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Simple Summary: Adult adrenocortical carcinoma (ACC) is a rare and aggressive tumor in adults,
usually associated with excessive steroid secretion. It is highly metastatic and has few therapeutic
options and a poor prognosis. Here, we explore the hallmarks of ACC influenced by transcription
factors and their target genes (regulons) to provide a prognostic overview of ACC biology. Using
an in silico clinical data analysis approach, we assessed human transcriptomic data from publicly
available datasets. We found four distinct clusters of regulons associated with good and worse
prognoses associated with cell proliferation and/or immunologic activity. Some findings require
further bench analyses, primarily focusing on worse prognostic regulons and their targets.

Abstract: We reconstructed a transcriptional regulatory network for adrenocortical carcinoma (ACC)
using transcriptomic and clinical data from The Cancer Genome Atlas (TCGA)-ACC cohort. We inves-
tigated the association of transcriptional regulatory units (regulons) with overall survival, molecular
phenotypes, and immune signatures. We annotated the ACC regulons with cancer hallmarks and
assessed single sample regulon activities in the European Network for the Study of Adrenal Tumors
(ENSAT) cohort. We found 369 regulons associated with overall survival and subdivided them into
four clusters: RC1 and RC2, associated with good prognosis, and RC3 and RC4, associated with
worse outcomes. The RC1 and RC3 regulons were highly correlated with the ‘Steroid Phenotype,’
while the RC2 and RC4 regulons were highly correlated with a molecular proliferation signature. We
selected two regulons, NR5A1 (steroidogenic factor 1, SF-1) and CENPA (Centromeric Protein A),
that were consistently associated with overall survival for further downstream analyses. The CENPA
regulon was the primary regulator of MKI-67 (a marker of proliferation KI-67), while the NR5A1
regulon is a well-described transcription factor (TF) in ACC tumorigenesis. We also found that the
ZBTB4 (Zinc finger and BTB domain-containing protein 4) regulon, which is negatively associated
with CENPA in our transcriptional regulatory network, is also a druggable anti-tumorigenic TF. We
anticipate that the ACC regulons may be used as a reference for further investigations concerning the
complex molecular interactions in ACC tumors.

Keywords: adrenocortical carcinoma; transcriptomics; regulatory network; transcription factor;
immuno-oncology; KI-67; NR5A1; CENPA; ZBTB4; IZKF1

1. Introduction

Adrenocortical carcinoma (ACC) is a rare, aggressive endocrine malignancy with
a bimodal age distribution and distinct characteristics between pediatric and adult tu-
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mors [1,2]. ACC is characterized by a highly proliferative and immune-suppressed tumor
microenvironment, high production of corticoids, TP53 mutation, and an upregulation of
the WNT/β-Catenin pathway [3–6].

Zheng et al. (2016) classified The Cancer Genome Atlas (TCGA)-ACC patients into four
groups based on mRNA K4 clustering: Steroid Phenotype High (HSP), HSP + Proliferation,
Steroid Phenotype Low (LSP), and LSP + Proliferation [7]. The Steroid Phenotype is related
to the activation of steroid biosynthesis pathways, while Proliferation was assessed by a
proliferation score proposed by Wirapati et al. (2008) [8]. This classification presented a high
overlap with the C1A/C1B molecular classification presented by Reynies et al. (2009) [9],
being HSP and HSP + Proliferation related to C1A and worse outcomes, and LSP associated
with C1B. In our previous study [6], we have shown that LSP and LSP + Proliferation pre-
sented a significant presence of immune infiltration compared to the immune-suppressed
microenvironment of HSP and HSP + Proliferation. Furthermore, Landwehr et al. (2020)
showed that excessive glucocorticoid levels, present in nearly 60% of ACC patients, are
related to T cell depletion in the tumor microenvironment [5].

The functional interplay between the tumor and infiltrating immune cells within
the tumor microenvironment provides insights into genes associated with the anti-tumor
immune response [10–12]. The levels and distribution of CD3+ and CD8+ T cell infiltra-
tion distinguish four solid tumor phenotypes: hot (or inflamed), altered excluded, altered
immunosuppressed, and cold (or non-inflamed) [11–13]. ACC is described as an immuno-
logically cold tumor, presenting one of the lowest immune infiltrates among 30 solid cancer
types from TCGA [7,14]. However, the amount and efficacy of the immune infiltrate depend
on pre-existing low levels of intratumoral steroids [5,6]. This suggests that in order to
boost the anti-tumor immune response, it is necessary to eliminate excessive glucocorticoid
levels, and that may be the main reason for heterogeneous results in five clinical trials using
four different immune checkpoint inhibitors (avelumab, nivolumab, pembrolizumab, and
ipilimumab) [15–19].

2022 WHO Classification of Adrenal Cortical Tumors recommends that diagnosti-
cians specify the mitotic count and the nuclear protein Ki-67 (Ki-67) labeling index in all
ACCs [20]. A Ki-67 (or MKi-67) labeling index relates to proliferation and malignancy,
besides being used in the risk stratification and the rationale of adjuvant mitotane ther-
apy [20–22]. Steroidogenic Factor 1 (SF1) immunohistochemistry is the most reliable and
specific biomarker to confirm the adrenal cortical origin [23]. This transcription factor
(TF) is encoded by the Nuclear Receptor Subfamily 5 Group 1 (NR5A1) gene, whose over-
expression is associated with increased steroid metabolism, proliferation, and a worse
outcome [24,25].

Different combinations of regulators and molecular factors may be associated with
cancer development. The inference of regulatory networks helps to understand how
these factors may be related, converging on cellular mechanisms, which can add to the
understanding of the biology of the disease or intervention strategies [26–29]. To reconstruct
a regulatory network, gene expression data can be used to evaluate mutual information
between a TF and potential target genes, generating regulatory hubs called regulons [26].
This reverse-engineering method has been successfully applied in other cancer types
(e.g., [26,27,29]).

In the present study, we inferred a transcriptional regulatory network for ACC using
publicly available transcriptomic and clinical data from the TCGA-ACC cohort [7]. Through
multivariate Cox analysis, we found 369 regulons, composed of a TF and its direct and
indirect targets, relating to overall survival. We investigated how these regulons correlate
with molecular phenotypes and immune signatures [14]. In addition, we annotated these
regulons with Molecular Signatures Database (MSigDb) Hallmarks, representing well-
defined biological states or processes [30]. Finally, we tested the prognostic value of the
regulon activity in the European Network for the Study of Adrenal Tumors (ENSAT)
cohort [31].
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2. Methods
2.1. The Cancer Genome Atlas-ACC Data

The TCGA-ACC RNA-seq and clinical data [7] available from the GDC repository were
downloaded using the TCGABiolinks package v.2.20.1 in R [32–34]. Next, we assessed the
curated survival data of TCGA-ACC participants using the Xena Browser [35]. Then, the
gene expression matrix was filtered using the AnnotationHub package v.3.0.2 in R [36] for
protein-coding genes. Finally, we normalized the raw counts with the variance stabilizing
transformation (VST) method from the DESeq2 package v.1.32.0 in R [37], using the Steroid
Phenotype classification in the experimental design (see Section 2.6).

2.2. Regulon Inference

The normalized gene expression matrix was used to call regulons with the RTN
package v.2.16.0 in R [26]. First, we reconstructed regulons for 1605 TFs [38,39] using
the ARACNe algorithm [40]. Then, we used the tni.alpha.adjust() function [41] to define
a statistical threshold that controls the trade-offs between Type I and Type II errors at
a similar level described by Castro et al. (2016) [26], using a Benjamini-Hochberg [42]
adjusted p-value cutoff of 0.05.

2.3. Regulon Activity

The regulon activity was estimated using a two-tailed gene set enrichment analysis
(GSEA2) [26] which produces a differential enrichment score (dES) for each sample. A
positive dES represents activated regulons, while a negative dES represents suppressed
regulon activity. Values near zero indicate inconclusive activity. We selected regulons with
a minimum of 15 positive and 15 negative targets [30] to assess regulon activity, which is
regarded as the minimum gene set size for downstream enrichment analyses [30].

2.4. Survival Analysis

We used the regulon activity for multivariate Cox analysis [43] relating to overall
survival (OS) and Progression-Free Interval (PFI) (the period from the date of diagnosis until
loco-regional or systemic recurrence, second malignancy, or death from any cause) [35]. For
this analysis, we considered the tumor stage and age as covariates using the RTNSurvival
package v.1.20.0 pipeline [44], generating the hazard ratio (HR) and 95% confidence interval
(CI) for each regulon. Since the Cox analysis assessed the time-to-event association between
steroid-related regulons and OS, steroid-secreting status was not included in the Cox model
due to potential co-linearity with steroid-related regulons. Therefore, the regulons with
an adjusted p-value below 0.05 for OS were selected for the subsequent analysis. For
Kaplan-Meier survival curves [45], samples were divided into high, inconclusive, or low
regulon activity, and the p-values were calculated using log-rank statistics [46,47].

2.5. Clustering

The regulons’ activity dES was used for the unsupervised consensus clustering using
the ConsensusClusterPlus package v.1.56.0 in R [48]. We chose k equal to four.

2.6. Steroid and Proliferation Classification

Of the 92 samples in the TCGA-ACC cohort, 79 had RNA-seq data, and 78 were
listed in the mRNA K4 molecular classification [7], which assigns a Steroid Phenotype to
the samples.

The mRNA K4 classified the participants in “steroid-phenotype-high” (n = 25), “steroid-
phenotype-high + proliferation” (n = 22), “steroid-phenotype-low” (n = 27), and “steroid-
phenotype-low + proliferation” (n = 4).

We separated the Steroid Phenotype and the Proliferation profiles, resulting in two
groups for the Steroid Phenotype, HSP (n = 47) and LSP (n = 31), and two groups for the
higher and lower proliferation scores (n = 26 and 52, respectively). The proliferation score
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used by Zheng et al. (2016) [7] was based on a proliferation gene set signature described by
Wirapati et al. (2008) [8].

2.7. Differential Expression for Steroid and Proliferation Phenotypes

We called differentially expressed genes (DEGs) for the Steroid and Proliferation
phenotypes using the DESeq2 package v.1.32.0 in R [37]. To avoid confounding effects,
the two profiles were independently analyzed, generating DEGs relating to the Steroid
independent of Proliferation (IP) classification and the Proliferation independent of Steroid
(IS) classification. We considered significant DEGs with adjusted p-values below 0.05 in the
Wald test [37].

2.8. Transcriptional Network Analysis (TNA)

The association between the activity of a regulon and the Steroid and Proliferation
phenotypes was assessed using GSEA2 implemented in the TNA pipeline [38]. Here, we
used the list of DEGs described in Section 2.7. Associations with adjusted p-values below
0.01 were considered significant.

2.9. Functional Annotation with MSigDb Hallmarks

The prognostic regulons were annotated with MSigDb Hallmarks [30] using the
tni.annotate.regulons() function from the RTN package in R [26]. We used the Hallmark gene
sets from the msigdbr package v.7.4.1 [49].

2.10. Immune Correlation

Values for leukocyte fraction, immune signatures, T-cell receptor (TCR), and B-Cell
Receptor (BCR) metrics were retrieved from the master table for TCGA-ACC participants
from Thorsson et al. (2018) [14]. We calculated the Spearman correlation between these
values and the regulon activity.

2.11. Duals Inference

To search for co-regulatory associations between pairs of prognostic regulons, we used
the RTNduals pipeline as described in Chagas et al. (2019) [50].

2.12. ENSAT Cohort Data

The clinical data and the normalized gene expression matrix were assessed from the
ENSAT cohort using the GEOquery package v.2.60.0 [51]. This cohort comprises 44 ACC
samples and is available in the Gene Expression Omnibus (GEO) portal under the accession
number GSE49278 [31]. When more than one entry from the gene expression data referred
to the same gene symbol, we selected the one with the higher coefficient of variation
between the samples. The additional clinical data was obtained from the supplementary
tables of Assié et al. (2014) [31].

2.13. Regulon Activity and Survival Analysis in the ENSAT Cohort

The regulatory network inferred in the TCGA-ACC cohort was used to calculate the
regulon activity in the ENSAT cohort using GSEA2 [26]. We selected the regulons related
to OS in the TCGA-ACC for multivariate Cox analysis in the ENSAT cohort. The HR and
95% CI for OS were inferred using tumor stage and age as covariates. For the Kaplan-Meier
survival analysis, we followed the same protocol described in Section 2.4.

2.14. Statistics and Visualization

The R packages available in CRAN [52] and Bioconductor [53] repositories were used
for statistical analyses. All p-values were corrected for multiple hypotheses using the
Benjamini-Hochberg correction [42], and if not specified otherwise, we considered the
result significant when below 0.05.
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The two-sided Mann-Whitney-Wilcoxon test [54,55] was used for the boxplot com-
parison when only two pairs were available. For general comparison between more than
two groups, we used the Kruskal-Wallis rank-sum test [56] followed by Dunn’s test [57] for
multiple pairwise comparisons.

For the construction of heatmaps, we used the ComplexHeatmap package v.2.8.0 [58]
in R. To visualize the regulon network, we used the RedeR package v.2.0.0 [59] in R.

3. Results
3.1. The Identification of 369 Regulons with Prognostic Values Related to Molecular Phenotypes
and Leukocyte Fractions

The TCGA-ACC RNA-seq data was used to call regulons using the RTN R pack-
age [26] (Supplementary Table S1). Of the 1605 TFs annotated in the Lambert et al. (2018)
collection [39], 611 had at least 15 positive and 15 negative targets in our transcriptional
regulatory network (Supplementary Table S2, Supplementary Figure S1), which is regarded
as the minimum gene set size for downstream enrichment analyses [30]. In Figure 1A,
we present the general workflow used in this study. Figure 1B illustrates an example of a
regulon and its targets’ distribution along the karyogram.
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Using multivariate Cox analysis, we used the OS data to assess the association with
the regulons’ activity. Of the 611 regulons, we found 369 related to OS, of which 330 (89.4%)
were also related to PFI (Supplementary Tables S3 and S4). Figure 2A shows the activity
profile of the 369 prognostic regulons in the TCGA-ACC cohort (Supplementary Table S5).
In the unsupervised clustering, the 188 good prognostic regulons showed higher activity
in the LSP and C1B participants, and in participants with a higher leukocyte fraction.
Conversely, the 181 poor prognosis regulons showed higher activity in the HSP and C1A
participants, and participants with a lower leukocyte fraction. Consistently, the activity of
high- and low-risk regulons presented opposite correlations with the leukocyte fraction
(Figure 2B, Supplementary Table S4) and with the Steroid IP and Proliferation IS scores
(Figure 2C and 2D, respectively, Supplementary Tables S4 and S6).

3.2. Consensus Clustering Resulted in Four Regulon Clusters with Different Functional and
Molecular Characteristics

We used consensus clustering to look for subgroups within the low- and high-risk
regulons (Supplementary Figure S2). The 188 regulons with good prognosis were divided
into two clusters: regulon cluster (RC) 1 and RC2, with 62 and 126 regulons, respectively.
The 181 regulons related to a worse prognosis were divided into RC3 and RC4, with
113 and 68 regulons, respectively (Figure 3A). RC1 activity showed the highest positive
correlation with the presence of immune infiltrate and with the Steroid IP score, as opposed
to RC3 (Figure 3B,C). RC2 had the lowest scores for the Proliferation IS classification,
in contrast to RC4 (Figure 3D). The regulons’ correlation with leukocyte fraction was
negatively associated with the Steroid IP (ρ = −0.94, p-value < 2.2 × 10−16) (Figure 3E) and
the Proliferation IS scores (ρ = −0.52, p-value < 2.2 × 10−16) (Figure 3F).

Figure 4A shows the regulon enrichment in the MSigDb Hallmarks (Supplementary
Figure S3, Supplementary Table S7). RC3 and RC4, in contrast to RC1 and RC2, were
positively enriched in proliferation Hallmarks such as MYC targets v1 and v2, E2F targets,
Mitotic Spindle, G2M checkpoint, and WNT/β-Catenin Signaling (Figure 4B). In addition,
RC1 was activated, while RC3 was repressed, in the immune Hallmarks (i.e., IL6 JAK STAT3
Signaling, Interferon (IFN) γ and α, and Inflammatory responses—Figure 4C, Complement,
Allograft rejection, and Coagulation), in addition to Apoptosis, P53 pathway, and some
immune-related signaling pathways (i.e., IL2 STAT5 signaling and TNF-α signaling via
NFK-β). On the other hand, RC2 had the lowest, while RC4 had the highest scores for PI3K
Akt mTOR (Figure 4D) and Hedgehog signaling.

We also evaluated the RCs concerning the six immune signatures and the TCR metrics in-
ferred by Thorsson et al. (2018) [14] for the TCGA-ACC participants (Supplementary Figure S4A,
Supplementary Table S4). RC1 had the highest and RC3 the lowest correlations for
Macrophage Regulation and Lymphocyte Infiltrate Signature Scores. Moreover, RC1 and
RC2 negatively correlated with Proliferation and Wound Healing signatures, as opposed to
the positive values found in RC3 and RC4. The four clusters showed a weak correlation
with the IFN-γ Response and TGF-β Response signatures. Regarding the adaptive immune
response (Supplementary Figure S4B, Supplementary Table S4), RC1 related positively to
TCR Shannon and TCR Richness, while RC3 related negatively to these features. The RC
activities did not present a significant correlation with TCR Evenness. Concerning the B
cell response, the BCR metrics inferred by Thorsson et al. (2018) [14] were available for
only five samples, making comparisons with sufficient statistical power unfeasible.
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Regulons are grouped into High- and Low-risk categories according to the HR in Multivariate Cox 
Analysis. Each point represents a regulon, and the contour presents the distribution density of the 
regulons for each group. The boxplots show the distinction between the groups for (B) the Spear-
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and (D) the Proliferation IS score. **** p ≤ 0.0001 in the two-sided Mann-Whitney-Wilcoxon test. 

  

Figure 2. Activity profile of prognostic regulons (n = 369) in TCGA-ACC cohort (n = 78). (A) Heatmap
with the activity of the 369 prognostic regulons. Each row represents a regulon, and each column
is a sample from the TCGA-ACC cohort. Both were subjected to unsupervised clustering. The
upper tracks present the clinical and molecular classification for the samples defined by Zheng et al.
(2016) [7] and Thorsson et al. (2018) [14]. The left tracks show the regulon association with the hazard
ratio (HR) for overall survival (OS), the Steroid independent of Proliferation (IP) and Proliferation
independent of Steroid (IS), and the correlation with the Leukocyte Fraction. The right track presents
the regulon clusters defined by Consensus Clustering (Supplementary Figure S3). (B–D) Regulons
are grouped into High- and Low-risk categories according to the HR in Multivariate Cox Analysis.
Each point represents a regulon, and the contour presents the distribution density of the regulons
for each group. The boxplots show the distinction between the groups for (B) the Spearman’s
correlation between the leukocyte fraction and the regulon activity, (C) the Steroid IP score, and
(D) the Proliferation IS score. **** p ≤ 0.0001 in the two-sided Mann-Whitney-Wilcoxon test.
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Each point represents a regulon, and the box’s horizontal lines show the median and the 25–75%
percentiles, while the whiskers (vertical lines) cover the 0–25% and 75–100% percentiles. The contour
presents the distribution density of the regulons. The results of Kruskal-Wallis and Dunn’s tests
for multiple pairwise comparisons of the ranked data are presented on top. Asterisks indicate the
significance level as follows: *** p ≤ 0.001, and **** p ≤ 0.0001. Non-significant p-values (p > 0.05)
are represented by “ns”. (E,F) show the scatter plot for the leukocyte fraction correlation with the
Steroid IP score and Proliferation IS score, respectively. Each point represents a regulon, colored
by its respective cluster. The rugs show the distribution of the points along the x and y-axes. The
Spearman correlation rho and the associated p-value are shown in the top-right corner.
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Figure 4. Hallmarks enrichment analysis. (A) A heatmap representing the regulon activity enrichment
analysis for the MSigDb Hallmarks. Each column represents a prognostic regulon grouped by the
regulon cluster, and the rows represent the 50 Hallmarks divided by category. Both rows and
columns were subjected to semi-supervised clustering within the groups. In the main heatmap,
red indicates a positive enrichment score, while blue indicates the opposite. The top annotation
depicts the regulons classification in the clusters, besides the overall survival (OS) hazard ratio (HR),
the Steroid independent of Proliferation (IP) and Proliferation independent of Steroid (IS) scores,
and the leukocyte fraction correlation for the regulons as presented in Figure 3A. (B–D) Boxplots
comparing the enrichment scores in the regulon clusters for (B) Inflammatory Response, (C) WNT/β-
Catenin Signaling, and (D) Mitotic Spindle Hallmarks. Each point represents a regulon separated
by the regulon cluster in the x-axis and vertically spread according to its enrichment score for each
Hallmark described. The contour presents the distribution density of the regulons for each cluster.
The results of Kruskal-Wallis and Dunn’s tests for multiple pairwise comparisons of the ranked data
are presented on top. Asterisks indicate the significance level as follows: * p ≤ 0.05, *** p ≤ 0.001, and
**** p ≤ 0.0001.
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3.3. The ENSAT Cohort Confirmed the Prognostic Value of 89.5% of the Regulons Related to
Survival on TCGA-ACC

We investigated the regulon activity in the ENSAT cohort (44 ACC samples)
(Supplementary Figure S5, Supplementary Table S5) and confirmed the association with
survival for the 369 regulons. Of the 369 regulons, 361 were present in the ENSAT gene
expression matrix, of which 323 (89.5% of the 361) had significant HRs in multivariate
Cox analysis for OS (Supplementary Table S3). High-risk regulons (RC3 and RC4) showed
greater activity in the C1A phenotype. They were suppressed in the C1B phenotype,
contrary to what was observed for the low-risk regulons (RC1 and RC2), which agrees with
the pattern observed in the TCGA-ACC cohort (Figure 5A,B).
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Figure 5. Single-sample regulon activities in regulon clusters. (A,B) Samples were divided into C1A
and C1B as assigned by Zheng et al. (2016) [7] for (A) the TCGA-ACC cohort and by Assié et al.
(2014) [31] for (B) the ENSAT cohort. (C,D) Samples were divided into a group with tumor stages 1
and 2 and a group with tumor stages 3 and 4 for the (C) TCGA-ACC and (D) ENSAT cohorts. For
each sample, the median regulon activity for each regulon cluster was calculated and represented by
the values on the y-axis. Grey points indicate participants alive during the follow-up period, while
red indicates participants who died during this time. The contour presents the distribution density
of the sample. The results of Kruskal-Wallis and Dunn’s tests for multiple pairwise comparisons of
the ranked data are presented on top. Asterisks indicate the significance level as follows: * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, and **** p ≤ 0.0001. Non-significant p-values (p > 0.05) are represented
by “ns”.

Concerning the tumor stages in the TCGA-ACC and ENSAT cohorts, RC1 and RC2 had
stronger activity at low tumor stages, while RC3 and RC4 had stronger activity at higher stages
(Figure 5C,D). We summarized the results for the 369 regulons in Supplementary Table S4.
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3.4. NR5A1 Relates to Worse Outcomes in TCGA-ACC and ENSAT Cohorts. CENPA Has a
Strong Association with Proliferation and Relates to a Bad Prognosis

NR5A1 is a well-described TF related to a worse prognosis, adrenal differentiation,
and steroidogenesis in ACC. NR5A1 presented 248 targets in the regulatory network, with
176 negatives and 72 positives (Supplementary Figure S6, Supplementary Tables S1 and S2).
In the Cox multivariate analysis, the NR5A1 regulon related to worse outcomes in PFI
(HR = 2.15 [95% CI, 1.49–3.11], p-value = 7.12 × 10−5) and OS (HR = 1.94 [95% CI, 1.21–3.11],
p-value = 7.13 × 10−3) in the TCGA-ACC cohort, and to OS in the ENSAT cohort (HR = 3.86
[95% CI, 1.61–9.25], p-value = 7.45 × 10−3) (Supplementary Table S3). The Kaplan-Meier
analysis also presented a significant value relating to worse outcomes in OS both in the
TCGA-ACC and the ENSAT cohorts (Figure 6A and 6B, respectively).
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Figure 6. Survival analysis for the NR5A1 and CENPA regulons. (A,B) A Forest plot with the Hazard
Ratios (HRs) and Confidence Interval (CI) for the Cox multivariate analysis. Age and Tumor Stage
were used as covariates. The activities of the NR5A1 and CENPA regulons were evaluated for overall
survival (OS). (A) presents the results for the TCGA-ACC cohort and (B) for the ENSAT cohort.
(C–F) The Kaplan-Meier analysis for the NR5A1 regulon in the (C) TCGA and (D) ENSAT cohorts
and for CENPA regulon in the (E) TCGA-ACC and (F) ENSAT cohorts. In the first and second panels,
the rows represent the samples, which were ordered according to the differential enrichment score
(dES) for the regulon activity and divided by the median into three groups: positive dES (red),
negative dES (blue), and undetermined (grey) as depicted in the first panel. The middle panel shows
the molecular classification for tumor stage for each sample, as provided by the publicly available
data from the cohorts. The last panel shows the Kaplan-Meier survival analysis between the high and
the low regulon activity groups. The adjusted p-value for the Log-Rank test is provided. The number
of participants in each group is shown, followed by the number of events between parentheses.
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This regulon presented a significant relation both with HSP (dES = 1.49, p-value = 1.65 × 10−3)
and Proliferation IS phenotypes (dES = 1.33, p-value = 1.36 × 10−3) and clustered in the RC3.
Concerning the immune features analyzed, its activity showed a significant negative correla-
tion with leukocyte fraction (ρ = −0.52, p-value = 4.84 × 10−6), TGF-β response (ρ = −0.41,
p-value = 1.71 × 10−2, the lowest correlation among the 369 regulons), Macrophage
Regulation (ρ = −0.52, p-value = 6.84 × 10−6), Lymphocyte Infiltration Signature Score
(ρ = −0.56, p-value = 4.90 × 10−7), TCR Shannon (ρ = −0.61, p-value = 2.14 × 10−3), and
TCR Richness (ρ = −0.47, p-value = 2.87 × 10−4). Moreover, this regulons’ activity
showed a significant positive correlation with the Proliferation and Wound Healing sig-
natures (ρ = 0.32, p-value = 5.84 × 10−3, and ρ = 0.35, p-value = 2.07 × 10−3, respectively)
(Supplementary Table S4).

Within the 369 regulons, we found 150 pairs of regulons that significantly shared
targets (Supplementary Table S8) and were therefore called “Duals” [50]. Despite being
the second regulon with the most targets (n = 248, Supplementary Figure S6), the NR5A1
regulon did not show significant target sharing with other prognostic regulons.

Of the inferred Duals, Centromeric Protein A (CENPA), Small Nuclear RNA Activating
Complex Polypeptide 4 (SNAPC4), and LIN54 [a component of the LINC (Linker of Nucle-
oskeleton and Cytoskeleton) complex, an essential regulator of cell cycle genes], were the
regulons with the most associations (9, 8, and 7, respectively) (Supplementary Table S8).
Interestingly, CENPA had the highest score in the correlation with Proliferation (ρ = 0.90,
p-value = 4.01 × 10−27) and Wound Healing signatures (ρ = 0.79, p-value = 2.55 × 10−15), and
a significant negative correlation with leukocyte fraction (ρ = −0.55, p-value = 1.44 × 10−6),
Macrophage Regulation (ρ = −0.42, p-value = 4.29 × 10−4), and Lymphocyte Infiltration
Signature Score (ρ = −0.48, p-value = 2.67 × 10−5) (Supplementary Table S4).

We found that CENPA was the main regulator of the MKI-67 gene (MI = 0.77), the most
common histopathologic marker of proliferation, followed by FOXM1 (MI = 0.59), MXD3
(MI = 0.48), and DNMT1 (MI = 0.34) (Supplementary Table S1). MXD3 and DNMT1 are
CENPA Duals (Supplementary Table S8), and FOXM1, MXD3, and DNMT1 are CENPA-
positive targets.

CENPA was significantly associated with both the Steroid IP and the Proliferation IS
(ρ = 1.45, p-value = 1.65 × 10−3, and ρ = 1.32, p-value = 1.36 × 10−3, respectively) and
clustered together with RC3 (Supplementary Table S4). In the Cox’s analysis, CENPA
related to worse outcomes in the TCGA-ACC cohort in PFI (HR = 2.23 [95% CI, 1.54–3.21],
p-value = 4.55 × 10−5) and in OS (HR = 3.24 [95% CI, 1.88–5.57], p-value = 1.82 × 10−4), in
addition to the ENSAT cohort for OS (HR = 2.52 [95% CI, 1.39–4.59], p-value = 7.45 × 10−3)
(Supplementary Table S3). In the Kaplan-Meier analysis, CENPA presented a significant
relation in the TCGA-ACC and ENSAT cohorts (Figure 6A and B, respectively). Figure 7A
presents CENPA’s targets, and Figure 7B shows their distribution in a karyogram.

In the TCGA-ACC cohort, the three regulons with higher negative Spearman cor-
relation with CENPA’s activity were THRB (Thyroid Hormone Receptor Beta), STAT5B
(Signal Transducer and Activator of Transcription 5B), and ZBTB4 (Zinc Finger And BTB Do-
main Containing 4) (ρ = −0.87, −0.86, and −0.85, respectively, all p-values < 2.2 × 10−16).
All of them from RC1 related to good prognosis in the TCGA-ACC and ENSAT cohorts
(Supplementary Tables S3 and S4) and presented a negative correlation with the Prolifera-
tion signature (ρ = −0.72, −0.75 and −0.68, respectively, all p-values < 10−9).
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Figure 7. The CENPA regulon. (A) The transcription factor CENPA (grey square at the center) and its
targets are inferred by the regulatory network analysis. Blue circles indicate targets with a negative
association, while red circles indicate targets with a positive association. (B) The karyogram presents
the distribution of CENPA targets in the chromosomes.

4. Discussion

The TCGA-ACC cohort is the largest ACC cohort, thus being the most suitable for
regulatory network inference. The inferred network had a good balance between positive
and negative targets (Supplementary Figure S2), with 611 regulons comprising more
than 15 positive and 15 negative targets. We described regulons of prognostic value and
provided an overview of the main regulons that control the expression of target genes
and, consequently, the observed phenotypes associated with OS. To achieve this, we made
functional annotations associating the regulon activity with molecular phenotypes and
immunological characteristics.

Here we present 369 regulons associated with OS, where 188 are related to a good
prognosis and 181 to a worse ACC prognosis. Within these regulons, we identified sub-
groups with specific relationships for each set of molecular characteristics and functional
annotations, resulting in four RCs. Regulon cluster 1 and RC3 are more related to the
Steroid Phenotype, while RC2 and RC4 are more related to the molecular Proliferation
Score as defined by Zheng et al. (2016) [7]. As the high Score Proliferation classification was
present in 22 of the 47 HSP cases and only 4 of the 31 LSP cases, we distinguished these
two features, the Steroid and Proliferation classifications, by analyzing them independently,
removing the interference from each other.

RC1 and RC3 are related to Steroid IP, with RC1 associated with LSP and RC3 with HSP.
These two clusters presented opposite profiles, both in activity and functional annotations.
These clusters were at high activity in the immune and proliferation pathways, as previously
shown for the Steroid Phenotype [6]. The strong correlation between RC1 activity and the
pro-immune features (Figure 4, Supplementary Figures S3 and S4), in addition to increased
activity in early tumor stages (Figure 5B), suggests that regulons in the RC1 may play a role
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in activating the immune system against different targets at early phases of ACC, which is
progressively lost by opposing forces of the RC3 regulons in more advanced stages.

We also observed that RC2 and RC4 follow opposite patterns in terms of activity
and characteristics. RC2, with a good prognosis, is related to low scores in the Prolif-
eration IS, while RC4, with a poor prognosis, is related to high scores in this pheno-
type. We identified from the Hallmarks enrichment (Figure 4, Supplementary Figure S3,
Supplementary Table S7) that these prognostic clusters are particularly associated with the
PI3K Akt mTOR and Hedgehog signaling pathways, which may help uncover risk factors
other than immune response and Steroid Phenotype [5,6,60].

Our functional analysis using the MSigDb Hallmarks presented an overall panorama,
providing insights into the biology and function of each group of inferred regulons. How-
ever, the MSigDb Hallmarks represent themes of gene sets rather than pathways [30], which
may result in supposed contradictory findings. For example, the classical P53 pathway
activates DNA repair in response to DNA damage [61,62]. However, in our analysis, the
P53 pathway and the DNA repair Hallmarks presented opposite activities (i.e., low for
P53 and high for DNA repair in both RC3 and RC4). Increased activity of DNA repair is
observed after increased proliferation [62,63], which may explain the observed profiles in
RC3 and RC4. In addition, some mutations, such as in the TP53 gene, may alter the P53
pathway and its DNA repair activity [61,64]. The overall pattern of immune response and
proliferation pathways was coherent with the good and poor prognosis clusters. Specific
functional correlations need further clarification using in vitro and in vivo studies.

The TCGA pan-cancer analysis, including the ACC cohort by Thorsson et al. (2018) [14],
shows that TFs regulating immune modulators tend to be shared between different tissue-
of-origin malignancies, in contrast to somatic mutations. They also highlight some immune-
related TFs shared among the tumors, of which three appeared in our analysis with
association to good prognosis in ACC: FLI1 (Friend Leukemia Virus Integration 1), STAT5A
(Signal Transducer and Activator of Transcription 5A), and IKZF1 (Ikaros Family Zinc
Finger Protein 1). For example, in our results, IKZF1 appeared related to good prognosis
(HR = 0.61 [95% CI, 0.40–0.94], p-value = 2.65 × 10−2), and with the strongest association
with the LSP (Steroid IP score of −1.76, p-value = 1.65 × 10−3) and the highest positive cor-
relation with leukocyte fraction (ρ = 0.83, p-value = 5.47 × 10−18), Macrophage Regulation
(ρ = 0.86, p-value = 1.12 × 10−21), and Lymphocyte Infiltration Signature Score (ρ = 0.83,
p-value = 1.56 × 10−18) among the 369 regulons (Supplementary Table S4). Finding TFs
shared between other tumors and ACC with importance to the immune activation may
help to optimize clinical and research efforts in this rare carcinoma.

In ACC, the NR5A1 TF, an important player in adrenal development and ACC tu-
morigenesis [65,66], generated one of the largest regulons in our analysis with 248 targets.
Consistent with studies on the overexpression of this TF relating to a worse outcome and
increased steroid metabolism [23,24,67], the NR5A1 regulon correlated with low OS in the
multivariate Cox and Kaplan-Meier analyses in the TCGA-ACC cohort, which was also
confirmed in the ENSAT cohort (Figure 6). Interestingly, of the 369 prognostic regulons,
the NR5A1 regulon showed the lowest correlation with the TGF-β response. Although
steroid hormones are well-known immunosuppressors [68,69], the pathways by which
they dampen the immune response in the ACC microenvironment are not completely
understood. Further studies are needed to examine the immune variables directly altered
by NR5A1 overexpression in the context of ACC.

Remarkably, we identified CENPA with interesting correlations with many prolifer-
ative markers. CENPA is a histone H3-like protein involved in centromeric nucleosome
formation [70]. In this study, the CENPA regulon showed the highest association with
the Proliferation signature. In addition, CENPA also appears as the main regulator of
MKI67 (Ki-67), a common prognostic and proliferation marker widely used in cancer
histopathology [22].

CENPA was described as relating to proliferation and prognosis in ovarian cancer [71],
being crucial in prostate cancer growth [72], regulating metabolic reprogramming in colon
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cancer cells leading to its growth [73], and being associated with immune infiltration and
prognosis in lung cancer [74]. Notably, CENPA overexpression was also associated with
proliferation and metastasis in kidney carcinoma by activating the WNT/β-Catenin signal-
ing pathway [75], an important pathway described in the progression of ACC [3]. In our
analysis, CENPA appeared positively enriched in this pathway (Supplementary Table S7).
Further studies may elucidate whether the relationship in renal carcinoma between CENPA
activity and the WNT/β-Catenin signaling pathway may apply to ACC.

The three regulons with the highest negative correlation with CENPA’s activity were
THRB, STAT5B, and ZBTB4, all from RC1 and of good prognosis. Interestingly, ZBTB4
is known to act as a tumor suppressor in various types of cancers (prostate cancer [76];
glioma [77]; colorectal cancer [78]; breast cancer [79]; Ewing sarcoma [80]), but more impor-
tantly, it is being investigated as a promissory anti-cancer druggable target. For example,
Kim et al. (2012) [76] showed that Methyl 2-cyano-3,11-dioxo-18β-olean-1,12-dien-30-oate
(CDODA-Me) could increase ZBTB4 expression in vivo and in vitro, having an antitumori-
genic activity in prostate cancer. Whether the increased expression of ZBTB4 could inhibit
CENPA and its proliferative activity may be an interesting area for future studies.

It should be noted that our study had some limitations. Our selection strategy may
have removed some interesting regulons, which are not listed in the 369 prognostic regulons,
thereby excluding their possible role in the ACC regulatory scenario. For example, FOXM1
is assigned as a prognostic marker in ACC by Yuan et al. (2018) [81]. This TF presented
111 targets, of which only 11 were downregulated, thus not passing through our filter of
at least 15 positive and 15 negative targets. We also used protein-coding genes, excluding
possible important regulators, such as miRNAs or lncRNAs. Despite these limitations,
our results may offer a reference for future studies aiming to understand transcriptional
alterations in ACC, prognostic markers, or therapeutic targets.

5. Conclusions

In conclusion, we have generated a regulatory network for ACC, evaluated the reg-
ulons inferred in concern to OS, clustered them in four RCs, and investigated how they
relate to characteristics associated with worse outcomes like the steroid phenotype and
the immune and proliferation pathways. The list of prognostic regulons, and their charac-
terization, may open new research avenues and relevant questions to be answered in this
hard-to-treat and aggressive malignancy.
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of regulon clusters; Figure S3: Boxplots comparing the Hallmark enrichment scores in the regulon
clusters; Figure S4: Boxplots comparing the Spearman’s correlation between the immune features
described by Thorsson et al. (2018) [14] and the regulon activity in the clusters; Figure S5: A heatmap
showing regulon activity in the ENSAT cohort (n = 44 ACC samples); Figure S6: Targets of the
NR5A1 regulon and the related karyogram; Table S1: ACC regulatory network presenting the mutual
information between the 1605 transcription factors and their targets; Table S2: Number of positive
and negative targets for each regulon; Table S3: Results for the multivariate Cox analysis for overall
survival in the TCGA-ACC and ENSAT cohorts, and PFI in the TCGA-ACC cohort; Table S4: A
master table resuming the data generated for the 369 prognostic regulons; Table S5: Activity of the
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