels were more dependent on the
uptake and catabolism of amino acids to fuel oxidative phosphorylation (OXPHOS) [30].

Extracellular lactate impacts cancer cells and CSCs through diverse mechanisms [31–34].
In glioma CSCs which rely on OXPHOS for energy production, lactate serves as an energy
source and induces metabolic rewiring of CSCs to maintain an aggressive phenotype [31].
In oral squamous cell carcinoma (OSCC), extracellular lactate activated Wnt signaling
and increased CSC marker (CD133) expression in organoids generated from fresh OSCC
specimens, while inhibiting the transport of lactate into the cells abrogated the CSC phe-
notypes [32]. In liver CSCs, exogenous lactate treatment enhanced lactylation on the
lysine residues of histone H3 and promoted hepatic tumorigenicity [33]. Reducing lac-
tate production through inhibition of lactate dehydrogenase significantly impaired CSC
tumor-initiating function in lung cancer [34].

In addition to glucose, amino acids and lactate, lipids also play critical roles in regu-
lating the stemness trait of CSCs. In ovarian CSCs, the provision of exogenous fatty acid
sources such as palmitoleic acid and oleic acid rescued CSCs from ferroptosis-induced cell
death which was resulted from the inhibition of fatty acid lipogenesis enzyme stearoyl-
CoA desaturase (SCD1) [35]. In relapsed/refractory AML patients, relapsed LSCs iso-
lated from patient samples with low ROS levels could compensate for the depletion
of amino acid metabolism through increased uptake of fatty acids to support energy
metabolism [30,36]. Non-adherent mammosphere culture established from patients with
breast-to-brain metastasis showed increased self-renewal and proliferation when supple-
mented with palmitic acid [37].
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2.2. CSC Metabolite Secretome Affects Tumor Initiation and Progression

CSCs consume metabolites in the TME, at the same time CSCs also actively remodel
the TME by their altered metabolite secretome in order to establish a supportive ecosys-
tem for tumor initiation and progression [45]. Under hypoxic condition in glioblastoma,
adenosine production was significantly increased via a positive feedback loop mediated by
prostatic acid phosphatase and adenosine receptor A2B (AB2R), resulting in an enhanced
proliferation of glioblastoma CSCs [38]. Similarly, Niechi et al., observed that increased
adenosine production facilitated the adhesion, migration, and invasion abilities of glioblas-
toma CSCs [46]. In non-small cell lung cancer (NSCLC) CSCs, increased CD73/adenosine
pathway promoted the resorption of osteoclasts in a co-culture system, leading to the metas-
tasis of NSCLC CSCs into the bone [39]. Moreover, adenosine has been acknowledged
as an immunosuppressive metabolite [47–49], suggesting its role in promoting immune
evasion of cancer cells.

Ketone bodies, comprising of acetone, acetoacetate and beta-hydroxybutyrate (β-HB),
possess both pro-tumor and anti-tumor properties [50]. Increased ketone body production
was first observed in normal intestinal stem cells [51]. Increased β-HB promoted self-
renewal of intestinal stem cells by activating Wnt-related signaling [51]. Using engineered
ketone body-producing fibroblasts, Martinez-Outschoorn et al., showed that increased
ketone body production enhanced tumor growth and metastasis of breast cancer through
the activation of ketone body metabolic enzymes OXCT1/2 and ACAT1/2 [40]. Similarly,
the same research group discovered that adding ketone bodies in the cell culture of MCF7
human breast cancer cells significantly enhanced the stemness-related gene signatures [52].
However, other evidence indicates that ketone bodies could exert a suppressive effect on
tumor progression. Our group previously reported that suppressed ketone body production
resulted from deranged tyrosine catabolism activated mTOR signaling and promoted early
hepatic tumorigenesis, indicating an anti-tumor effect of ketone bodies in hepatocellular
carcinoma (HCC) [41]. Moreover, Dmitrieva-Posocco et al., discovered a tumor-suppressive
effect of β-HB which activates an anti-tumor signaling cascade mediated by Hcar2 and
Hopx in colorectal cancer [53].

3. Microenvironmental Cues Reprogram CSC Metabolism

Metabolic plasticity could be observed in CSCs exhibiting flexible energy metabolic
strategy, that enables them to cope with energy demands in response to changing nutri-
ent availability and environmental stress (Figure 1) [54–56]. For instance, glioblastoma
stem cells derived from glioblastoma cell line U87 were shown to embrace a glycolytic
metabolism under hypoxic condition as evidenced by reduced mitochondrial respiration
and enhanced glycolysis [57]. On the other hand, two other independent studies reported
that patient-derived glioblastoma stem cells harness OXPHOS to support their CSC prop-
erties [58,59]. It is interesting to note that the preference of energy metabolic pathway is
affected by the experimental models. Enhanced glycolysis was observed in CSCs derived
from in vitro cell line models [57,60,61], whereas OXPHOS supported CSCs isolated from
spontaneous tumor models and fresh patient samples [21,58,62]. A possible explanation
is that in vitro cell culture models usually fail to recapitulate the complexity of metabo-
lite availability in the TME [63]. Moreover, other TME factors such as limited oxygen
availability (hypoxia) and extracellular acidity also contributes to the regulation of cancer
stemness [64,65]. A comprehensive understanding of the metabolic adaptations of CSCs is
warranted to shed light on the development of novel therapeutics.
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Figure 1. TME and extracellular metabolites reprogram CSC metabolism. Schematic diagram illus-
trating the effects of TME metabolites, diet and environmental factors on regulating the metabolism
and functions of CSCs.

3.1. Alterations in TME Reprogram CSC Metabolism

Under hypoxia, CSCs rely on glycolysis rather than OXPHOS to maintain their sur-
vival [56]. Zhou et al., observed that glioblastoma stem cells maintained stemness prop-
erties in hypoxic condition through enhanced glycolysis and suppressed mitochondrial
respiration [57]. Lan et al., reported that hypoxia induced the expression of AB2R which
further regulated interleukin-6 and NANOG expression to promote breast CSC enrich-
ment [66]. An independent study in breast cancer also showed that hypoxia promoted
breast CSC properties through pyruvate dehydrogenase kinase 1 (PDK1) [67]. In HCC,
hypoxia promoted tumorigenesis and cancer stemness through stabilizing and activating
hypoxia-inducible factor 1 alpha (HIF-1α) [68].

Acidic extracellular microenvironment, termed acidosis, is another physical environ-
mental factor that influences CSC metabolism and functions [65,69–71]. In melanoma
CSCs, acidic extracellular microenvironment helped sustain oxidative metabolism by up-
regulating the stemness marker SOX2 [65]. In glioma stem cells, acidic stress rewired
energy metabolism to favor mitochondrial respiration through CYP24A1/vitamin D reg-
ulation [72]. Moreover, in colorectal CSCs, acidosis suppressed vitamin metabolism by
inhibiting vitamin D receptor expression, thus promoting CSC functions [73].

3.2. Metabolites in TME Reprogram CSC Metabolism

In addition to the alteration of physical properties of the TME, extracellular metabolites
also contribute to the reprogramming of CSC metabolism. High glucose concentrations
in the culture media promoted glucose metabolism in pancreatic and ovarian CSCs as
evident by the activation of glucose transporter 1 (GLUT1) [74]. In another study con-
ducted by Flavahan et al., reduced glucose concentration in the culture media (2.5 mM)
promoted survival and growth of brain tumor-initiating cells through glucose transporter
type 3 dependent glucose uptake [75]. Glutamine, as another important nutrient, has also
been associated with the maintenance of cancer stemness. Liao et al., found that glutamine
promoted glutathione synthesis and suppressed excessive intracellular ROS, which in turn
supported the maintenance of cancer stemness through β-catenin signaling pathway in
stem-like side population (SP) cells from lung and pancreatic cancers [27]. Fatty acids have
also been implicated in regulating cancer stemness. In breast cancer, extracellular omega-
3 polyunsaturated fatty acids inhibited SCD1-mediated lipogenesis which suppressed
self-renewal and tumor-initiating abilities of breast CSCs [76].
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The reprogrammed metabolic strategies in CSCs represent therapeutic opportunities.
Drugs targeting glucose metabolism exert effect on glycolytic CSCs, as exemplified by the
use of 2-DG [77–79]. On the other hand, targeting the mitochondrial respiratory machinery
by OXPHOS inhibitor metformin showed therapeutic effects in clinical trials of colorectal
adenoma [80]. These studies indicate that understanding CSC metabolic plasticity and
metabolic vulnerability could direct the development of more effective cancer therapy.

4. Dietary Effects on CSC Metabolism

Diet determines the nutrient availability in the microenvironment where CSCs are
exposed to, that in turn alters CSC metabolism [81].

High fat diet has been correlated with higher cancer incidence and worse progno-
sis [82], and it has recently been linked with the maintenance of stemness in both normal
stem cells [83] and CSCs [37,84–86]. In normal intestinal stem cells, Beyaz et al., identified
that high fat diet induced the expansion of Lgr5+ intestinal stem cell pool through the
activation of peroxisome proliferator-activated receptor-related signaling pathway [83]. In
oral carcinoma CSCs, high fat diet was found to enhance lipid metabolism by increasing
the expression of fatty acid receptor CD36 and lipid metabolic genes, which contribute to
increased metastasis of CSCs [84]. In high fat diet-induced breast cancer, Wang et al., dis-
covered that fatty acid β-oxidation activated through Jak/STAT3 signaling promoted
self-renewal and chemoresistance properties of breast CSCs [37]. Similarly, high fat diet
expanded the LGR5+ CSCs pool and promoted tumorigenesis through JAK2/STAT3 signal-
ing in colon cancer [85]. Moreover, high fat diet resulted in the accumulation of bile acids
including tauro-β-muricholic acid and deoxycholic acid, which antagonized intestinal FXR
and promoted proliferation of LGR5+ CSCs [86].

Increased dietary intake of cholesterol and high cholesterol level have been impli-
cated to facilitate tumor development and progression [50]. Ehmsen et al., observed that
cholesterol biosynthesis-related proteins were up-regulated in breast CSCs, while inhibiting
cholesterol synthesis impaired CSC properties [87]. Similarly, Wang et al., found that
increased cholesterol biosynthesis and excessive cholesterol intake from diet contributed to
enhanced proliferation, stemness and tumorigenic properties of intestinal stem cells [88].
Mechanistically, excessive dietary cholesterol reduced the level of cholesterol enzyme squa-
lene epoxidase, which in turn suppressed the GSK3β/p53 tumor suppressive pathway and
promoted the progression and metastasis in colorectal cancer [89]. These studies indicate a
critical role of cholesterol in sustaining the CSC populations.

Other types of diets have also been implicated in regulating CSCs. For example, a
fasting-mimicking diet was observed to lower the glucose level and reduce the expression
of stemness markers in breast CSCs [90]. Accumulating evidence has attributed the anti-
tumor effect of ketogenic diet to its influence on CSC properties. Ketogenic diet has been
shown to benefit cancer treatment through reprogramming cancer cell metabolism [91,92].
Ji et al., observed that co-culturing glioblastoma CSCs with β-HB, a ketone body produced
under ketogenic diet, inhibited glucose uptake and increased ROS production, resulting in
apoptosis of CSCs [93].

Results from the above studies indicate that dietary metabolites possess either promo-
tive or suppressive role in the maintenance of CSC phenotypes in various types of cancers.
Deciphering the mechanisms of such dietary effects on CSCs would shed light on novel
therapeutic opportunities.

5. Metabolic Interaction of Tumor-Associated Cells in TME

The presence of heterogeneous cell populations within the tumor bulk are well char-
acterized in different cancers [18,94]. CSCs, non-CSC counterparts, cancer-associated
fibroblasts, endothelial cells, immune cells, and other cell populations interact with each
other and contribute to the regulation of tumor development and progression [95] (Figure 2).
Their interactions in the tumor niche have been extensively reviewed previously, with the
focus on their crosstalk through signaling molecules such as cytokines and chemokines [96].
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In particular, inflammatory molecules have been shown to impact CSC phenotypes [97,98].
However, the metabolic connection between CSCs and neighboring cells in TME has not
been systematically reviewed.
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5.1. Cancer Associated Fibroblasts

Cancer associated fibroblasts (CAFs) are fibroblastic cells residing in the TME that
possess regulatory functions on cancer cells and CSCs [99]. CAFs function to reprogram
metabolism of neighboring cancer cells and CSCs through the secretion of various signaling
molecules [100]. Yan et al., found that hepatocyte growth factor secreted by pancreatic
CAFs triggered the stemness potential and enhanced glycolysis through the activation of
YAP/HIF-1α signaling in pancreatic cancer [101]. Moreover, CAFs are known to trigger a
phenomenon termed the “reversed Warburg effect” [102], a process where glycolytic, lactate-
producing CAFs coupled with the OXPHOS-dependent cancer cells to promote tumorige-
nesis [103]. CAFs isolated from prostate hyperplasia employed glycolytic metabolism as
evident by an increased lactate production and export [104]. Lactate produced from CAFs
in turn was taken up by prostate cancer cells after co-culture to support proliferation [105].
A direct evidence of CAFs-CSCs metabolic interaction was observed in breast cancer, where
Pasquale et al., found that the whole genome mitochondrial DNA (mtDNA)-loaded ex-
tracellular vehicles (EVs) secreted from CAFs could be transferred into breast CSCs and
thus restored OXPHOS metabolism [105]. However, mutual metabolic influence between
CSCs and CAFs has not been thoroughly studied and may represent a research opportunity,
considering high OXPHOS dependency in certain types of CSCs.

5.2. Endothelial Cells

Endothelial cells (ECs) are functional cells that line the vascular system and are re-
cruited to the TME for angiogenesis [106,107]. Unlike other non-malignant cells, anaerobic
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glycolysis is the primary metabolic pathway for energy production in ECs, with lactate as
the major end product [108–111]. ECs can also import the microenvironmental lactate for
ATP production [112,113]. In colorectal and breast cancers, Vegran et al., reported that the
excessive lactate secreted by tumor cells facilitated the angiogenesis function of ECs through
the activation of NFkB/interleukin 8 (IL-8) pathway [112], indicating a direct metabolic
interaction between tumor cells and tumor-associated ECs. The interaction between ECs
and CSCs was previously reported by Krishnamurthy et al., where they showed that
interleukin-6 secreted by ECs promoted CSC phenotypes through the activation of STAT3
signaling [114]. Our group has previously reported that enhanced secretion of proinflamma-
tory cytokine IL-8 from CD133+ liver CSCs induced tumor angiogenesis [115]. Wang et al.,
observed that co-culturing of colorectal cancer cells with the conditioned medium of ECs
increased the expression of NANOG and expanded the CSC population [116]. Similarly,
Fessler et al., identified that basic fibroblast growth factor secreted by tumor microvascular
ECs was responsible for the induction of cancer stemness phenotype in glioblastoma [117].
In glioma, nitric oxide present in the perivascular niche promoted neurosphere-forming
and tumorigenic capacities through the activation of NOTCH signaling [118]. Despite the
current findings, more direct evidence to show the interaction between ECs and CSCs in
the TME are warranted.

5.3. Immune Cells

Immune evasion is one of the major hallmarks of CSCs [119]. The metabolic crosstalk
between tumor-infiltrating immune cells and cancer cells has been well recognized. The
scarcity of glucose and oxygen in the TME as a result of enhanced glycolysis in cancer
cells facilitated the metabolic reprogramming of immune cells [120]. Zhang et al., observed
that under hypoglycemia and hypoxic conditions, CD8+ tumor-infiltrating T cells shifted
their metabolism from glycolysis towards fatty acid catabolism [121]. Furthermore, col-
orectal cancer cells facilitated immune evasion through the expression of indolamine 2,
3-dioxygenase, an enzyme that reduces the tryptophan availability to the tumor-infiltrating
T cells [122]. The interaction between CSCs and immune cells through immune regulatory
molecules including cytokines, chemokines and immune checkpoints has been widely
studied [123]. Proteins secreted from CSCs such as osteoactivin, Wnt-induced signaling
protein 1 and periostin were identified to recruit tumor-supportive macrophages, resulting
in immune evasion [124–126]. Immune cells also secreted signaling molecules such as
transforming growth factor- beta1 to maintain CSC properties [127]. However, the direct
metabolic crosstalk between CSCs and immune cells has yet to be investigated. Further
studies will be required to reveal the metabolic interplay between CSCs and immune cells,
so as to devise novel therapeutic strategies to overcome immune evasion.

6. Conclusions and Future Perspectives

The TME is comprised of various cellular and non-cellular components which reside
with CSCs in the tumor bulk and continuously affect and modify the behaviors of CSCs.
Metabolic plasticity displayed by CSCs enables flexible switching of their metabolic strate-
gies to accommodate and survive in the hostile TME. In reverse, CSCs produce and secrete
various proteins and metabolites to influence the neighboring microenvironment. This
bidirectional interaction not only sustains the aggressive tumor behaviors but also protects
and enhances tumor survival in response to stress and environmental insults.

Given the importance of metabolic reprogramming in the maintenance of cancer
stemness, elucidating the underlying molecular mechanisms which drive the metabolic
plasticity of CSCs will likely reveal novel metabolic vulnerabilities and therapeutic targets
to combat CSC-driven tumor development and progression. Current research efforts have
been put to identify activated or mutated metabolic enzymes which play roles in promoting
certain metabolic pathways to support cancer development and progression. Clinical
trials with the use of small molecular inhibitors to target different metabolic enzymes has
been underway [128]. Metformin is an example of metabolic drugs that have been shown
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to target CSC signaling pathways and CSC metabolism in preclinical studies [129,130].
Dietary interventions, such as caloric restriction diet, fasting diet, ketogenic diet and
dietary supplements used alone or in combination with other molecular inhibitors, are also
attractive approaches to target cancer and CSC metabolism [131].

Despite the enthusiasm of the development of metabolic therapies to target CSC
metabolism for cancer treatment, concern and criticism were raised regarding the valid-
ity of experimental results using in vitro culture which deviates from the physiological
environment [132]. In particular, most of the past studies investigating CSC functions
and metabolism involved the culture of CSCs in an in vitro setting. Therefore, further
studies with the use of cancer models which highly mimic physiological conditions are still
required to unveil the metabolic vulnerabilities of CSCs for new drug development.
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