
Citation: Wang, C.-W.; Lin, K.-Y.; Lin,

Y.-J.; Khalil, M.-A; Chu, K.-L.; Chao,

T.-K. A Soft Label Deep Learning to

Assist Breast Cancer Target Therapy

and Thyroid Cancer Diagnosis.

Cancers 2022, 14, 5312. https://

doi.org/10.3390/cancers14215312

Academic Editor: Marcos J.

Araúzo-Bravo

Received: 30 August 2022

Accepted: 25 October 2022

Published: 28 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

A Soft Label Deep Learning to Assist Breast Cancer Target
Therapy and Thyroid Cancer Diagnosis
Ching-Wei Wang 1,2 , Kuan-Yu Lin 1, Yi-Jia Lin 3,4 , Muhammad-Adil Khalil 2, Kai-Lin Chu 1

and Tai-Kuang Chao 3,4,*

1 Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology,
Taipei 106335, Taiwan

2 Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology,
Taipei 106335, Taiwan

3 Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan
4 Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan
* Correspondence: Chaotai.kuang@msa.hinet.net

Simple Summary: Early diagnosis and treatment of cancer is crucial for the survival of cancer
patients. Pathologists can use computational pathology techniques to make the diagnosis process
more efficient and accurate. With the emergence of deep learning, there is considerable hope that
this technology will be able to address issues that were previously impossible to tackle. In this study,
we present an automatic soft label deep learning framework to select patients for human epidermal
factor receptor 2 target therapy and papillary thyroid carcinoma diagnosis. This approach will assist
in breast cancer target therapy and thyroid cancer diagnosis with rapid examination and decrease
human judgment mistakes.

Abstract: According to the World Health Organization Report 2022, cancer is the most common
cause of death contributing to nearly one out of six deaths worldwide. Early cancer diagnosis and
prognosis have become essential in reducing the mortality rate. On the other hand, cancer detection
is a challenging task in cancer pathology. Trained pathologists can detect cancer, but their decisions
are subjective to high intra- and inter-observer variability, which can lead to poor patient care owing
to false-positive and false-negative results. In this study, we present a soft label fully convolutional
network (SL-FCN) to assist in breast cancer target therapy and thyroid cancer diagnosis, using four
datasets. To aid in breast cancer target therapy, the proposed method automatically segments human
epidermal growth factor receptor 2 (HER2) amplification in fluorescence in situ hybridization (FISH)
and dual in situ hybridization (DISH) images. To help in thyroid cancer diagnosis, the proposed
method automatically segments papillary thyroid carcinoma (PTC) on Papanicolaou-stained fine
needle aspiration and thin prep whole slide images (WSIs). In the evaluation of segmentation of
HER2 amplification in FISH and DISH images, we compare the proposed method with thirteen deep
learning approaches, including U-Net, U-Net with InceptionV5, Ensemble of U-Net with Inception-v4,
Inception-Resnet-v2 encoder, and ResNet-34 encoder, SegNet, FCN, modified FCN, YOLOv5, CPN,
SOLOv2, BCNet, and DeepLabv3+ with three different backbones, including MobileNet, ResNet,
and Xception, on three clinical datasets, including two DISH datasets on two different magnification
levels and a FISH dataset. The result on DISH breast dataset 1 shows that the proposed method
achieves high accuracy of 87.77 ± 14.97%, recall of 91.20 ± 7.72%, and F1-score of 81.67 ± 17.76%,
while, on DISH breast dataset 2, the proposed method achieves high accuracy of 94.64 ± 2.23%, recall
of 83.78 ± 6.42%, and F1-score of 85.14 ± 6.61% and, on the FISH breast dataset, the proposed method
achieves high accuracy of 93.54 ± 5.24%, recall of 83.52 ± 13.15%, and F1-score of 86.98 ± 9.85%,
respectively. Furthermore, the proposed method outperforms most of the benchmark approaches
by a significant margin (p < 0.001). In evaluation of segmentation of PTC on Papanicolaou-stained
WSIs, the proposed method is compared with three deep learning methods, including Modified
FCN, U-Net, and SegNet. The experimental result demonstrates that the proposed method achieves
high accuracy of 99.99 ± 0.01%, precision of 92.02 ± 16.6%, recall of 90.90 ± 14.25%, and F1-score
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of 89.82 ± 14.92% and significantly outperforms the baseline methods, including U-Net and FCN
(p < 0.001). With the high degree of accuracy, precision, and recall, the results show that the proposed
method could be used in assisting breast cancer target therapy and thyroid cancer diagnosis with
faster evaluation and minimizing human judgment errors.

Keywords: HER2 overexpression; fluorescence in situ hybridization; brightfield dual in situ hybridization;
metastatic breast cancer; thyroid cancer; fine needle aspiration; thin prep; soft label deep learning

1. Introduction

Cancer is the largest cause of mortality in the world, accounting for over 10 million
deaths in 2020. Early detection and treatment of cancer reduce deaths. However, the detec-
tion of cancer is one of the most difficult tasks in cancer pathology. Trained pathologists
can analyze complicated tissue structures and detect tumors, but the judgements are sub-
jective, qualitative, and time-consuming, resulting in significant intra- and inter-observer
variability. Pathologists’ exhaustion and fatigue may contribute to diagnostic mistakes as
workload increases, lowering the overall quality of pathology service. To deal with this
problem, modern processing techniques such as artificial intelligence (AI) techniques have
been developed. Deep learning (DL), a subset of AI capable of autonomously extracting
valuable properties from images to achieve specified tasks, has been repeatedly shown to
outperform standard image-processing algorithms, as demonstrated for image classifica-
tion [1] or segmentation [2]. Deep learning (DL) has recently been widely employed for
high-performance image-analysis tasks such as object recognition [3–5], image segmen-
tation [2,6–9], and image classification [1,10–12]. The ability to distinguish objects and
properties in images (for example, cancer cells in biopsy samples) is changing the way
clinical samples are evaluated. In this study, we present a soft label fully convolutional
network (SL-FCN) for automatic segmentation of human epidermal growth factor receptor
2 (HER2) amplification in fluorescence in situ hybridization (FISH) and dual in situ hy-
bridization (DISH) images of invasive breast cancer and papillary thyroid carcinoma (PTC)
on Papanicolaou-stained FNA and thin prep (TP) whole slide images (WSIs).

Breast cancer remains the most frequently diagnosed cancer and the leading cause
of cancer death among females worldwide [13]. Human epidermal growth factor recep-
tor 2 gene amplification (HER2; ERBB2) test is well established to determine whether a
breast cancer patient is eligible for anti-HER2 target therapy [14,15]. When breast cancer
treated with anti-HER2 target therapies, such as trastuzumab, pertuzumab, and tyrosine
kinase inhibitor lapatinib and neratinib, they have been shown to significantly improve sur-
vival, but without appropriate anti-HER2 therapy, HER2-amplified tumors are associated
with poor prognosis [16–22]. Although immunohistochemistry (IHC) is a good screening
method for negative (0+ or 1+) and strong positive (3+) results, any patient with IHC
equivocal positive result (2+) should be confirmed by fluorescence in situ hybridization
(FISH) analysis for anti-HER2 target therapies [23]. Dual in situ hybridization (DISH) can
be used for signal visualization and the benefit of simultaneous morphologic correlation
using light microscopy, and there is no need for specialized fluorescence equipment [24,25].
FISH and DISH both use dual probes to highlight the HER2 gene and the chromosome
17 centromere (CEN17) in different colors. The main distinction between positive and
negative amplification status is based on the HER2/CEN17 ratio and the average HER2
copy number per nucleus in at least 20 nuclei. The American Society of Clinical Oncology
(ASCO)/College of American Pathologists (CAP) initially issued a detailed guideline for
clinical testing and interpretation of HER2 results in 2007, which were first revised in 2013
and updated in 2018. Based on the 2018 ASCO–CAP guidelines, the result is classified into
five categories by FISH; group 1: When the HER2/CEN17 ratio is ≥2.0, and the average
HER2 gene copy number ≥ 4 is reported as positive; group 2: When the HER2/CEN17
ratio is ≥2.0, and HER2 gene copy number < 4 is reported as negative, unless concurrent
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IHC 3+; group 3 : When HER2/CEN17 ratio is <2.0, and HER2 gene copy number ≥ 6 is
reported as negative, unless concurrent IHC 2+ or 3+; group 4 : When HER2/CEN17 ratio
is <2.0, and HER2 gene copy number ≥ 4 and <6 is reported as negative, unless concur-
rent IHC 3+; group 5 : When HER2/CEN17 ratio is <2.0, and HER2 gene copy number
< 4 is reported as negative [24,26]. Accurate assessment of HER2 status is an essential
step to identify the subset of breast cancer patients who may benefit from the anti-HER2
targeted therapy [17,26–28]. Manual assessment of the HER2 amplification status is very
time-consuming, laborious, and error-prone. The automated medical images diagnostic
method is arguably the most successful field of medical applications that can dramatically
increase the time efficiency for the pathologist’s analysis and improve the accuracy of
counting [29–31]. The development of image analysis based on new artificial intelligence
(AI)-based approaches in pathology is being led by computer engineers and data scientists
can also be used to improve diagnostic accuracy for clinical precision decision-making in
cancer treatment [31]. However, analysis of HER2 expression is challenging due to unclear
and blurry cell boundaries with large variations on cell shapes and signals as illustrated in
Figure 1.

Figure 1. An illustration of DISH and FISH images including unclear and blurry cell boundaries and
large variations on cell shapes and signals. (up) a partial view of a DISH image with (bottom) the
annotations by the pathologists.

Our research is the first attempt to use soft label FCN technology for automatic seg-
mentation of HER2 amplification in FISH and DISH images of invasive breast cancer. In
evaluation, to test the model robustness and model generalizability, three clinical datasets
were collected using different magnifications from the Tri-service general hospital in Taipei,
Taiwan. The pathologists produced a reference standard by manually annotating the HER2,
ERBB2, and CEN17 signals in the FISH and DISH images. We compare the proposed
algorithms with thirteen popular or recently published deep learning methods, including
U-Net [2] +InceptionV4 [32], Ensemble of U-net with Inception-v4 [32], Inception-Resnet-v2
encoder [32], and ResNet-34 encoder [33], SegNet [34], Modified FCN [6–11], YOLOv5 [35],
FCN [36], CPN[37], SOLOv2[38], BCNet[39], and Deeplabv3+ [40] with three different
backbones, including MobileNet [41], ResNet [33], and Xception [42] (see Section 4). The al-
gorithms we developed are more objective, precise, and unbiased than the current standard
manual interpretation results for anti-HER2 target therapy.

Thyroid cancer has one of the highest occurrences among the numerous forms of
cancer [43]. The most frequent kind of thyroid cancer is papillary thyroid carcinoma (PTC).
The study of a fine needle aspiration biopsy (FNAB), which is stained and spread onto
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a glass slide, is the most essential test in the preliminary detection of thyroid cancer [44].
A cytopathologist examines the FNAB sample under an optical microscope to estimate
the risk of malignancy based on numerous aspects of thyroid cells, such as size, color,
and cell group architecture. Digital pathology has just recently developed as a potential
new standard of treatment in which glass slides are transformed into whole slide images
(WSIs) utilizing digital slide scanners. Due to the very large size of a typical WSI (on
the order of gigapixels), pathologists consider it challenging to manually detect all the
information in WSI. Thus, artificial intelligence-based automated diagnosis approaches are
being explored to solve the restrictions of manual and complicated diagnosis processes.
In this study, we develop a soft labeled FCN based deep learning framework for the
automatic segmentation of PTC in WSIs. To evaluate the robustness and generalizability
of the proposed method, the clinical dataset containing 131 Papanicolaou-stained WSIs
was collected from Tri-Service general hospital in Taipei, Taiwan. The reference standard
was manually generated by annotating tumor cells in Papanicolaou-stained WSIs. In
evaluation, the proposed method is compared with three state-of-the-art deep learning
methods, including Modified FCN [6–11], U-Net [2], and SegNet [34].

2. Related Works in Soft Label, Label Smoothing, and Segmentation Approaches

In this section, we discuss three categories of works, which are most related to our
proposed method, including soft label techniques, label smoothing methods, and segmen-
tation approaches.

2.1. Soft Label Techniques

In traditional segmentation methods, the network usually receives binary ground
truth labels or hard labels (label values are 0 and 1 only), which may cause information
loss, especially for the pixels at the boundary between two different types [45]. To prevent
this limitation, instead of hard labels, researchers [45–47] propose to use soft labels (label
values are continuous values between 0 and 1), which can preserve more image information
throughout the training process [47]. Soft label approaches have improved generalization,
accelerated learning, and reduced network over-confidence [45–47]. When computing
segmentation-based morphometric measurements, SoftSeg, a method based on U-Net [48]
architecture proposed by Gros et al. [45], makes better precision than traditional binary
segmentations (increase in 6.5% of DICE on the 2019 BraTS dataset) and has increased
sensitivity, which is desired by radiologists. Zhang et al. [49] compared the segmentation
result between using hard labels and soft labels and demonstrated that using soft labels
can increase the segmentation performance. Engelen et al. [50] proposed to blur the ground
truth mask with a Gaussian filter for label softening and demonstrated the improvement
in in-vivo MRI and CT angiography (CTA) [51] images dataset. Qi et al. [52] developed
a novel Progressive Cross-camera Soft-label Learning (PCSL) framework for the semi-
supervised person re-identification task that enhanced feature representations through
a different learning method. Kats et al. [47] proposed a modified simultaneous truth
and performance level estimation (STAPLE) [53] algorithm for soft annotations of experts
and demonstrated that training the fully convolution neural network with the soft labels
improves generalization and performance gain.

2.2. Label Smoothing Methods

It is widely known that neural network training is sensitive to the loss that is mini-
mized [46]. Instead of using hard labels for model training, labeling smoothing methods
utilize soft labels that are generated by exploiting a uniform distribution to smooth the
distribution of the hard labels and aim at providing regularization for a learnable classifica-
tion model [49]. Label smoothing is a method commonly used in training deep learning
models to keep the neural network from becoming over-confident and to enhance model
calibration and segmentation performance [46]. The label smoothing approach has been
utilized in the fields of medical image analysis [54,55], style transfer [56], speech recogni-
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tion [57], and language translation [58] to improve the performance of the deep learning
models. For example, Müller et al. [46] demonstrated that label smoothing implicitly
calibrates learned models so that the confidences of their predictions are more aligned
with the accuracies of their predictions. Li et al. [54] developed a ground truth softening
methodology using the over-segmentation algorithm and smoothing based on the distance
to an annotated boundary, and the experimental results demonstrate that using soft labels
improves the model performance on both 2D and 3D medical images (increase in 0.7%
of Dice on the MRBrainS18 dataset [59]). Zhao et al. [56] proposed an approach, which
automatically segments items and extracts their soft semantic masks from the style and
content images, to preserve the structure of the content image while having the style trans-
ferred. Pham et al. [55] developed a labeling smoothing method to better handle uncertain
samples, which constitute a significant portion of chest X-ray datasets. Zhang et al. [49]
presented an Online Label Smoothing (OLS) strategy, which generates soft labels based
on the statistics of the model prediction for the target category, and demonstrates that
the performance of the OLS method is better than other regularization approaches on the
Canadian Institute for Advanced Research-100 (CIFAR-100) dataset [60].

2.3. Segmentation Approaches

Segmentation models are widely used in automated medical image analysis and have
shown good performance [6,36,38,40]. A fully convolutional network (FCN) is introduced
by Shelhamer et al. [36] for semantic image segmentation. To produce accurate and detailed
segmentations, they defined a skip architecture that combines semantic information from a
deep, coarse layer with appearance information from a shallow, fine layer. In recent years,
researchers developed a modified FCN-32s approach and demonstrated that it is beneficial
for tumor segmentation in the diagnosis of cervical cancer [7], thyroid cancer [6], breast
cancer [8], ovarian cancer [10,11], and EBUS [9]. Shen et al. [61] developed a modified
mini-U-net to segment the touching cells accurately in FISH images and demonstrated
that the performance is better than the original mini-U-net [62]. Upschulte et al. [37] built
a Contour Proposal Networks (CPNs), a framework for object instance segmentation by
proposing contours that are encoded as fix-sized representations based on Fourier Descrip-
tors, and evaluated the performance on three datasets (NCB, BBBC039 [63], SYNTH), which
contains the large variations in cell shapes. Ke et al. [39] proposed a Bilayer Convolutional
Network (BCNet), a bilayer mask prediction network for addressing the issues of heavy
occlusion and overlapping objects in two-stage instance segmentation, and evaluated the
performance on the COCO dataset [64]. Wang et al. [38] designed a dynamic instance seg-
mentation framework called Segmenting Objects by Locations v2 (SOLOv2) and showed its
robustness using the MS COCO dataset [64], which includes 91 stuff categories of per-pixel
segmentation masks. Chen et al. [40] proposed DeepLabv3+, a deep learning model with
an encoder–decoder structure, and proved its efficacy on the Cityscapes dataset [65], which
includes polygonal annotations of instance segmentation for vehicles and people. In our
experiment, we compare the proposed method with the state-of-the-art deep learning
models, including FCN [36], Modified FCN [6–11], U-Net [2] +InceptionV4 [32], Ensem-
ble of U-Net with Inception-v4 [32], Inception-Resnet-v2 encoder [32], and ResNet-34
encoder [33], U-Net [2], SegNet [34], YOLOv5 [35], BCNet [39], CPN [37], SOLOv2 [38], and
DeepLabv3+ [40] with three different backbones, including MobileNet [41], ResNet [33],
and Xception [42].

3. Materials and Methods
3.1. Materials

The performance of the proposed deep learning model is evaluated using four datasets,
including two DISH breast datasets obtained on two different magnification levels, a FISH
breast dataset, and a Papanicolaou-stained FNA and TP thyroid dataset. Ethical approvals
have been obtained from the research ethics committee of the Tri-Service General Hospital
(TSGHIRB No.1-107-05-171 and No.B202005070), and the data were de-identified and used
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for a retrospective study without impacting patient care. For FISH and DISH images of
invasive breast cancer, we select patients coming to our medical center for breast cancer
treatment who had infiltrating ductal carcinoma pathology diagnoses. De-identified,
digitized images of Dual-color FISH and DISH in HER2 IHC scores 2+ equivocal cases from
January 2014 to December 2021 were obtained from the tissue bank of the Department of
Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
(n = 470, including 200 FISH images and 270 DISH images with two different device
magnifications). For the DISH breast dataset 1, the slides were collected with 1200× overall
magnification using 20× eyepiece lens (Forever Plus Corp., Taiwan) and 60× objective lens
(Olympus, Japan). For the DISH breast dataset 2 and FISH breast dataset, the slides were
collected with 600× overall magnification using 10× eyepiece lens (Olympus, Japan) and
60× objective lens (Olympus, Japan). DISH and FISH results were evaluated independently
by two pathologists, generating annotations of invasive breast cancer areas of each slide
to highlight individual tumor cells with associated labels for HER2 and CEN17 signals.
For Papanicolaou-stained FNA and TP cytological slides for thyroid cancer diagnosis,
de-identified and digitized 131 WSIs were received from the Department of Pathology,
Tri-Service General Hospital, Taipei, Taiwan, comprising 120 PTC cytologic slides (smear,
Papanicolaou-stained, n = 120) and 11 PTC cytologic slides (TP, Papanicolaou-stained,
n = 11). Table 1 presents the detailed information of experimental datasets.

Table 1. Detailed information of experimental datasets.

Dataset Overall Size (Pixels) SlidesMagnification

DISH breast dataset1

Total 210
1200× 1600 × 1200 Training 148 (70%)

Testing 62 (30%)

DISH breast dataset2

Total 60
600× 1360 × 1024 Training 42 (70%)

Testing 18 (30%)

FISH breast dataset

Total 200
600× 1360 × 1024 Training 134 (67%)

Testing 66 (33%)

FNA and TP thyroid dataset

Total 131
200× 77,338 × 37,285 Training 28 (21%)

(WSI) Testing 103 (79%)

3.1.1. Fish Breast Dataset

The PathVysion HER2 DNA probe kit II (Vysis Inc., Downers Grove, IL, USA) was
performed following the manufacturer’s instructions, which is designed to detect amplifica-
tion of the HER2 gene via FISH in formalin-fixed paraffin-embedded (FEPE) human breast
cancer tissue specimens. FISH is performed using a dual probe highlighting the HER2 gene
and the CEN17 in a different color. The FFPE tissue blocks containing breast cancer were
selected and regions of interest were marked on hematoxylin and eosin (H and E) slides.
The selected area in the subsequent section was taken for FISH analysis. Tissues were
subjected to a series of deparaffinization, dehydration, and prehybridization treatments.
After this time, probes were added, and the sections were left to incubate overnight. After
post-hybridization washes, sections were mounted and checked for signal. The entire slide
was screened, and every single discrete nucleus was examined for red and green signals.

3.1.2. Dish Breast Datasets

This study is performed by using the INFORM HER2 Dual ISH DNA Probe Cocktail
Assay from Ventana Medical Systems, which is a dual-color DISH assay. The HER2 gene
is detected by a dinitrophenyl (DNP)-labeled probe and visualized using an ultraView
silver in situ hybridization (SISH) DNP detection Kit. The CEN17 is targeted using a
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digoxigenin (DIG)-labeled probe and detected using an ultraView Red ISH DIG detection
Kit. Under light microscopy, HER2 shows as discrete black signals, and chromosome
17 appears as red signals. The sections were loaded into the Ventana Benchmark XT
machine. A fully automated procedure was carried out with the following basic steps:
Deparaffinization, followed by cell conditioning, and protease digestion. Following that,
the probe was applied followed by hybridization and application of the SISH Multimer.
Following that, the silver chromogen was applied and then followed by the application
of Red ISH Multimer and red chromogen. Finally, hematoxylin was used to counterstain
the image, which was followed by clearing in xylene and mounting with dibutyl phthalate
polystyrene xylene.

3.1.3. FNA and TP Thyroid Dataset

The screening of cytology slides was first performed by cytologists, and two ex-
perienced pathologists confirmed these papillary carcinoma tumor groups labeled by
cytologists. Cytology was performed using a 2017 Bethesda System for reporting thyroid
cytopathology. The well-preserved thyroid FNAs performed during the previous two
years are chosen. All stained slides were scanned at 20× objective magnification with a
Leica AT Turbo (Leica, Germany) and the average slide size is 77,338 × 37,285 pixels. Two
experienced pathologists created the reference standard. The training model uses a total
of 28 Papanicolaou-stained WSIs (21%), including 25 thyroid FNA and three TP cytologic
slides. The remaining 103 Papanicolaou-stained WSIs (79%), including 95 thyroid FNA and
eight TP cytologic slides, are used as a separate testing set for evaluation.

3.2. Proposed Method: Soft Label FCN

A fully convolutional network (FCN) is introduced by Shelhamer et al. [36] for seman-
tic image segmentation, and the proposed method is an extended improved model of our
previous effort, i.e., a modified FCN, which has been demonstrated to be highly effective
for tumor segmentation in the diagnosis of thyroid cancer [6], cervical cancer [7], breast can-
cer [8], ovarian cancer [10,11], and EBUS [9] and showed better segmentation performance
than the original FCN [36] and a number of popular deep learning approaches. However,
when dealing with objects of interest with blurry or unclear boundaries, the performance
of existing deep learning models declines as shown in our experiment. To deal with this
issue, we propose an improved soft-labeled FCN architecture to achieve better results,
especially for data with blurry or unclear cell borders for semantic image segmentation. By
utilizing soft labels instead of hard labels, the image information loss during the training
process could be reduced [47]. Recent studies show that label smoothing can improve the
segmentation performance at the boundaries of different regions [54–56]. In our study, we
proposed a new loss function, namely the soft weight softmax loss function, which utilizes
soft labels and integrates the concept of a label smoothing method [45,54] into the softmax
loss function (see Sections 3.2.1 and 3.2.2) to improve the image segmentation results on
data with blurry or unclear cell boundaries.

The major modification of the proposed soft-labeled FCN is the replacement of the
original softmax loss function with a new soft weight softmax loss function, which assigns
lower weights to the blurry and unclear cell bordering regions and higher weights to
the center regions of annotations in computing the model loss. This helps build models
focusing on the center annotated regions of interest with higher confidence (by assigning
higher weight), and in the meantime, for confusing bordering regions, with lower attention
in these blurry or unclear cell borders while training. Figure 2 presents the workflow of the
proposed framework.
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Figure 2. The main architecture of the soft-labeled FCN in DISH breast dataset 1. (a) the soft-labeled
FCN network architecture; (b) create the weighted map and obtain the pixel weight ωm as the input
for soft-weight softmax loss; (c) the loss function comparison; (c1) is the original loss function in
the modified FCN network; (c2) is the soft-weight softmax loss in our proposed method; (d1) is the
output result of the modified FCN network; (d2) is the output result of the soft-labeled FCN network.

3.2.1. Soft Label Modeling

The efficacy of using soft labels instead of hard labels has been demonstrated in many
research [45–47]. To improve the performance of boundary segmentation, we devise a soft
label modeling for training better models. We convert these annotations A into bounding
boxes B = {bk}k=1,2,...K which could be formulated as follows:

bk = (min(ira
k
), min(jra

k
), wbk

, hbk
) (1)

wbk
= max(ira

k
)−min(ira

k
) (2)

hbk
= max jra

k
−min jra

k
(3)

where ira
k

represents the x-axis coordinate of the k-th annotation, jra
k

represents the y-axis
coordinate of the k-th annotation, wbk

denotes the width of the k-th bounding box, and hbk
denotes the height of the k-th bounding box.

We define ψ = {ψk}k=1,2,...K as a set of the diagonal lines of bounding box in the
training dataset, and the diagonal line ψk can be formulated as follows:

ψk =
√

wbk
2 + hbk

2 (4)

After the ψ has been generated, we arrange the elements of ψ in an ascending order,
and let ψ′ denote the set of diagonal lines after sorting which is formulated as follows:

ψ′ = {ψ′1, ψ′2, ...ψ′K}, ψ′1 ≤ ψ′2 ≤ ... ≤ ψ′K (5)

The median of diagonal line ψ∗ is calculated as follows:

ψ∗ =


ψ′(K+1)

2

, K%2 = 1

1
2 (ψ

′
K
2
+ ψ′K

2 +1
) , otherwise

(6)

where % represents the remainder operator.
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Given ψ∗, the erosion kernel size κe and dilation kernel size κd could be formulated
as follows:

κe = υbφψ∗ +
1
2
c+ 1 (7)

κd = τbφψ∗ +
1
2
c+ 1 (8)

where φ, υ and τ are empirically determined to scale the kernel size; φ = 0.01, υ = 2, and
τ = 6.

Given F[κe] and F[κd] representing two binary structuring elements, each with a
morphological kernel size (κe and κd) for erosion and dilation operations, the F[κe] and
F[κd] could be formulated as follows:

F[κe] =

1 · · · 1
...

. . .
...

1 · · · 1


κe×κe

(9)

F[κd] =

1 · · · 1
...

. . .
...

1 · · · 1


κd×κd

(10)

Let Rc = {rc
k}k=1,2,...,K denote the ra

k region after erosion operation, which is formulated
by Equation (11), and Ro = {ro

k}k=1,2,...,K denotes the rc
k region after dilation operation,

which is calculated with Equation (12):

rc
k = ra

k 	 F[κe] (11)

ro
k = rc

k ⊕ F[κd] (12)

where ⊕ and 	 denote the binary morphological dilation and erosion operations.
Given Rc and Ro, the erosion region Re = {re

k}k=1,2,...K and the dilation region
Rd = {rd

k}k=1,2,...K could be formulated as follows:

re
k = ra

k ∩ (∼ rc
k) (13)

rd
k = ro

k ∩ (∼ ra
k) (14)

However, on the other hand, the soft label regions Rs = {rs
k}k=1,2,...K are the union of

erosion regions and dilation regions, which is formulated as follows:

rs
k = re

k ∪ rd
k (15)

After generating soft label map, we model the loss weight ω(m) of each pixel at m as
formulated in Equation (16):

ω(m) =


Ψ , m ∈ Rc

Π , m ∈ Rs

ℵ , otherwise
(16)

where Ψ, Π, and ℵ are empirically determined; Ψ = 2, Π = 1.5, and ℵ = 1.
As shown in Equation (16), the higher weights are assigned to the center of annotation

Rc so that the model can focus on these regions during the training process while assigning
lower weights to the boundary regions, which include blurry or unclear cell boundaries
(Rs) and lowest weights to the background to reduce their influence on gradients during
the training process.
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3.2.2. Soft Weight Softmax Loss Function

The softmax loss function is popular in image segmentation models [6,7,34,36,56].
Based on the original softmax loss function, we proposed to utilize a new loss function that
can preserve more image information and reduce the influences caused by the confusing
regions during the training process. In this paper, we built a soft weight softmax loss
function Lsws to help the model focus on the central regions of interest with high confidence
while reducing the attention on blurry or unclear cell borders.

Shown as Figure 2(c1), the original softmax loss function Ls in modified FCN architec-
ture [6–11] could be formulated as follows:

Ls = −
1
M

M

∑
m=1

log(pmn) (17)

where M is the number of pixels of training data, and pmn is formulated as follows:

pmn =
ezmn

∑N
t=1 ezmt

(18)

where N denotes the number of classes, zmn is the predicted score z for pixel m belonging
to the target class n; and zmt denotes the predicted score z belonging to t-th class (t ∈ [1,N])
in pixel m.

Figure 2(c2) shows the soft weight softmax loss function Lsws in our proposed soft
label FCN, which is formulated by adding the soft weight. The soft weight softmax loss
function is formulated as follows:

Lsws = −
1
M

M

∑
m=1

ωm log(pmn) (19)

where ωm is the weight value ω belonging to the pixel m. The center of annotations Rc has
been assigned the highest weights in computing model loss so that the model can focus
on training the central regions with high confidence. On the other hand, the boundary
regions which include erosion regions RE, dilation regions RD, and the background regions
have been assigned lower weights in computing model loss to reduce the confusion caused
by these regions while training. By assigning these regions with different weights in
the loss function, the model can focus on the target regions and reduce the confusion by
other regions.

3.2.3. Proposed Soft-Labeled FCN Architecture

Based on the modified FCN [6–11], we proposed a soft-labeled FCN that is improved
from the FCN-32 architecture, which is shown in Figure 2a. Firstly, the network requires
512× 512 tiles as an input image. The first two stages consist of two convolutional layers
with a filter size of 3× 3, a stride of 1, and the ReLU, then the max-pooling layer with
2× 2 filter size and stride of 2 comes next to the convolutional layer. The next three stages
consist of three convolutional layers with the filter size of 3× 3, the stride of 1 and the ReLU
comes next to the convolutional layer, the max-pooling layer with the filter size of 2× 2
and the stride of 1 is followed by the convolutional layer. After three convolutional layers,
the next two stages consist of a fully connected (FC) layer with 3× 3 filter size, stride 1,
ReLU, and dropout layer. Next, the convolutional layer with 1× 1 kernel size, and then the
deconvolutional layer with kernel size 64× 64 and stride of 32 is utilized to upsample the
feature maps. After the deconvolutional layer is the cropping layer. Following cropping, the
last layer of the model is the loss function. Figure 2b demonstrates the process of obtaining
weight value in the proposed loss function using the soft label modeling (see Section 3.2.1).
The detailed information about the proposed soft weight softmax loss function and its
comparison with the softmax loss function is described in Section 3.2.2. Figure 2d presents
the output segmentation results from the traditional softmax loss function (Figure 2(d1))
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and the proposed loss function (Figure 2(d2)). It can be seen that the proposed loss function
has improved the performance of the model. The detailed framework of the proposed soft
label FCN is presented in Figure 2. The detailed architecture of the proposed deep learning
network is shown in Table 2.

Table 2. The structure of the proposed soft label FCN.

Layer Features (Train) Features (Inference) Kernel Size Stride

Input 512 × 512 × 3 512 × 512 × 3 - -
Conv11 + relu11 512 × 512 × 3 710 × 710 × 64 3 × 3 1
Conv12 + relu12 710 × 710 × 64 710 × 710 × 64 3 × 3 1

Pool1 710 × 710 × 64 355 × 355 × 64 2 × 2 2
Conv21 + relu21 355 × 355 × 64 355 × 355 × 128 3 × 3 1
Conv22 + relu22 355 × 355 × 128 355 × 355 × 128 3 × 3 1

Pool2 355 × 355 × 128 178 × 178 × 128 3 × 3 1
Conv31 + relu31 178 × 178 × 128 178 × 178 × 256 3 × 3 1
Conv32 + relu32 178 × 178 × 256 178 × 178 × 256 3 × 3 1
Conv33 + relu33 178 × 178 × 256 178 × 178 × 256 3 × 3 1

Pool3 178 × 178 × 256 89 × 89 × 256 2 × 2 2
Conv41 + relu41 89 × 89 × 256 89 × 89 × 512 3 × 3 1
Conv42 + relu42 89 × 89 × 512 89 × 89 × 512 3 × 3 1
Conv43 + relu43 89 × 89 × 512 89 × 89 × 512 3 × 3 1

Pool4 89 × 89 × 512 45 × 45 × 512 2 × 2 2
Conv51 + relu51 45 × 45 × 512 45 × 45 × 512 3 × 3 1
Conv52 + relu52 45 × 45 × 512 45 × 45 × 512 3 × 3 1
Conv53 + relu53 45 × 45 × 512 45 × 45 × 512 3 × 3 1

Pool5 45 × 45 × 512 23 × 23 × 512 2 × 2 2
Conv61 + relu61 + drop6 23 × 23 × 512 17 × 17 × 4096 7 × 7 1
Conv71 + relu71 + drop7 17 × 17 × 4096 17 × 17 × 4096 1 × 1 1

Conv8 17 × 17 × 4096 17 × 17 × N 1 × 1 1
Deconv8 17 × 17 × N 576 × 576 × N 64 × 64 32
Cropping 576 × 576 × N 512 × 512 × N - -

Soft weight loss 512 × 512 × N 512 × 512 × N - -
Output 512 × 512 × N 512 × 512 × N - -

N represents the number of types to predict; in this study N = 3, and there are three types to predict, including the

background class, the type of tissues other than the targetting type and the targetting tissue type.

3.2.4. Implementation Details

To train the proposed method, the model is initialized by the VGG16 model, optimized
with the SGD optimizer, and using the soft weight loss as the loss function. Moreover,
the base learning rate in the proposed method is 1× 10−10, weight decay of 5× 10−4, and
momentum of 0.99. Data augmentation is also utilized as a regularizer in neural networks,
minimizing overfitting and improving performance when dealing with unbalanced classes.
For data argumentation, we rotate our input images per 5◦ and 5 times, increment of 90◦,
and flip our input images along the horizontal and vertical axes during the training process.

4. Results
4.1. Evaluation Metrics

For quantitative evaluation, we utilize the accuracy, precision, recall, F1-score, and
Jaccard index to compare and measure the performance of the benchmark approaches and
the proposed method. The metrics are calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 score =
2TP

2TP + FP + FN
(23)
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Jaccard index =
TP

TP + FP + FN
(24)

where TP represents the true positive, TN is the true negative, FP denotes false positive,
and FN is the false negative.

4.2. Quantitative Evaluation with Statistical Analysis in DISH Breast Dataset 1

The quantitative evaluation results in segmentation of HER2 amplification in DISH
dataset 1 are presented in Table 3a. The proposed Soft-label FCN in segmentation of
HER2 amplification of DISH dataset 1 with an accuracy of 87.77 ± 14.97%, precision of
77.19 ± 23.41%, recall of 91.20 ± 7.72%, F1-score of 81.67 ± 17.76%, and Jaccard Index
of 72.40 ± 23.05%. In addition, the box plots of the quantitative assessment results for
breast cancer segmentation are shown in Figure 3a, demonstrating that the suggested
technique consistently outperforms the baseline approaches. To further demonstrate the
efficacy and efficiency of the proposed method, using SPSS software, we examined that
the quantitative scores were evaluated with Fisher’s Least Significant Difference (LSD)
(Table 4). Based on the LSD test, the suggested approach substantially exceeds most of the
baseline approaches in terms of precision, recall, F1-score, and Jaccard index (p < 0.001).
Figure 4 presents the visual comparison of segmentation results of the proposed method
and the baseline approaches for segmentation of HER2 amplification. Here, we can ob-
serve a consistency between the typical segmentation results generated by the proposed
method and the reference standard produced by an expert pathologist. Results from the
quantitative and qualitative evaluation show that the proposed soft label FCN outper-
forms the baseline models, including U-Net [2] with InceptionV4 [32], Ensemble of U-net
with Inception-v4 [32], Inception-Resnet-v2 encoder [32], and ResNet-34 encoder [33], Seg-
Net [34], Modified FCN [6–11], U-Net [2], YOLOv5 [35], FCN [36], CPN [37], SOLOv2 [38],
BCNet [39], and Deeplabv3+ [40] with three different backbones, including MobileNet [41],
ResNet [33], and Xception [42].

Table 3. Quantitative evaluation in segmentation of HER2 amplification in each dataset of invasive
breast cancer, including (a) DISH breast dataset 1; (b) DISH breast dataset 2 and (c) FISH dataset.

(a) DISH Dataset 1

Method Accuracy Precision Recall F1-Score Jaccard Index Rank F1-Score

Proposed soft label FCN 87.77 ± 14.97% 77.19 ± 23.41% 91.20 ± 7.72% 81.67 ± 17.76% 72.40 ± 23.05% 1
U-Net [2]

+InceptionV4 [32] 78.74 ± 9.49% 60.48 ± 15.70% 50.67 ± 20.86% 50.88 ± 12.65% 35.10 ± 11.75% 11

Ensemble of U-Net
variants ι 80.71 ± 9.33% 66.19 ± 17.36% 52.88 ± 20.33% 64.40 ± 12.98% 38.44 ± 12.32% 5

U-Net [2] 80.37 ± 13.38% 63.48 ± 29.03% 3.76 ± 3.86% 6.76 ± 6.35% 3.68 ± 3.59% 14
SegNet [34] 81.89 ± 9.07% 59.06 ± 25.21% 37.38 ± 20.11% 40.20 ± 18.27% 26.78 ± 14.47% 13

Modified FCN [6–11] 91.26 ± 7.56% 83.12 ± 11.32% 71.60 ± 15.38% 75.79 ± 11.39% 62.40 ± 15.43% 2
FCN [36] 81.92 ± 9.43% 51.47 ± 24.20% 50.30 ± 19.18% 48.75 ± 17.78% 34.08 ± 15.45% 12

YOLOv5 [35] 73.19 ± 7.58% 46.38 ± 19.33% 90.38 ± 7.75% 58.22 ± 16.73% 43.22 ± 16.29% 9
DeepLabv3+ [40] with

MobileNet [41] 82.76 ± 5.25% 56.56 ± 17.83% 66.74 ± 10.97% 59.20 ± 11.01% 42.43 ± 10.67% 7

DeepLabv3+ [40] with
ResNet [33] 82.45 ± 5.90% 55.77 ± 16.42% 62.48 ± 12.84% 56.45 ± 11.39% 39.66 ± 11.10% 10

DeepLabv3+ [40] with
Xception [42] 83.53 ± 5.81% 61.74 ± 17.96% 60.72 ± 11.98% 58.93 ± 10.27% 42.04 ± 10.26% 8

CPN [37] 75.94 ± 7.55% 65.94 ± 11.11% 57.13 ± 17.11% 59.37 ± 12.00% 43.21 ± 12.06% 6
SOLOv2 [38] 84.37 ± 6.34% 76.82 ± 7.32% 70.24 ± 15.33% 72.34 ± 10.01% 57.56 ± 11.79% 3
BCNet [39] 83.71 ± 10.15% 76.21 ± 12.40% 62.34 ± 14.30% 67.44 ± 11.08% 51.91 ± 12.45% 4
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Table 3. Cont.

(b) DISH Dataset2

Method Accuracy Precision Recall F1-Score Jaccard Index Rank F1-Score

Proposed soft label FCN 94.64 ± 2.23% 86.78 ± 8.16% 83.78 ± 6.42% 85.14 ± 6.61% 74.67 ± 10.05% 1
U-Net [2]

+InceptionV4 [32] 84.92 ± 4.31% 73.5 ± 8.11% 65.5 ± 4.54% 67.33 ± 5.23% 50.97 ± 5.92% 5

Ensemble of U-net
variants ι 84.81 ± 4.38% 74.38 ± 9.55% 61.27 ± 5.81% 66.88 ± 5.84% 51.69 ± 6.95% 6

U-Net [2] 86.89 ± 4.25% 70.39 ± 10.89% 69.09 ± 7.45% 69.12 ± 6.92% 52.97 ± 7.77% 3
SegNet [34] 86.17 ± 3.92% 65.70 ± 10.84% 79.00 ± 8.45% 70.73 ± 5.67% 54.99 ± 6.59% 2

FCN [36] 83.75 ± 5.89% 72.55 ± 10.05% 45.70 ± 12.25% 54.22 ± 9.77% 37.75 ± 8.71% 14
Modified FCN [6–11] 89.04 ± 5.26% 82.12 ± 9.48% 59.41 ± 11.96% 68.29 ± 9.98% 52.68 ± 11.51% 4

YOLOv5 [35] 84.66 ± 3.39% 59.77 ± 9.05% 75.05 ± 8.24% 66.38 ± 8.03% 49.61 ± 8.92% 7
DeepLabv3+ [40] with

MobileNet [41] 77.33 ± 8.51% 55.06 ± 9.59% 69.50 ± 16.74% 59.78 ± 10.57% 44.00 ± 12.18% 12

DeepLabv3+ [40] with
ResNet [33] 80.88 ± 4.56% 59.00 ± 9.15% 73.27 ± 11.80% 64.16 ± 9.19% 48.55 ± 11.99% 9

DeepLabv3+ [40] with
Xception [42] 78.72 ± 5.15% 56.00 ± 9.34% 63.61 ± 14.76% 57.88 ± 7.68% 40.66 ± 7.65% 13

CPN [37] 83.61 ± 5.23% 67.39 ± 8.02% 67.22 ± 13.21% 66.33 ± 10.09% 50.33 ± 10.06% 8
SOLOv2 [38] 84.78 ± 6.47% 79.11 ± 10.24% 52.44 ± 7.21% 62.22 ± 5.35% 45.34 ± 5.45% 11
BCNet [39] 83.72 ± 5.74% 73.61 ± 11.42% 57.06 ± 7.18% 63.50 ± 6.40% 48.50 ± 10.85% 10

(c) FISH Dataset

Method Accuracy Precision Recall F1-Score Jaccard Index Rank F1-Score

Proposed soft label FCN 93.54 ± 5.24% 91.75 ± 8.27% 83.52 ± 13.15% 86.98 ± 9.85% 78.22 ± 14.73% 1
Modified FCN [6–11] 93.37 ± 4.46% 91.09 ± 7.87% 82.13 ± 10.99% 86.41 ± 8.38% 76.97 ± 12.50% 2

DeepLabv3+ [40] with
MobileNet [41] 85.17 ± 5.18% 75.53 ± 6.14% 64.94 ± 9.99% 69.36 ± 7.27% 53.55 ± 8.08% 8

DeepLabv3+ [40] with
ResNet [33] 85.06 ± 5.23% 69.78 ± 7.03% 76.44 ± 9.28% 72.52 ± 6.62% 57.29 ± 7.65% 6

DeepLabv3+ [40] with
Xception [42] 76.83 ± 11.67% 66.35 ± 19.82% 45.27 ± 24.82% 47.55 ± 20.44% 33.73 ± 15.58% 10

CPN [37] 77.67 ± 8.38% 57.45 ± 8.46% 76.95 ± 8.03% 65.35 ± 6.72% 48.46 ± 7.37% 9
SOLOv2 [38] 88.11 ± 4.48% 79.55 ± 8.01% 75.86 ± 6.6% 77.38 ± 5.82% 62.94 ± 7.45% 5
BCNet [39] 85.98 ± 5.58% 83.27 ± 8.11% 62.36 ± 12.08% 70.55 ± 9.77% 54.80 ± 10.79% 7

Modified mini-U-Net ε [61] 83.89% 73.83% 3
mini-U-Net ε [62] 81.92% 68.34% 4

ι The ensemble model of (a) U-Net with Inception-v4 [32]; (b) U-Net with Inception-ResNet-v2 encoder [32]

and (c) U-Net with ResNet-34 encoder [33]. ε The evaluation results are referred from [61] on the FISH dataset

containing sixteen FISH images with different sizes.

Figure 3. Cont.
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Figure 3. The box plots of quantitative evaluation results of the three breast cancer datasets, including
(a) DISH dataset 1; (b) DISH dataset 2; (c) FISH dataset.

4.3. Quantitative Evaluation with Statistical Analysis in DISH Breast Dataset 2

The quantitative evaluation results in the segmentation of HER2 amplification in DISH
dataset 2 are presented in Table 3b. The proposed soft label FCN in segmentation of HER2
amplification of DISH dataset 2 with an accuracy of 94.64 ± 2.23%, precision of 86.78 ± 1.07%,
recall of 83.78 ± 6.42%, F1-score of 85.14 ± 6.61%, and Jaccard Index of 74.67 ± 10.05%. In
addition, the box plots of the quantitative assessment results for breast cancer segmentation
are shown in Figure 3b, demonstrating that the suggested technique consistently outper-
forms the baseline approaches. To further demonstrate the efficacy and efficiency of the
proposed method, using SPSS software, we examined the quantitative scores that were
evaluated with Fisher’s Least Significant Difference (LSD) (Table 5). Based on the LSD test,
the suggested approach substantially exceeds the baseline approaches in terms of precision,
recall, F1-score, and Jaccard index (p < 0.001). Figure 5 presents the visual comparison of
segmentation results of the proposed method and the baseline approaches for segmentation
of HER2 amplification. Here, we can observe a consistency between the typical segmen-
tation results generated by the proposed method and the reference standard produced
by an expert pathologist. Results from the quantitative and qualitative evaluation show
that the proposed soft label FCN outperforms the baseline models, including U-Net [2]
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with InceptionV4 [32], Ensemble of U-Net with Inception-v4 [32], Inception-Resnet-v2
encoder [32], and ResNet-34 encoder [33], SegNet [34], Modified FCN [6–11], U-Net [2],
YOLOv5 [35], FCN [36], CPN [37], SOLOv2 [38], BCNet [39], and Deeplabv3+ [40] with
three different backbones, including MobileNet [41], ResNet [33], and Xception [42].

Figure 4. Qualitative segmentation results of the proposed SL-FCN method and the baseline methods
for segmentation of HER2 amplification in DISH dataset 1.
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Table 4. Statistical analysis to compare the proposed method with benchmark approaches using the
LSD test on DISH dataset 1.

LSD Multiple Comparisons

Measurement (I) Method (J) Method Mean Difference (I-J) Std. Error Sig.

95% C.I.

Lower
Bound

Upper
Bound

Accuracy Proposed method

U-Net [2] +InceptionV4 [32] *** 9.03 1.59 <0.001 5.90 12.15
Ensemble of U-net variants ι *** 7.06 1.59 <0.001 3.93 10.18
U-Net [2] *** 7.40 1.59 <0.001 4.27 10.52
SegNet [34] *** 5.88 1.59 <0.001 2.75 9.00
FCN [36] *** 5.85 1.59 <0.001 2.72 8.97
Modified FCN [6–11] *−3.49 1.59 0.029 −6.61 −0.36
YOLOv5 [35] *** 14.58 1.59 <0.001 11.45 17.70
Deeplabv3+ [40] with MobileNet [41] ** 5.01 1.59 0.002 1.89 8.14
Deeplabv3+ [40] with ResNet [33] ** 5.32 1.59 0.001 2.20 8.45
Deeplabv3+ [40] with Xception [42] ** 4.24 1.59 0.008 1.12 7.37
CPN [37] *** 11.83 1.59 <0.001 8.71 14.96
SOLOv2 [38] * 3.40 1.59 0.033 0.28 6.53
BCNet [39] * 4.06 1.59 0.011 0.94 7.19

Precision Proposed method

U-Net [2] +InceptionV4 [32] *** 16.71 3.37 <0.001 10.10 23.32
Ensemble of U-net variants ι ** 11.00 3.37 0.001 4.37 17.61
U-Net [2] *** 13.71 3.37 <0.001 7.10 20.32
SegNet [34] *** 18.13 3.37 <0.001 11.52 24.75
FCN [36] *** 22.72 3.37 <0.001 16.11 29.34
Modified FCN [6–11] −5.94 3.37 0.078 −12.55 0.68
YOLOv5 [35] *** 30.81 3.37 <0.001 24.19 37.42
Deeplabv3+ [40] with MobileNet [41] *** 20.63 3.37 <0.001 14.02 27.24
Deeplabv3+ [40] with ResNet [33] *** 24.41 3.37 <0.001 14.81 28.03
Deeplabv3+ [40] with Xception [42] *** 15.45 3.37 <0.001 8.84 22.07
CPN [37] *** 11.26 3.37 0.001 4.64 17.87
SOLOv2 [38] 0.37 3.37 0.912 −6.24 6.98
BCNet [39] 0.98 3.37 0.770 −5.63 7.59

Recall Proposed method

U-Net [2] +InceptionV4 [32] *** 40.52 2.70 <0.001 35.23 45.81
Ensemble of U-net variants ι *** 38.31 2.70 <0.001 33.02 43.60
U-Net [2] *** 87.44 2.70 <0.001 82.14 92.73
SegNet [34] *** 53.81 2.70 <0.001 48.52 59.10
FCN [36] *** 40.89 2.70 <0.001 35.60 46.18
Modified FCN [6–11] *** 19.59 2.70 <0.001 14.30 24.88
YOLOv5 [35] 0.81 2.70 0.764 -4.48 6.10
Deeplabv3+ [40] with MobileNet [41] *** 24.46 2.70 <0.001 19.15 29.75
Deeplabv3+ [40] with ResNet [33] *** 28.71 2.70 <0.001 23.42 34.00
Deeplabv3+ [40] with Xception [42] *** 30.47 2.70 <0.001 25.18 35.76
CPN [37] *** 34.07 2.70 <0.001 28.78 39.36
SOLOv2 [38] *** 20.96 2.70 <0.001 15.66 26.25
BCNet [39] *** 28.86 2.70 <0.001 23.57 34.15

F1-score Proposed method

U-Net [2] +InceptionV4 [32] *** 30.79 2.38 <0.001 26.11 35.47
Ensemble of U-net variants ι *** 27.27 2.38 <0.001 22.59 31.95
U-Net [2] *** 74.91 2.38 <0.001 70.23 79.59
SegNet [34] *** 41.47 2.38 <0.001 36.79 46.15
FCN [36] *** 32.92 2.38 <0.001 28.24 37.60
Modified FCN [6–11] * 5.88 2.38 0.014 1.20 10.57
YOLOv5 [35] *** 23.45 2.38 <0.001 18.77 28.13
Deeplabv3+ [40] with MobileNet [41] *** 22.47 2.38 <0.001 17.78 27.15
Deeplabv3+ [40] with ResNet [33] *** 25.22 2.38 <0.001 20.54 29.90
Deeplabv3+ [40] with Xception [42] *** 22.74 2.38 <0.001 18.06 27.42
CPN [37] *** 22.30 2.38 <0.001 17.62 26.98
SOLOv2 [38] *** 9.34 2.38 <0.001 4.66 14.02
BCNet [39] *** 14.24 2.38 <0.001 9.56 18.92

Jaccard Index Proposed method

U-Net [2] +InceptionV4 [32] *** 37.30 2.44 <0.001 32.51 42.08
Ensemble of U-net variants ι *** 33.96 2.44 <0.001 29.18 38.74
U-Net [2] *** 68.71 2.44 <0.001 63.93 73.50
SegNet [34] *** 45.62 2.44 <0.001 40.84 50.40
FCN [36] *** 38.32 2.44 <0.001 33.54 43.10
Modified FCN [6–11] *** 10.00 2.44 <0.001 5.22 14.78
YOLOv5 [35] *** 29.17 2.44 <0.001 24.39 33.96
Deeplabv3+ [40] with MobileNet [41] *** 29.96 2.44 <0.001 25.18 34.75
Deeplabv3+ [40] with ResNet [33] *** 32.74 2.44 <0.001 27.96 37.52
Deeplabv3+ [40] with Xception [42] *** 30.35 2.44 <0.001 25.57 35.13
CPN [37] *** 29.19 2.44 <0.001 24.41 33.97
SOLOv2 [38] *** 14.84 2.44 <0.001 10.06 19.62
BCNet [39] *** 20.49 2.44 <0.001 15.70 25.27

The mean difference is significant at the level of * 0.05, ** 0.01, and *** 0.001. ι The ensemble model of (a) U-Net with

Inception-v4 [32]; (b) U-Net with Inception-ResNet-v2 encoder [32]; and (c) U-Net with ResNet-34 encoder [33].
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Figure 5. Qualitative segmentation results of the proposed SL-FCN method and the baseline methods
for segmentation of HER2 amplification in DISH dataset 2.
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Table 5. Statistical analysis to compare the proposed method with benchmark approaches using the
LSD test on DISH dataset 2.

LSD Multiple Comparisons

Measurement (I) Method (J) Method Mean Difference (I-J) Std. Error Sig.

95% C.I.

Lower
Bound

Upper
Bound

Accuracy Proposed method

U-Net [2] +InceptionV4 [32] *** 9.72 1.72 <0.001 6.33 13.10
Ensemble of U-net variants ι *** 9.82 1.72 <0.001 6.43 13.21
U-Net [2] *** 7.75 1.72 <0.001 4.36 11.13
SegNet [34] *** 8.47 1.72 <0.001 5.29 11.64
FCN [36] *** 10.89 1.72 <0.001 7.50 14.27
Modified FCN [6–11] ** 5.59 1.72 0.001 2.21 8.98
YOLOv5 [35] *** 9.97 1.72 <0.001 6.59 13.36
Deeplabv3+ [40] with MobileNet [41] *** 17.31 1.72 <0.001 14.92 20.69
Deeplabv3+ [40] with ResNet [33] *** 13.75 1.72 <0.001 10.36 17.14
Deeplabv3+ [40] with Xception [42] *** 15.92 1.72 <0.001 12.53 19.30
CPN [37] *** 11.03 1.72 <0.001 7.64 14.41
SOLOv2 [38] *** 9.86 1.72 <0.001 6.48 13.25
BCNet [39] *** 10.92 1.72 <0.001 7.53 14.30

Precision Proposed method

U-Net [2] +InceptionV4 [32] *** 13.28 3.21 <0.001 6.96 19.60
Ensemble of U-net variants ι *** 12.39 3.21 <0.001 6.07 18.71
U-Net [2] *** 16.38 3.21 <0.001 10.06 22.70
SegNet [34] *** 21.07 3.21 <0.001 14.76 27.39
FCN [36] *** 14.22 3.21 <0.001 7.91 20.54
Modified FCN [6–11] 4.66 3.21 0.148 −1.66 10.97
YOLOv5 [35] *** 27.00 3.21 <0.001 20.68 33.32
Deeplabv3+ [40] with MobileNet [41] *** 31.72 3.21 <0.001 25.41 38.04
Deeplabv3+ [40] with ResNet [33] *** 27.78 3.21 <0.001 21.46 34.10
Deeplabv3+ [40] with Xception [42] *** 30.78 3.21 <0.001 24.46 37.10
CPN [37] *** 19.39 3.21 <0.001 13.07 25.71
SOLOv2 [38] * 7.67 3.21 0.018 1.35 13.98
BCNet [39] *** 13.17 3.21 <0.001 6.85 19.48

Recall Proposed method

U-Net [2] +InceptionV4 [32] *** 21.28 3.45 <0.001 14.48 28.07
Ensemble of U-net variants ι *** 22.50 3.45 <0.001 15.71 29.30
U-Net [2] *** 14.69 3.45 <0.001 7.89 21.48
SegNet [34] 4.78 3.45 0.167 −2.02 11.57
FCN [36] *** 38.07 3.45 <0.001 31.28 44.87
Modified FCN [6–11] *** 24.36 3.45 <0.001 17.57 31.16
YOLOv5 [35] * 8.72 3.45 0.012 1.93 15.52
Deeplabv3+ [40] with MobileNet [41] *** 14.28 3.45 <0.001 7.48 21.08
Deeplabv3+ [40] with ResNet [33] ** 10.50 3.45 0.003 3.71 17.30
Deeplabv3+ [40] with Xception [42] *** 20.17 3.45 <0.001 13.37 26.97
CPN [37] *** 16.56 3.45 <0.001 9.76 23.35
SOLOv2 [38] *** 31.34 3.45 <0.001 24.54 38.13
BCNet [39] *** 26.72 3.45 <0.001 19.93 33.52

F1-score Proposed method

U-Net [2] +InceptionV4 [32] *** 17.81 2.63 <0.001 12.63 22.99
Ensemble of U-net variants ι *** 18.25 2.63 <0.001 13.07 23.44
U-Net [2] *** 16.01 2.63 <0.001 10.83 21.20
SegNet [34] *** 14.40 2.63 <0.001 9.22 19.59
FCN [36] *** 30.92 2.63 <.001 25.73 36.10
Modified FCN [6–11] *** 16.84 2.63 <0.001 11.66 22.03
YOLOv5 [35] *** 18.75 2.63 <0.001 13.57 23.94
Deeplabv3+ [40] with MobileNet [41] *** 25.37 2.63 <0.001 20.18 30.55
Deeplabv3+ [40] with ResNet [33] *** 20.98 2.63 <0.001 15.79 26.16
Deeplabv3+ [40] with Xception [42] *** 27.25 2.63 <0.001 22.07 32.44
CPN [37] *** 18.81 2.63 <0.001 13.63 23.99
SOLOv2 [38] *** 18.81 2.63 <0.001 17.74 28.10
BCNet [39] *** 24.64 2.63 <0.001 16.46 26.83

Jaccard Index Proposed method

U-Net [2] +InceptionV4 [32] *** 23.70 3.06 <0.001 17.68 29.72
Ensemble of U-net variants ι *** 22.98 3.06 <0.001 19.96 29.00
U-Net [2] *** 21.70 3.06 <0.001 15.68 27.72
SegNet [34] *** 19.68 3.06 <0.001 13.66 25.69
FCN [36] *** 36.92 3.06 <0.001 30.90 42.94
Modified FCN [6–11] *** 21.99 3.06 <0.001 15.97 28.01
YOLOv5 [35] *** 25.06 3.06 <0.001 19.04 31.08
Deeplabv3+ [40] with MobileNet [41] *** 30.67 3.06 <0.001 24.65 36.69
Deeplabv3+ [40] with ResNet [33] *** 26.12 3.06 <0.001 20.10 32.14
Deeplabv3+ [40] with Xception [42] *** 34.01 3.06 <0.001 27.99 40.03
CPN [37] *** 24.35 3.06 <0.001 18.33 30.36
SOLOv2 [38] *** 29.33 3.06 <0.001 23.36 35.36
BCNet [39] *** 26.17 3.06 <0.001 20.15 32.19

The mean difference is significant at the level of * 0.05, ** 0.01, and *** 0.001. ι The ensemble model of (a) U-Net with

Inception-v4 [32]; (b) U-Net with Inception-ResNet-v2 encoder [32]; and (c) U-Net with ResNet-34 encoder [33].
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4.4. Quantitative Evaluation with Statistical Analysis in the FISH Breast Dataset

The quantitative evaluation results in the segmentation of HER2 amplification in FISH
dataset are presented in Table 3c. The proposed soft label FCN for HER2 amplification
of FISH dataset with an accuracy of 93.54 ± 5.24%, precision of 91.75 ± 8.27%, recall of
83.52 ± 13.15%, F1-score of 86.98 ± 9.85%, and Jaccard Index of 78.22 ± 14.73%. In addition,
the box plots of the quantitative assessment results for breast cancer segmentation are
shown in Figure 3c, demonstrating that the suggested technique consistently outperforms
the baseline approaches. To further demonstrate the efficacy and efficiency of the proposed
method, using SPSS software, we examined the quantitative scores that were evaluated
with Fisher’s Least Significant Difference (LSD) (Table 6). Based on the LSD test, the sug-
gested approach substantially exceeds the baseline approaches in terms of precision, recall,
F1-score, and Jaccard index (p < 0.001). Figure 6 presents the visual comparison of seg-
mentation results of the proposed method and the baseline approaches for segmentation of
HER2 amplification. Here, we can observe a consistency between the typical segmentation
results generated by the proposed method and the reference standard produced by an
expert pathologist. Results from the quantitative and qualitative evaluation show that the
proposed soft label FCN outperforms the baseline models, including Modified FCN [6–11],
YOLOv5 [35], CPN [37], SOLOv2 [38], BCNet [39], and Deeplabv3+ [40] with three different
backbones, including MobileNet [41], ResNet [33], and Xception [42].

Table 6. Statistical analysis to compare the proposed method with benchmark approaches using the
LSD test on the FISH dataset.

LSD Multiple Comparisons

Measurement (I) Method (J) Method Mean Difference (I-J) Std. Error Sig.

95% C.I.

Lower
Bound

Upper
Bound

Accuracy Proposed method

Modified FCN [6–11] 0.16 1.17 0.888 −2.13 2.46
Deeplabv3+ [40] with MobileNet [41] *** 8.38 1.17 <0.001 6.08 10.67
Deeplabv3+ [40] with ResNet [33] *** 8.48 1.17 <0.001 6.19 10.77
Deeplabv3+ [40] with Xception [42] *** 16.71 1.17 <0.001 14.42 19.00
CPN [37] *** 15.88 1.17 <0.001 13.58 18.17
SOLOv2 [38] *** 5.44 1.17 <0.001 3.14 7.73
BCNet [39] *** 7.56 1.17 <0.001 5.27 9.85

Precision Proposed method

Modified FCN [6–11] −0.15 1.76 0.932 −3.60 3.30
Deeplabv3+ [40] with MobileNet [41] *** 16.22 1.76 <0.001 12.77 19.68
Deeplabv3+ [40] with ResNet [33] *** 21.97 1.76 <0.001 18.51 25.42
Deeplabv3+ [40] with Xception [42] *** 25.41 1.76 <0.001 21.95 28.86
CPN [37] *** 34.21 1.76 <0.001 30.75 37.66
SOLOv2 [38] *** 12.21 1.76 <0.001 8.75 15.66
BCNet [39] *** 8.48 1.76 <0.001 5.03 11.93

Recall Proposed method

Modified FCN [6–11] 1.39 2.26 0.538 −3.05 5.83
Deeplabv3+ [40] with MobileNet [41] *** 18.59 2.26 <0.001 14.14 23.03
Deeplabv3+ [40] with ResNet [33] ** 7.09 2.26 0.002 2.64 11.53
Deeplabv3+ [40] with Xception [42] *** 38.25 2.26 <0.001 33.81 42.69
CPN [37] ** 6.57 2.26 0.004 2.13 11.01
SOLOv2 [38] ** 7.66 2.26 0.002 3.22 12.10
BCNet [39] *** 21.16 2.26 <0.001 16.72 25.60

F1-score Proposed method

Modified FCN [6–11] 0.57 1.80 0.752 −2.97 4.11
Deeplabv3+ [40] with MobileNet [41] *** 17.61 1.80 <0.001 14.08 21.15
Deeplabv3+ [40] with ResNet [33] *** 14.46 1.80 <0.001 10.92 18.00
Deeplabv3+ [40] with Xception [42] *** 39.43 1.80 <0.001 35.89 42.97
CPN [37] *** 21.63 1.80 <0.001 18.09 25.17
SOLOv2 [38] *** 9.60 1.80 <0.001 6.06 13.17
BCNet [39] *** 16.43 1.80 <0.001 12.89 19.97

Jaccard Index Proposed method

Modified FCN [6–11] 1.25 1.91 0.515 −2.51 5.00
Deeplabv3+ [40] with MobileNet [41] *** 24.67 1.91 <0.001 20.91 28.43
Deeplabv3+ [40] with ResNet [33] *** 20.93 1.91 <0.001 17.17 24.69
Deeplabv3+ [40] with Xception [42] *** 44.49 1.91 <0.001 40.73 48.25
CPN [37] *** 29.75 1.91 <0.001 25.99 33.51
SOLOv2 [38] *** 15.27 1.91 <0.001 11.52 19.03
BCNet [39] *** 23.41 1.91 <0.001 19.65 27.17

The mean difference is significant at the level of ** 0.01, and *** 0.001.
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Figure 6. Qualitative segmentation results of the proposed SL-FCN method and the baseline methods
for segmentation of HER2 amplification in the FISH dataset.

4.5. Quantitative Evaluation with Statistical Analysis in the Thyroid Dataset

The quantitative evaluation results for the segmentation of PTC in Papanicolaou-
stained FNA and TP WSIs are presented in Table 7a. The experimental results demonstrate
that the proposed SL-FCN achieves superior performance compared to the baseline ap-
proaches, including Modified FCN [6–11], U-Net [2], and SegNet [34] with an accuracy of
99.99 ± 0.01%, precision of 92.02 ± 16.6%, recall of 90.90 ± 14.25%, F1-score of 89.82 ± 14.92%,
and Jaccard Index of 84.16 ± 19.91% for the segmentation of PTC in histopathological WSIs.
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Figure 7 presents the box plots of qualitative evaluation results for the segmentation of PTC.
The efficacy and efficiency of the proposed SL-FCN are further evaluated using Fisher’s LSD
test (Table 7b). The LSD test results demonstrate that the proposed SL-FCN substantially
exceeds the baseline approaches, including U-Net [2] and SegNet [34] in terms of precision,
recall, F1-score, and Jaccard index (p < 0.001). Furthermore, the qualitative segmentation
results of the proposed SL-FCN and the baseline approaches for the segmentation of PTC
in Papanicolaou-stained WSIs are presented in Figure 8. A consistency can be seen between
the predicted result by the proposed method and the reference standard produced by the
expert pathologist in Figure 8.

Figure 7. The box plots of quantitative evaluation results of the thyroid cancer dataset, including
(a) overall thyroid cancer dataset and (b) the thyroid FNA and TP cytological slides.
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Table 7. Quantitative evaluation with statistical analysis in segmentation of thyroid cancer. (a) quan-
titative evaluation; (b) statistical analysis: LSD test.

(a)

Thyroid Dataset

Method Accuracy Precision Recall F1-Score Jaccard Index Rank
F1-Score

ALL 99.99 ± 0.01% 92.02 ± 16.60% 90.90 ± 14.25% 89.82 ± 14.92% 84.16 ± 19.91%
Proposed soft

label FCN TP 100% 99.86 ± 0.35% 98.35 ± 3.91% 99.06 ± 2.05% 98.22 ± 3.87% 1

FNA 99.99 ± 0.01% 91.36 ± 17.13% 80.28 ± 16.63% 89.04 ± 15.28% 82.98 ± 20.27%

ALL 99.99 ± 0.01% 85.91 ± 21.93% 94.39 ± 11.7% 87.6 ± 18.05% 81.6 ± 23.21%
Modified

FCN ν [6–11] TP 100% 97.03 ± 5.42% 97.85 ± 3.49% 97.41 ± 4.25% 95.12 ± 7.62% 2

FNA 99.99 ± 0.01% 84.97 ± 22.54% 94.10 ± 12.14% 86.78 ± 18.53% 80.45 ± 23.73%

ALL 92.37 ± 5.99% 81.38 ± 19.11% 55.82 ± 23.45% 61.82 ± 20.79% 47.68 ± 20.04%
SegNet ν TP 97.40 ± 1.59% 97.84 ± 4.6% 56 ± 26.08% 66.95 ± 27.73% 54.86 ± 25.28% 4

FNA 91.95 ± 6.04% 80 ± 19.23% 55.81 ± 23.37% 61.39 ± 20.23% 47.08 ± 19.58%

ALL 92.14 ± 5.91% 74.03 ± 20.99% 61.03 ± 21.17% 63.68 ± 18.34% 49.21 ± 18.92%
U-Net ν TP 97.42 ± 1.77% 86.72 ± 10.1% 66.26 ± 19.55% 73.68 ± 15.99% 60.34 ± 18.25% 3

FNA 91.7 ± 5.93% 72.96 ± 21.34% 60.59 ± 21.33% 62.84 ± 18.35% 48.27 ± 18.77%

(b)

LSD Multiple Comparisons

Measurement (I) Method (J) Method
Mean

Difference
(I-J)

Std. Error Sig.
95% C.I.

Lower Bound Upper
Bound

Accuracy Proposed method

Modified
FCN [6–11] <0.01 0.59 0.990 −1.15 1.15

SegNet [34] *** 7.62 0.59 <0.001 6.49 8.77
U-Net [2] *** 7.88 0.59 <0.001 6.69 9.00

Precision Proposed method

Modified
FCN [6–11] * 6.12 2.75 0.03 0.70 11.53

SegNet [34] *** 10.64 2.75 <0.001 5.23 16.05
U-Net [2] *** 17.99 2.75 <0.001 12.58 23.41

Recall Proposed method

Modified
FCN [6–11] −3.49 2.55 0.17 −8.50 1.52

SegNet [34] *** 35.08 2.55 <0.001 30.07 40.09
U-Net [2] *** 29.88 2.55 <0.001 24.86 34.89

F1-score Proposed method

Modified
FCN [6–11] 2.21 2.53 0.38 −2.76 7.19

SegNet [34] *** 27.99 2.53 <0.001 23.03 32.97
U-Net [2] *** 26.14 2.53 <0.001 21.17 31.11

Jaccard Index Proposed method

Modified
FCN [6–11] 2.56 2.87 0.37 −3.08 8.20

SegNet [34] *** 36.48 2.87 <0.001 30.84 42.12
U-Net [2] *** 34.95 2.87 <0.001 29.31 40.59

The mean difference is significant at the level of * 0.05, and *** 0.001. ν The evaluation results are referred from [6]

on the thyroid dataset.



Cancers 2022, 14, 5312 23 of 30

Figure 8. Qualitative segmentation results of the proposed SL-FCN method and the baseline methods
for segmentation of PTC in Papanicolaou-stained WSIs.

4.6. Ablation Study

In this section, we conduct four experiments to validate the performance of each com-
ponent of our proposed soft label FCN, including changing the ratio of weight value for
different region, changing the soft label regions, utilizing different initialization methods,
and utilizing different optimizers with the Kaiming initialization. We conduct the experi-
ments to investigate the soft label regions in our proposed soft label FCN, and analyze the
relationships among segmentation performance with our proposed method (see Table 8a).
We compare the performance of the proposed soft label FCN with different initialization
methods and without initialization (see Table 8b). The quantitative results of the ablation
study show that the proposed method without initialization obtains improved performance
over the version with Kaiming initialization and Xavier initialization. We compare the per-
formance of the proposed soft label FCN with different ratios of weight which are assigned
in different regions (see Table 8c). We also compare the performance of the proposed soft la-
bel FCN with Kaiming initialization and different optimizers, including Stochastic Gradient
Descent (SGD) with momentum, Adam, Adaptive Gradient, AdaDelta, Nesterov’s Acceler-
ated Gradient (NAG), and RMSprop (see Table 8d). All the experiments are conducted on
the DISH dataset 1. The experimental results demonstrate that the proposed method with
soft label region RS, without initialization, weight values (Ψ = 2, Π = 1.5,ℵ = 1), and SGD
with momentum optimizer provides the best performance.



Cancers 2022, 14, 5312 24 of 30

Table 8. Quantitative results for the ablation study.

(a) Quantitative results when changing the soft label regions.

Proposed Method Accuracy Precision Recall F1-Score Jaccard Index

with RS (φ=0.01, υ=2,τ=6) 87.77 ± 14.97% 77.19 ± 23.41% 91.20 ± 7.72% 81.67 ± 17.76% 72.40 ± 23.05%
with 1

2 RS (φ=0.01, υ=1,τ=3) 87.27 ± 13.94% 76.58 ± 22.48% 86.59 ± 10.36% 79.69 ± 17.34% 69.32 ± 21.90%
with 2RS(φ=0.01, υ=4,τ=12) 86.66 ± 10.32% 79.84 ± 20.09% 74.80 ± 14.29% 75.62 ± 15.85% 63.17 ± 19.36%

(b) Quantitative results when changing the initialization methods.

Proposed Method Accuracy Precision Recall F1-Score Jaccard Index

without initialization 87.77 ± 14.97% 77.19 ± 23.41% 91.20 ± 7.72% 81.67 ± 17.76% 72.40 ± 23.05%
with Kaiming initialization 89.69 ± 9.93% 80.37 ± 19.39% 84.08 ± 13.37% 81.16 ± 15.85% 71.02 ± 20.99%
with Xavier initialization 89.36 ± 11.08% 80.63 ± 20.51% 84.35 ± 12.70% 81.24 ± 16.64% 71.36 ± 21.59%

(c) Quantitative results by modifying the weight parameters of ω(m): (Ψ, Π,ℵ).

Proposed Method Accuracy Precision Recall F1-Score Jaccard Index

with (Ψ = 2, Π = 1.5,ℵ = 1) 87.77 ± 14.97% 77.19 ± 23.41% 91.20 ± 7.72% 81.67 ± 17.76% 72.40 ± 23.05%
with (Ψ = 2,Π = 1,ℵ = 0.1) 88.66 ± 10.11% 78.83 ± 20.67% 81.11 ± 14.14% 78.64 ± 16.54% 67.68 ± 21.64%
with (Ψ = 4,Π = 2,ℵ = 1) 87.18 ± 12.82% 78.66 ± 21.13% 84.14 ± 11.71% 79.62 ± 16.19% 68.89 ± 20.90%

(d) Quantitative results for the ablation study when using Kaiming initialization and different optimizer.

Proposed Method Accuracy Precision Recall F1-Score Jaccard Index

with SGD with momentum 89.69 ± 9.93% 80.36 ± 19.39% 84.08 ± 13.37% 81.16 ± 15.85% 71.02 ± 20.99%
with Adam 63.18 ± 13.30% 34.18 ± 19.90% 21.03 ± 10.18% 22.69 ± 8.59% 13.07 ± 5.68%

with Adaptive Gradient 72.63 ± 11.89% 77.59 ± 23.94% 1.15 ± 1.14% 2.24 ± 2.16% 1.14 ± 1.12%
with AdaDelta 58.87 ± 10.45% 35.39 ± 18.09% 48.87 ± 19.80% 35.02 ± 11.77% 21.88 ± 9.44%

with NAG 87.45 ± 10.54% 79.08 ± 20.31% 79.88 ± 13.46% 77.91 ± 15.81% 66.30 ± 19.70%
with RMSprop 75.05 ± 10.99% 81.10 ± 13.88% 14.18 ± 7.15% 23.16 ± 9.14% 13.41 ± 6.22%

5. Discussion and Conclusions

Cancer research has seen constant growth throughout the last few decades. Scientists
used several approaches, such as early-stage screening, to detect cancer types before they
develop symptoms. Furthermore, they have created novel ways for predicting cancer
therapy outcomes early on. However, reliable cancer prediction is one of the most difficult
jobs for clinicians. To deal with this challenge, deep learning methods have grown in
popularity among medical researchers. The deep learning methods may find and detect
patterns as well as accurately determine potential outcomes of a form of cancer. In this
study, we develop a SL-FCN method for automated segmentation of HER2 amplification in
FISH and DISH images of invasive breast cancer to assist breast cancer target therapy and
PTC on Papanicolaou-stained FNA and TP WSIs to help in thyroid cancer diagnosis.

Breast cancer is classified into five subtypes including luminal A, luminal B, HER2-
positive luminal B, non-luminal HER2-positive, and triple negative, for treating early breast
cancer in the adjuvant setting using levels of ER, PR, Ki67, and HER2 expression [66]. The
amplified HER2 gene can be observed in approximately 15–20% of patients with invasive
breast cancer as a poor prognostic factor [21,66,67]. HER2 amplification with adverse
prognostic effects is not limited to breast and gastric cancer but is also found in a variety
of tumor types such as colon cancer, urinary bladder cancer, and biliary cancer [67–71].
Clinical outcomes for HER2–positive breast cancer have dramatically changed with HER2-
targeted therapy [21,22]; however, in addition to being expensive, HER2 targeted therapy
has some serious side effects associated with its use, such as cardiomyopathy, pulmonary
toxicity, and febrile neutropenia [72,73]. Considering these reasons, it is very important to
determine the HER2 status for selection of treatment options, and maximizing efficacy while
minimizing toxicity and cost is imperative. To date, no biomarkers that predict response
to anti-HER2 therapy other than HER2 overexpression itself have been discovered [74].
This requires a reliable method for identifying HER2-positive cases. A key first step in
appropriately deciding on the use of HER2-targeted therapy is the accurate determination
of HER2 overexpression. IHC detects HER2 protein expression on the cell membrane, and
is defined on a scale of 0–3 based on the Hercept Test Score [75]. Scores of 0 and 1+ were
considered negative, and a score of 3+ was considered to be positive. An equivocal result,
represented by a score of 2+, requires further testing to confirm the presence or absence of
HER2 gene amplification, which can be achieved using a second method, most commonly
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ISH [76]. HER2 ISH was traditionally performed by FISH. DISH provides faster turnaround
times and the ability to store slides for long periods without loss of signal [77]. In addition,
DISH may also be superior to FISH in assessing heterogeneity, especially when discrete
areas of amplification are present within the tumor [78].

The HER2/CEN17 ratio and average HER2 copy number are very important to de-
termine whether the FISH and DISH results are positive or negative. Pathologists rely
on their experience to analyze the HER2 gene amplification status of a select region by
visual evaluation, which can easily produce bias and inter-observer variability. Therefore,
an automated diagnostic method based on AI can potentially overcome the limitations of
manual assessment procedure [79–82]. The development of automated diagnostic tools has
been used for segmentation of chromosomes in multicolor FISH images to make pathologi-
cal examinations more accurate and reliable [30,83,84]. In this study, we developed a soft
label FCN technology for analyzing FISH and DISH images. We compared IHC equivocal
cases (2+) combined with FISH or DISH testing assessed by visual counting or deep learn-
ing methods to confirm HER2 gene status. Using FISH or DISH current standard visual
evaluation as a reference, the diagnostic indices for soft label deep learning in (1) FISH
dataset with sensitivity 83.52%, specificity 98.65%, and accuracy 93.54%; (2) DISH dataset
1 with sensitivity 91.2%, specificity 86.45%, and accuracy 87.77% and (3) DISH dataset 2
with sensitivity 83.78%, specificity 97.16%, and accuracy 94.64%. Moreover, in statistical
analysis, the proposed soft label FCN approach outperforms the baseline approaches by
a significant margin (p < 0.001). Even for the challenging FISH images with blurry cell
borders as shown in Figure 6, the proposed soft label FCN consistently performs well and
outperforms benchmark approaches. The approach enables the automated counting of
more nuclei with high precision, sensitivity, and accuracy, which is comparable to the usual
clinical manual counting method. Adjuvant trastuzumab with chemotherapy is standard
treatment for HER2-positive breast cancer, defined as IHC2+ and FISH amplified. Al-
though there is no complete documentation in our experimental data to determine whether
FISH-amplified cases are positively associated with treatment outcome, some cases with
high HER2 copy number do have a good clinical response that provides oncologists with
valuable information on the possibilities of response or not after anti-HER2 target therapy.

PTC is the most common malignant tumor of thyroid cancer. In evaluation for thyroid
FNA, pathologists must evaluate all information on glass slides under a light microscope.
Digital pathology has emerged as a possible new standard of treatment in recent years,
enabling pathology images to be analyzed using computer-based algorithms. However,
due to the large size of a typical WSI, pathologists find it difficult to manually detect all
of the information in WSI. As a result, artificial intelligence-based automated diagnosis
systems are being investigated in order to overcome the limitations of manual and difficult
diagnosis procedures. In this study, we developed a soft label FCN technology for ana-
lyzing Papanicolaou-stained WSIs for PTC diagnosis. The quantitative evaluation results
demonstrate that the proposed method achieves superior performance for the segmentation
of PTC on Papanicolaou-stained WSIs than the baseline methods, including Modified FCN,
U-Net, and SegNet, with accuracy, precision, and recall of over 90%. Moreover, in statistical
analysis based on Fisher’s LSD test, the proposed soft label FCN approach outperforms the
baseline approaches, including U-Net and SegNet by a significant margin (p < 0.001).

The potential of DL-based soft label approaches in our study have a high degree of
accuracy, precision, recall and F1-score. The experimental results on FISH and DISH images
of invasive breast cancer for assessment of HER2 amplification and Papanicolaou-stained
FNA and TP WSIs for PTC diagnosis demonstrate that the proposed deep learning-based
system may not only eliminate misclassification owing to human error, but also decrease
the decision-making time, enhancing accuracy and reproducibility while also being more
objective, precise, and unbiased than current standard visual interpretation results. People
will have more confidence in AI algorithms after they are validated using multi-center data
and have increased interpretability. The collaboration between pathologists and AI will
promote tumor diagnosis and precision treatment. For live demonstration, an online web-
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based system of the proposed method has been created. The link of the live demonstration
is available in the Supplementary Materials.

Supplementary Materials: An online web-based system of the proposed method has been created
for live demonstration. Please see the supplementary video file using this link: https://www.youtube.
com/watch?v=eYA_mE6u7EI&ab_channel=ProfChing-WeiWang, accessed on 23 October 2022.
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