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Simple Summary: Esophageal squamous cell carcinoma (ESCC) represents roughly 85–90% of all
esophageal carcinoma patients in China. Immunotherapy is used to treat an increasing number of
ESCC patients in clinical practice. This study aims to understand the molecular heterogeneity and
the tumor immune microenvironment of ESCC for designing novel immunotherapies to improve
response and outcomes. We identified two molecular subtypes associated with prognosis, immune-
related pathways, and tumor microenvironment. In an independent cohort of Chinese ESCC patients
treated with immunotherapy, the response rate of the S1 subtype is significantly higher than the
S2 subtype. These findings provide a new perspective on the molecular subtyping for ESCC and
a biological rationale for novel therapeutic intervention in a specific subgroup of ESCC that could
potentially be translated into clinical practice both diagnostically and therapeutically to benefit
ESCC patients.

Abstract: Background: Immunotherapy is recently being used to treat esophageal squamous cell
carcinoma (ESCC); however, response and survival benefits are limited to a subset of patients. A
better understanding of the molecular heterogeneity and tumor immune microenvironment in ESCC
is needed for improving disease management. Methods: Based on the DNA methylation and gene
expression profiles of ESCC patients, we identify molecular subtypes of patients and construct a
predictive model for subtype classification. The clinical value of molecular subtypes for the prediction
of immunotherapy efficacy is assessed in an independent validation cohort of Chinese ESCC patients
who receive immunotherapy. Results: We identify two molecular subtypes of ESCC (S1 and S2)
that are associated with distinct immune-related pathways, tumor microenvironment and clinical
outcomes. Accordingly, S2 subtype patients had a poorer prognosis. A 15-gene expression signature
is developed to classify molecular subtypes with an overall accuracy of 94.7% (89/94, 95% CI:
0.880–0.983). The response rate of immunotherapy is significantly higher in the S1 subtype than
in the S2 subtype patients (68.75% vs. 25%, p = 0.028). Finally, potential target drugs, including
mitoxantrone, are identified for treating patients of the S2 subtype. Conclusions: Our findings
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demonstrated that the identified molecular subtypes constitute a promising prognostic and predictive
biomarker to guide the clinical care of ESCC patients.

Keywords: esophagus squamous cell carcinoma; molecular subtype; prognosis; immune checkpoint
inhibitors; gene expression signature

1. Introduction

Esophageal carcinoma was diagnosed in 604,100 patients and was associated with
approximately 544,076 deaths worldwide in 2020, ranking seventh in incidence and sixth
in mortality [1]. Esophageal carcinoma has two most common histological subtypes,
including esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma
(ESCC). In China, ESCC represents roughly 85–90% of all esophageal carcinoma patients,
with heavy drinking, smoking, high body mass index and a low-fruit diet among the key
risk factors [2,3].

For early-stage ESCC, surgery is the most effective treatment option, but still, 40%
of patients eventually have a relapse [4,5]. ESCC often presents imperceptible clinical
symptoms at an early stage, the majority of patients diagnosed with advanced-stage
ESCC [2]. Currently, standard first-line treatment options for advanced ESCC are lim-
ited, mostly based on fluoropyrimidine and platinum themes [6]. Clinical benefits of
fluoropyrimidine/platinum-based chemotherapy remain limited with a median overall
survival (OS) of less than one year [7,8]. Recently, immune checkpoint inhibitors (ICIs),
particularly programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors,
have shown antitumoral activity in patients with advanced ESCC. Multiple randomized
studies, including CheckMate 648, JUPITER-06, ESCORT-1st and KEYNOTE-590, have
demonstrated that the clinical benefit of ICIs in combination with chemotherapy is superior
to chemotherapy alone in ESCC patients [9–12].

PD-L1 is commonly elevated in tumor cells and is now currently considered a predic-
tive marker for immunotherapy in solid tumors [13]. The PD-L1 expression in tumor cells is
enriched in ESCC patients, with an expression of 1% or greater observed in approximately
30% to 49% of patients [12,14]. Nonetheless, the predictive value of PD-L1 status in ESCC
is still controversial [15]. In the CheckMate 648 study, the PD-L1 status was associated with
the efficacy of ICIs in ESCC patients. For patients with tumor-cell PD-L1 of 1% or higher,
nivolumab plus chemotherapy was found to have a significant progression-free survival
benefit when compared to chemotherapy alone [12]. However, in Chinese ESCC patients,
PD-L1 was not a predictive biomarker for clinical benefit. The ESCORT-1st trial showed
no statistically significant and definite correlation between PD-L1 status and the efficacy
of camrelizumab plus chemotherapy in Chinese ESCC patients [10]. In another Chinese
ESCC cohort, the JUPITER-06 study found that toripalimab-combined chemotherapy is
efficacious irrespective of PD-L1 status [11].

Thus, a better understanding of the molecular heterogeneity and tumor microenviron-
ment in ESCC is essential for designing novel immunotherapies to improve response and
prognosis. Here, we performed multi-omics analyses to integrate gene expression profiles
and DNA methylation profiles of ESCC samples and revealed two distinct molecular sub-
types (subtypes S1 and S2). We found that each molecular subtype was associated with
different gene expression profiling, the composition of tumor-infiltrating immune cells,
as well as clinical outcomes. A machine learning-based gene expression signature was
developed to enable to assign molecular subtype status for individual patients. We further
validated the predictive value of the defined molecular subtypes in an independent cohort
of Chinese ESCC patients, all receiving immunotherapy plus chemotherapy. Beyond the
subtype diagnostic and prognostic model, potential agents specific for subtype S2 were
predicted, which could open up new therapeutic options for improving the treatment
efficacy of ESCC patients.
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2. Materials and Methods
2.1. Acquisition of TCGA Cohort and Multiomics Data Processing

The legacy archive information of clinical and transcriptomic data of 94 ESCC patients
from The Cancer Genome Atlas project (TCGA cohort) were retrieved using R package
TCGAbiolinks (version 2.16.4) from the Genomic Data Commons (GDC) Data platform.
The obtained transcriptomic data in RSEM format were normalized by Z-score and Log2
transformation. DNA methylation data profiled with Illumina Human Methylation 450 mi-
croarray were downloaded from the UCSC Xena browser (https://xenabrowser.net/,
accessed on 21 January 2022). The DNA methylation levels (as beta values) were normal-
ized by Z-score transformation. The gene expression data and DNA methylation data
were normalized using the data.normalization function of the R package CancerSubtypes
(version 1.14.0). Noninformative genes and CpG sites with zero variance cross samples
were excluded.

2.2. Prognostic Features Selection and Survival Analysis

With the TCGA cohort, a univariate Cox proportional hazards regression analysis
was performed to screen genes and CpG sites associated with 94 ESCC patients’ OS status.
The Cox model estimated the hazard ratio (HR), confidence interval and Cox p-value
of each gene and CpG site. HR greater than one indicates that the gene expression or
methylation of the CpG site is positively correlated with patient risk, whereas HR less
than one indicates a negative correlation. The OS of molecular subtypes was evaluated
using Kaplan–Meier curves and log-rank tests. To assess the prognostic utility of molecular
subtypes, a univariant Cox proportional regression model was employed. The association
between molecular subtypes and survival outcomes was calculated by a multivariate Cox
proportional regression model. A significance threshold of 0.05 was applied.

2.3. Similarity Network Fusion and Consensus Clustering Analysis

Previous study suggested that both methylation and expression profiles contribute
significantly and differently to define tumor molecular subtypes [16]. Two data types
provide distinct but complementary signals that improve over single-modality analyses.
Therefore, an integrated approach that allows a unified view of the underlying groups
would be valuable in elucidating heterogeneity within subgroups. Herein, we conducted
the Similar Network Fusion and Consensus Clustering (SNF-CC) analysis on 94 ESCC
samples using both gene expression and DNA methylation data. We combined the matrix
of 1158 genes’ expression data and 24,451 CpGs’ methylation data for integrative analysis.
The ExecuteSNF.CC function implanted in R package CancerSubtypes (version 1.14.0) was
used to run SNF-CC analysis. The following detailed parameters were designed to ensure
a compromise between high stability and low ambiguity: clusterNum = 2~10, K = 20,
alpha = 0.5, t = 20, maxK = 10, pItem = 0.8 and reps = 500. The appropriate number of
clusters was selected by the ‘estimateNumberOfClustersGivenGraph’ function implanted
in R package SNFtool (version 2.3.1) [17]. Moreover, we use a similarity matrix to calculate
the silhouette width, which indicates how closely a specimen is matched to its recognized
subtype when compared to other subtypes.

2.4. Assessment of Tumor-Infiltrating Immune Cells

CIBERSORT is a deconvolution algorithm that can be used for elucidating the tumor-
infiltrating immune cells according to gene expression data [18]. The immune cells included
T cells (T cells CD8, T cells CD4 naive, T cells CD4 memory resting, T cells CD4 memory
activated, T cells follicular helper, T cells regulatory (Tregs) and T cells gamma delta), B
cells (B cells naive, B cells memory, plasma cells), NK cells (NK cells resting, NK cells
activated), monocytes, macrophages M0, M1 and M2, dendritic cells resting, dendritic cells
activated, mast cells resting, mast cells activated, eosinophils and neutrophils [19]. All
analyzed immune cell type fractions for each tumor sample added up to one. Recently,
CIBERSORT has been extended to the ‘absolute mode’ (referred to as ‘CIBERSORT-ABS’),

https://xenabrowser.net/
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which provides a score that can be compared between both samples and cell types [19].
In the current study, CIBERSORT-ABS analysis was conducted to estimate the fraction of
tumor-infiltrating immune cells for each 94 ESCC samples.

2.5. Identification of Differentially Expressed Genes between Molecular Subtypes and Functional
Enrichment Analysis

Differentially expressed gene analysis was conducted using the BRB-ArrayTools soft-
ware (https://brb.nci.nih.gov/BRB-ArrayTools/, accessed on 25 February 2022) [20]. The
univariate “Two-sample t-test” was performed to assess the statistical significance p-value
of gene expression difference. Adjusted p-values for significant genes were computed based
on 10,000 random permutations. Genes with adjusted p-values < 0.001 were considered
to be significantly differentially expressed between two subtypes. Furthermore, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment anal-
ysis of differentially expressed genes were analyzed using the LYNX bioinformatics tool
(https://lynx.cri.uchicago.edu/, accessed on 25 February 2022) [21]. The statistical signifi-
cance p-value was evaluated by hypergeometric test and adjusted by Benjamini-Hochberg
(BH) correction. Biological categories and pathways with BH adjusted p-value ≤ 0.05 were
represented significantly enriched.

2.6. Signature Gene Identification and Classification Model Construction

Feature selection, model training and evaluation were conducted using R package
caret (version 6.0-90) [22]. Using the 94 samples of TCGA cohort, a linear support vector
machine (SVM) model was applied to distinguish different subtypes based on the 1158-gene
expression data. Briefly, recursive feature elimination with a 10-fold cross-validation pro-
cess was used to screen signature genes after data standardization and normalization [23].
The prediction score was calculated by scaling the distance to the SVM classifier boundary
into the range from 0 to 1 using the sigmoid function. To evaluate the diagnostic perfor-
mance of the identified gene signature, the prediction scores estimated by the SVM classifier
and the binary subtype labels were used to calculate the area under the receiver operating
characteristic curve (AUC). The cut-off value of the Youden index (prediction score ≥ 0.5)
was used to categorize patients as belonging to different subtypes.

2.7. Acquisition of Chinese ESCC Patient Samples

To validate the performance of the established model in a clinical setting, we collected
36 Chinese ESCC patients who had received anti-PD-1/PD-L1 therapy in combination
with chemotherapy between January 2018 and December 2020 from The First Affiliated
Hospital, School of Medicine, Zhejiang University. All patients had histologically confirmed
esophageal squamous cell carcinoma and had measurable disease. All tumor samples were
classified based on the American Joint Committee on Cancer (AJCC) tumor-node-metastasis
(TNM) system (7 edition). According to Response Evaluation Criteria in Solid Tumors
(RECIST, version 1.1), imaging studies were used to gauge the tumor response. Patients
were classified as either responder if they had a complete response (CR) or partial response
(PR) or non-responders if they had stable (SD) or progressive disease (PD) [24]. Detailed
clinical information on age, gender, smoke, alcohol, histopathological factors and anti-
tumor treatments was obtained from the medical records. This study was approved by the
Institutional Review Board of The First Affiliated Hospital, School of Medicine, Zhejiang
University (2022-346) in concordance with the Declaration of Helsinki.

2.8. Nucleic Acid Extraction and Gene Expression Profiling

Samples were obtained as formalin-fixed paraffin-embedded (FFPE) tissue and stored
under ordinary temperatures until processed for the purification of nucleic acids. Total
RNAs were isolated according to the instructions using an FFPE Total RNA Extraction Kit
(Canhelp Genomics Co., Ltd., Hangzhou, China). Before constructing the RNA-seq libraries,
total RNAs were processed with DNase I (NEB) to eliminate DNA. The SMART cDNA

https://brb.nci.nih.gov/BRB-ArrayTools/
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synthesis technology (Clontech, San Jose, CA, USA) was used to prepare strand-specific
RNA-seq libraries. The cDNA was pre-amplified and the ribosomal and mitochondrial
cDNA were depleted by CRISPR/Cas9 system. Purified dsDNA underwent an additional
PCR amplification (13 cycles). Qubit (Thermo Fisher Scientific, Pleasanton, CA, USA) and
Qsep100 (BiOptic, New Taipei, Taiwan, China) were used to control the quality of the
libraries before sequencing on the Illumina sequencing platform (Nova) using a 150 bp
paired-end run. Sequencing reads from RNA-seq data were aligned using the spliced read
aligner HISAT2, which was supplied with the Ensembl human genome assembly (Genome
Reference Consortium GRCh38) as the reference genome. The fragments per kilobase of
transcript per million mapped reads (FPKM) were used to calculate gene expression levels.

2.9. Prediction of Immune Checkpoint Blockade Therapy Response and Drug Repurposing

To predict patients’ responses to immunotherapies in the validation cohort of 36 ESCC
patients, we used two immune-related analysis tools applied to samples from the valida-
tion cohort. First, the Tumor Immune Dysfunction and Exclusion algorithm (TIDE) is a
computational method for predicting response of ICIs therapy based on gene expression
profiling [25]. Patients with high TIDE scores indicate increased potential for tumor immune
escape and resistance to immunotherapy. Second, the Immune Cell Abundance Identifier al-
gorithm (ImmuCellAI) is able to estimate the abundance of 24 immune cell types as well as
predict patients’ response to ICIs therapy based on gene expression datasets [26]. The 24 im-
mune cell types consist of 18 T-cell subtypes and 6 other immune cell types (B cell, natural
killer cell, monocyte cell, macrophage cell, neutrophil cell and dendritic cell). Further-
more, we investigated potential small molecule drugs by searching the L1000 Connectivity
Map Resource by “Enrichr” enrichment analysis tool (https://maayanlab.cloud/Enrichr/,
accessed on 18 March 2022) [27].

3. Results
3.1. Integrative Analysis of DNA Methylation and Gene Expression Profiles Reveals Two
Molecular Subtypes of ESCC

The workflow to identify, test and validate molecular subtypes of ESCC is presented
in Figure 1. Paired gene expression and DNA methylation data of 94 ESCC samples
were retrieved from the TCGA database. The sample clinical information, including age,
gender, race, tumor characteristics, radiation treatment and survival status, is presented
in Table 1. For these samples, we first performed the univariate Cox regression analysis
on both gene expression and DNA methylation data. The results revealed that a set of
1158 genes and 24,451 CpGs were significantly related to patients’ OS outcomes (Cox
p-value < 0.05). We then looked into whether integrative data analysis could be used
to divide these ESCC samples into clinically relevant molecular subtypes. We applied
SNF to integrate the prognostic gene expression and DNA methylation data (1158 genes
and 24,451 CpGs related to prognosis), followed by consensus clustering ranging from
2 to 10 groups. The optimal number of clusters was two according to the results of the
‘estimateNumberOfClustersGivenGraph’ function. At k = 2, two distinct subtypes (S1
and S2) were clearly identified with the maximal average silhouette width (Figure 2A).
There were 40 and 54 tumor specimens each for the S1 and S2 subtypes, respectively
(Figure 2B). The clinicopathological characteristics between the S1 and S2 subtypes showed
no significant differences (Table 1). Compared to patients in the S1 subtype, S2 subtype
patients had inferior OS outcomes (Figure 2C). The median OS for the S1 and S2 subtypes
was 45.4 and 18.6 months, respectively (log-rank p-value = 7.63 × 10−7). The univariate Cox
regression analysis showed that the molecular subtypes were significantly associated with
OS (HR = 13.5, Cox p-value = 4.91 × 10−5, Table 2). The multivariate Cox regression analysis
further confirmed that the defined molecular subtypes could be used as a prognostic factor
independent of other clinicopathological parameters (HR = 51.6, Cox p-value = 2.5 × 10−3,
Table 2).

https://maayanlab.cloud/Enrichr/
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Figure 1. Study design.
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Figure 2. Identification of two subtypes using SNF-CC algorithm. (A) Silhouette width plots of
the subtypes for k = 2. (B) Heatmap representation of the sample-to-sample fused network data
sorted by cluster for k = 2. Sample similarity is represented by red (high similar) to blue (less similar)
coloring inside the heatmap. (C) Kaplan–Meier curves comparing overall survival between S1 and
S2 subtypes.
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Table 1. Clinical characteristics of TCGA-ESCC patients.

Characteristics Total Cohort S1 (%) S2 (%) χ2 p-Value

Number of patients 94 40 54
Status

Alive 75 36 (90.0) 39 (72.2)
3.468 0.062Dead 19 4 (10.0) 15 (27.8)

Gender
Male 81 33 (82.5) 48 (88.9)

0.342 0.559Female 13 7 (17.5) 6 (11.1)
Age at diagnosis

Mean 58 58 59
Range 36–90 36–84 36–90

Race
Asian 45 21 (52.5) 24 (44.4)

3.365 0.339
White 41 16 (40.0) 25 (46.3)
Black (black or African American) 5 3 (7.5) 2 (3.7)
NA 3 0 (0.0) 3 (5.6)

Tumor central location
Mid 44 18 (45.0) 26 (48.1)

1.543 0.672
Distal 43 18 (45.0) 25 (46.3)
Proximal 6 3 (7.5) 3 (5.6)
Not specified 1 1 (2.5) 0 (0.0)

Stage
I 6 3 (7.5) 3 (5.6)

5.045 0.283
II 55 27 (67.5) 28 (51.9)
III 27 9 (22.5) 18 (33.3)
IV 4 0 (0.0) 4 (7.4)
NA 2 1 (2.5) 1 (1.8)

Grade
Grade 1 16 11 (27.5) 5 (9.3)

5.806 0.122
Grade 2 48 17 (42.5) 31 (57.4)
Grade 3 21 9 (22.5) 12 (22.2)
Grade X 9 3 (7.5) 6 (11.1)

Alcohol
Yes 68 31 (77.5) 37 (68.5)

1.136 0.567Never 24 8 (20.0) 16 (29.6)
NA 2 1 (2.5) 1 (1.9)

Smoking
Never 32 15 (37.5) 17 (31.5)

0.896 0.826
Current 28 10 (25.0) 18 (33.3)
Reformed ≤ 15 years 21 8 (20.0) 13 (24.1)
Reformed > 15 years 9 4 (10.0) 5 (9.3)
NA 4 3 (7.5) 1 (1.8)

Radiation treatment
Yes 30 14 (35.0) 16 (29.6)

4.140 0.126No 40 20 (50.0) 20 (37.1)
NA 24 6 (15.0) 18 (33.3)

Pharmaceutical treatment
Yes 8 5 (12.5) 3 (5.5)

1.676 0.433No 69 29 (72.5) 40 (74.1)
NA 17 6 (15.0) 11 (20.4)
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Table 2. Cox proportional-hazard regression analysis for different characteristics in ESCC patients.

Characteristics
Univariate Analysis Multivariate Analysis

Hazard
Ratio 95% CI p-Value Hazard

Ratio 95% CI p-Value

Gender
Male Reference
Female 0.14 0.02–1.00 5.01 × 10−2 0.35 0.03–4.00 4.02 × 10−1

Age at diagnosis 1.03 0.99–1.08 1.26 × 10−1 1.03 0.97–1.11 3.07 × 10−1

Race
Asian Reference
White 1.53 0.65–3.63 3.31 × 10−1 1.37 0.45–4.16 5.80 × 10−1

Black (black or African
American) 3.05 0.81–11.44 9.89 × 10−2 0.18 0.01–3.20 2.40 × 10−1

Tumor central location
Mid Reference
Distal 0.81 0.38–1.74 5.92 × 10−1 1.51 0.53–4.28 4.36 × 10−1

Proximal 0 0–Inf 9.98 × 10−1 0 0-Inf 9.98 × 10−1

Stage
I–II Reference
III–IV 2.59 1.23–5.46 1.26 × 10−2 1.25 0.46–3.39 6.59 × 10−1

Histologic grade
Grade 1 Reference
Grade 2 1.84 0.62–5.46 2.71 × 10−1 0.61 0.15–2.47 4.89 × 10−1

Grade 3 0.93 0.23–3.71 9.13 × 10−1 0.24 0.05–1.20 8.24 × 10−2

Alcohol consumption
Never Reference
Yes 2.02 0.7–5.85 1.93 × 10−1 1.57 0.39–6.27 5.2 × 10−1

Tobacco smoking history
Never Reference
Yes 1.51 0.64–3.55 3.46 × 10−1 0.74 0.21–2.62 6.4 × 10−1

Molecular types
Subtype 1 Reference
Subtype 2 13.53 3.85–47.57 4.91 × 10−5 51.60 3.99–667.48 2.5 × 10−3

3.2. Revealing the Relationship between Molecular Subtypes and Tumor Microenvironment

Owing to the prognostic significance of molecular subtypes, we speculated that two
subtypes might be relative to immune activities and tumor microenvironment (TME). We
applied the CIBERSORT ABS algorithm to assess the abundance of 22 distinct immune
cell types for each sample and between two molecular subgroups. As shown in Figure 3A,
the high-risk group (S2 subtype) exhibited increased predicted proportions of regulatory
T cells (Tregs), T cell CD4+ memory resting, T cell follicular helper, macrophages and
activated mast cells (Wilcoxon p-value < 0.01). Previous studies have proved that Tregs
might hasten the development of ESCC, and both Tregs and macrophages were relevant
to poor prognosis in ESCC patients [28–30]. Similarly, it has been reported that high mast
cell density is a predictor of poor survival in ESCC patients [31]. Effector T cells in the
TME are inclined to high expression levels of numerous inhibitory receptors, including
PD-1, Hepatitis A Virus Cellular Receptor 2 (HAVCR2, also known as TIM3), T cell im-
munoreceptor with Ig and ITIM domains (TIGIT) and lymphocyte activating 3 (LAG3),
which are considered to be symptoms of a dysfunctional state, well recognized as T cell
exhaustion [32]. We, therefore, sought to further investigate the relationship between
the molecular subtypes and the mRNA expression levels of multiple inhibitory receptors.
Interestingly, we observed several inhibitory receptors, including CTLA4, LAG3, PDCD1,
HAVCR2, TIGIT and TNFRSF9, were significantly upregulated in patients of the high-risk
group (Two-sample t-test p-value < 0.05, Figure 3B). These findings suggest that poorer
outcomes for the high-risk group (S2 subtype) might be partially caused by the immunosup-
pressive microenvironment and high T cell exhaustion. Because T cells are the direct target
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for several immunotherapies, high T cell exhaustion may also influence the S2 subtype
patients’ response to antitumor immunotherapies.

Figure 3. The distinct immune characteristics between two molecular subtypes in the TCGA cohort.
(A) The predicted proportions of macrophages, activated mast cell, T cell CD4+ memory resting, T
cell follicular helper and regulatory T cells (Tregs) between the S1 and S2 subtypes. (B) The expression
levels of CTLA4, LAG3, PDCD1, HAVCR2, TIGIT and TNFRSF9 genes between the S1 and S2 subtypes.
Wilcoxon rank sum test served as the statistical significance test.

3.3. Identification and Evaluation of a 15-Gene Signature for Subtype Classification

Using BRB-ArrayTools software, we performed differential gene expression analysis
between the S1- and S2-subtype samples. When compared to the S1 subtype, a total of
289 and 16 genes were significantly up- and down-regulated in the S2 subtype, respectively
(Supplementary Table S1). By using the LYNX bioinformatics tool, GO category and KEGG
pathway enrichment analyses were performed to further investigate the potential biological
significances of these differentially expressed genes. Interestingly, GO analysis revealed that
the differentially expressed genes were primarily enriched in immune-related processes,
such as “regulation of immune system process”, “regulation of lymphocyte activation”,
“immune effector process”, “regulation of response to stimulus” and so on (Supplementary
Table S2). In addition, we found that the significant KEGG pathways were also enriched
in immune-related signal pathways, including “Natural killer cell mediated cytotoxicity”,
“Cell adhesion molecules (CAMs)”, “Cytokine-cytokine receptor interaction”, “Antigen
processing and presentation” and so on (Supplementary Table S3).
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We then sought to identify subtype diagnostic signatures, which may enable us
to assign the defined molecular subtypes to individual clinical samples. We used the
expression levels of 1158 prognostic genes in 94 samples as a training set. The Recursive
feature elimination-SVM (RFE-SVM) algorithm was adopted to construct a classification
model (Figure 4A). A 10-fold cross-validation process was repeated 100 times to determine
the best-performing features and hyperparameters. Intriguingly, a linear SVM model
consisting of 15 genes was developed to classify a sample belonging to subtype S1 or S2.
Subsequently, a prediction score indicating the probability of the sample belonging to
subtypes S1 or S2 was calculated by the linear SVM model. Of the 94 samples, the 15-gene
expression signature classified 39 as subtype S1 and 55 as subtype S2. The overall accuracy
reached 94.7% (89/94, 95% CI: 0.880–0.983). The ROC curve further confirmed that the
identified diagnostic signature had a robust accuracy for classifying subtype S1 and S2
(AUC = 0.975, 95% CI: 0.947–1.00, Figure 4B). Among the selected gene panels, 5 were
up-regulated in subtype S1 and 10 were up-regulated in subtype S2 (Supplementary Table
S4). The hierarchical clustering and principal component analysis of the expression levels
of 15 genes are shown in Figure 5. Similar data analysis was also performed with the
DNA methylation data. The classification accuracy of the methylation-based model was
a bit lower compared with the accuracy of the gene expression-based model (93.6% vs.
94.7%). When combining the gene expression data and DNA methylation data together, the
overall accuracy of the hybrid model was not further improved compared with the gene
expression-based model alone.

3.4. Independent Validation of the Predictive Power of Molecular Subtypes for
Immunotherapy Efficacy

We further validated the predictive power of molecular subtypes in an independent
cohort of 36 Chinese ESCC patients who had received PD-1/PD-L1 therapy in combination
with chemotherapy. Detailed demographic, clinical and pathological information for
patients is summarized in Table 3 The 15-gene expression signature was applied to the
36 samples and assigned 16 samples as S1 subtype (44%) and 20 as S2 subtype (56%).
For the S1 subtype, the percentage of patients who reached PR, SD and PD was 68.75%
(11/16), 18.75% (3/16) and 12.5% (2/16), respectively. For the S2 subtype, the percentage
of patients who reached PR, SD and PD was 25.0% (5/20), 55% (11/20) and 20% (4/20),
respectively. Overall, the accuracy of the 15-gene expression signature for the prediction of
immunotherapy efficacy was 72.2% (68.8% sensitivity and 75% specificity). As shown in
Figure 4C, the proportion of S1 subtype patients had a response rate that was nearly more
than triple the proportion of S2 subtype patients (68.75% vs. 25%, Chi-Square p = 0.028).

We then compared the predictive values of a molecular subtype with other im-
munotherapy predictive biomarkers. The ImmuCellAI algorithm was applied to sum-
marize the abundance of 24 immune cell types into an infiltration score and predict the
response of immunotherapy for each sample. The ImmuCellAI predicted 27 patients as
responders and 9 patients as non-responders (Supplementary Table S5). When compared
with the clinical evaluation outcomes, the overall accuracy of ImmuCellAI predictions
was 47.2%, with a sensitivity of 75% for predicting responsive patients and a specificity of
25% for predicting non-responsive patients. The TIDE algorithm applies a combination of
transcriptomic signatures to estimate T cell dysfunction and T cell exclusion scores for pre-
dicting immunotherapy efficacy. TIDE predicted 30 patients as responders and 6 patients
as non-responders (Supplementary Table S5). The overall accuracy of TIDE predictions was
50.0%, with a sensitivity of 87.5% for predicting responsive patients and a specificity of 20%
for predicting non-responsive patients. Unsurprisingly, the waterfall plots showed that no
significant difference in terms of ImmuCellAI-score and TIDE-score was observed between
responder and non-responder groups (Figure 4D). Only the molecular subtype tended
to have greater power for immunotherapy efficacy prediction, as revealed by the higher
prediction score of the 15-gene expression signature in a non-responder group compared to
a responder group (t-test p-value = 0.036, Figure 4D).
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Figure 4. Identification and validation of a 15-gene expression signature. (A) Flow chart of the
15-gene expression signature identification. (B) The ROC curve of the 15-gene expression signature in
the validation set. (C) Response rates between S1 and S2 subtypes. (D) Waterfall plots of prediction
scores of TIDE, ImmuCellAI and 15-gene expression signature across 36 ESCC patients treated with
ICIs. ROC, receiver operating characteristic; AUC, area under the curve; ESCC, esophagus squamous
cell carcinoma; ICIs, immune checkpoint inhibitors.
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Figure 5. (A) Hierarchical clustering analysis of 15 genes in two subtypes. (B) Principal component
analysis of 15 genes between two subtypes.

Table 3. Clinical characteristics of ESCC patients in the validation set.

Characteristics Total S1 (%) S2 (%) χ2 p-Value

Number of patients 36 16 20
Gender

Male 31 14 (87.5) 17 (85.0)
6.390 1.000Female 5 2 (12.5) 3 (15.0)

Age at diagnosis
Median 64.5 63.5 65
Range 47–79 52–79 47–79

Stage
II 8 4 (25.0) 4 (20.0)

4.950 0.084III 12 8 (50.0) 4 (20.0)
IV 16 4 (25.0) 12 (60.0)

Differentiation 1

Well 5 3 (30.0) 2 (16.7)
0.054 0.816Moderately/poorly 17 7 (70.0) 10 (83.3)

Alcohol 2

Yes 16 9 (56.2) 7 (38.9)
0.446 0.504Never 18 7 (43.8) 11 (61.1)

Smoking 3

Never 18 6 (37.5) 12 (66.7)

4.183 0.124
Current 14 8 (50.0) 6 (33.3)
Reformed ≤ 15 years 0 0 (0.0) 0 (0.0)
Reformed > 15 years 2 2(12.5) 0(0.0)

1 The differentiation of 14 patients are not defined. 2 The alcohol status of 2 patients are not available. 3 The
smoking status of 2 patients are not available.

3.5. Drug Prediction for S2 Subtype ESCC Patients

Given the higher risk of tumor progression and lower response rate to immunotherapy,
we sought to find novel treatment options for patients in the S2 subtypes. For the purpose
of drug prediction, the list of 289 genes upregulated in the S2 subtype was retrieved, used
as a query signature, and then mapped to the LINCS L1000 Connectivity Map resource. The
LINCS L1000 project has collected gene expression profiles for thousands of perturbagens
at a variety of time points, doses and cell lines. Comprehensive gene-drug interactions were
profiled and curated in the “LINCS L1000 chem pert category”. The enrichment analysis
of the “LINCS L1000 chem pert” category was performed by the Enrichr bioinformatics
tool. Among the 289 genes, we found numerous drug compounds whose administration
significantly changed the expression level of the selected genes. The top 10 significant
perturbagens for LINCS L1000 Chem Pert up were provided in Figure 6 and Supplementary
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Table S6. Interestingly, mitoxantrone exhibited the fourth, fifth and seventh smallest p-
values among the top 10 most significant perturbagens, suggesting this small molecular
drug might be used and have potential clinical value for treating the S2 subtype of ESCC
patients in addition to conventional therapies.

Figure 6. Bubble plot showing the distribution of the genes for each LINCS L1000 Chem Pert category.
The color of the bubbles represents the L1000 term, and the size of the bubbles indicates the p-value
of the terms.

4. Discussion

ESCC is one of the deadliest cancers with high malignancy and poor outcomes. Al-
though the combination of radiotherapy, surgery and chemotherapy is utilized in ESCC
treatment, ESCC patients experience poor prognoses as before. In clinical practice, im-
munotherapy is being utilized to treat multiple cancer types, including ESCC, but only a
small percentage of ESCC patients respond to immunotherapy [9–12]. It is necessary to
have a better understanding of the intratumoral heterogeneity in cancer progression and
the tumor-immune microenvironment to enhance immunotherapy response and outcomes.
Novel biomarkers, especially immune-related gene signatures, are emerging to determine
the molecular subtypes of cancer. While molecular subtyping has successfully guided
clinical treatment for various cancers, related analysis for ESCC is rare. For instance, cell of
origin subtyping for diffuse large B cell lymphoma and the 21-gene recurrence score for
breast cancer are widely used in prognostic assessment and treatment guidance [33,34].
Therefore, identifying a prognostic and predictive immune-related signature is needed
and is significant for ESCC. Such a signature might aid clinicians in determining the im-
mune status of ESCC patients, serve as a prognostic factor for patient survival and allow
immunotherapeutic efficacy stratification.

In the present study, by performing integrative analysis of gene expression and DNA
methylation data, we identified two clinically and immunologically distinct subgroups of
ESCC tumors. In the TCGA cohort, a significant prognostic impact was observed for the
molecular subtypes (p < 0.005, Figure 2). The S1 subtype had a superior prognosis for OS by
comparing it with the S2 subtype. Multivariate Cox regression analysis further confirmed
the survival difference was independent of age, gender, smoke, alcohol, histopathological
factors and clinical stages. A list of 305 genes differentially expressed between two subtypes
were significantly associated with immune activities and immune regulations, suggesting
the specified molecular subtype is not only associated with malignant cells but also im-
pacted by the TME. Tumor-infiltrating immune cells in the TME are crucial for enhancing
antitumor and immunotherapeutic effects. We applied the CIBERSORT ABS algorithm to
assess the relationship between the molecular subtypes and abundance of 22 distinct im-
mune cells in TME. In the results, the S2 subtype exhibited increased predicted proportions
of Tregs, T cell CD4+ memory resting, T cell follicular helper, macrophages and activated
mast cells compared with the S1 subtype (Wilcoxon p < 0.01). We also found that T cell
exhaustion showed distinct patterns between two subtypes, characterized by significantly
higher expression of immune inhibitory receptors (CTLA4, LAG3, PDCD1, HAVCR2, TIGIT
and TNFRSF9) in the S2 subtype. Recently, Zheng et al. conducted single-cell gene expres-
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sion profiling coupled with T cell receptor sequencing analyses to characterize the immune
cells in seven pairs of ESCC tumors and matched adjacent tissues [35]. Their data showed
that a continual progression of CD8 T cells from pre-exhausted to exhausted T cells. While
exhausted CD4, CD8 T and NK cells constitute the bulk of the proliferative cell components
in the TME, macrophages-Tregs crosstalk contributes to potential immunosuppression in
the TME. Of interest, their findings are highly consistent with our data. It is rational to
speculate that the seven ESCC tumors they analyzed likely belong to our S2 subtype.

These findings were then verified with the clinical investigation. We applied the
molecular subtyping to an independent cohort of Chinese ESCC patients treated with ICIs
therapies. Among 36 patients, 16 patients were assigned the S1 subtype (44%) and 20 the
S2 subtype (56%). Significantly, the molecular subtypes were associated with patients’
responses to immunotherapies. We observed a much higher response rate to immunothera-
pies in Subtype S1 (11 of 16; 68.75%) than in Subtype S2 (5 of 20; 25%) patients (p = 0.028),
suggesting that molecular subtypes exhibited distinct responsive patterns to ICIs therapies.
This makes the defined molecular subtype a valuable predictive marker for immunotherapy
administration. We further evaluated two popular algorithms, ImmuCellAI and TIDE, to
predict patients’ responses to ICIs treatment. When compared with the clinical evaluation
outcomes, the ImmuCellAI algorithm achieved an overall accuracy of 47.2% (75% sensi-
tivity and 25% specificity) and the TIDE algorithm achieved an overall accuracy of 50.0%
(87.5% sensitivity and 20% specificity) for predicting the responsive patients. Although
sensitivity was satisfied, this was at the expense of specificity, suggesting these predictive
markers failed to eliminate a significant proportion of patients who ultimately would not
benefit from the ICIs therapies. Further validation studies of the utility of the defined
molecular subtype in predicting immunotherapeutic efficacy are essential to confirm our
results, which are based on modest-sized cohorts. Ideally, these future studies should be
performed in a prospective manner.

We further seek optimal therapeutic strategies for S2 subtype patients based on the
significantly up-regulated genes in the S2 subtype. Of interest, the candidate drug with the
highest enrichment scores from the mapped compounds is mitoxantrone. Mitoxantrone
(1,4-dihydroxy-5,8-bis[[2-[(2-hydroxyethyl)amino]ethyl]amino]-9,10-anthracenedione) is a
synthesized antineoplastic drug. Its structure is similar to classical anthracyclines, which
have fewer cardiotoxic effects than naturally occurring anthracyclines [36]. As an admitted
anticancer drug, mitoxantrone has been used as a potent chemotherapeutic component
against several cancer types. In multiple comparative trials of advanced breast cancer,
mitoxantrone consistently showed good efficacy and comparable activity relative to doxoru-
bicin, whereas it displayed significantly fewer toxicities [37,38]. Moreover, mitoxantrone
has also displayed particular promise in the treatment of acute nonlymphocytic leukemia,
acute lymphoblastic leukemia and acute myeloid leukemia when used alone or in conjunc-
tion with cytarabine [39–42]. Recently, mitoxantrone has been used to treat patients with
advanced prostate cancer. In about 30% of hormone-refractory prostate cancer patients,
mitoxantrone plus the corticosteroid prednisone shows a palliative benefit, which could
reduce pain and analgesic usage [43,44]. To the best of our knowledge, very little data has
been reported regarding the efficacy of mitoxantrone in esophageal cancer. Hoffmanns et al.
performed a preliminary clinical study, which demonstrated the efficacy of mitoxantrone
in five inoperable, recurrent esophageal carcinoma patients [45]. In each patient, they
observed transitory subjective and objective responses. Meanwhile, the drug was well
tolerated. No local or systemic side effects were investigated. Further in vitro and in vivo
studies evaluating the effects of mitoxantrone in ESCC subtype patients remain a very
interesting topic for future investigation.

The application of molecular biomarkers in ESCC has been reported in succession.
For instance, Wang et al. reported a six-gene signature, and Mao et al. established a
seven-lncRNA signature for survival prediction in ESCC [46,47]. A DNA methylation-
related five-gene signature in ESCC was also identified [48]. Zhang et al. discovered
immune-related subtypes to predict the survival and inflammatory landscapes of ESCC [49].
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Recently, Gao et al. implemented Single-SampleGeneSet Enrichment Analysis to establish
two ESCC subtypes (Immunity-High and Immunity-Low) and suggested the Immunity-
High subtype may respond to immunotherapy because of higher expression of immune
checkpoints, such as PD1, PD-L1, CTLA4 and CD80 [50]. Our work differs from those
of previous studies in several significant aspects. First, we performed SNF-CC analysis
to integrate the gene expression and DNA methylation profiles of ESCC. Cavalli et al.
demonstrated that the information on gene expression and DNA methylation profiles is
complementary [16]. Both datasets contribute significantly and differently in elucidating
the true intertumoral heterogeneity. Therefore, the SNF-CC integrative analysis allows
a unified view of the underlying structures that is valuable in discovering the molecular
subtypes of ESCCs. Recently, Liu et al. performed a large-scale mass spectrometry-based
proteomic and phosphoproteomic study of esophageal cancer and defined two clinically
relevant molecular subtypes [51]. Therefore, future studies further integrating emerging
technologies such as proteomics and histone modifications together with gene expression
and DNA methylation profiling may therefore enable an even more accurate depiction of
the ESCC molecular landscape.

Second, ESCC molecular subtypes will be able to be clinically translated with the
development of subtype-specific diagnostic biomarkers. We employed a machine learning-
based approach to identify and construct a 15-gene diagnostic model that could accurately
classify ESCC subtypes. By doing so, we leveraged the prognostic and predictive power of
molecular subtypes of ESCC into a concise gene expression signature, which may offer clin-
ically important data for prognosis assessment and treatment planning. The panel included
genes previously described to be involved in cytokine signaling in the immune system,
B cell receptor signaling pathway, MAPK signaling pathway (MAPK9), apoptosis, cell
cycle (M1AP, CCDC69), cell migration (TBXT), DNA damage response (UIMC1), regulation
of gene transcription (LIN28B, TSC22D1, TSN), direct p53 effectors (SCN3B), oxidation-
reduction process (PHYHD1) and other processes (GPR137B, TMEM185B, SNHG28, FNDC9,
LINC00847), although some of these genes are involved in multiple additional pathways.
In future work, we aim to translate the 15-gene expression signature into a convenient and
reliable molecular assay that will allow the application to routinely available FFPE biopsy
samples obtained at the time of tumor diagnosis.

Third, the ultimate aim of ESCC molecular subtype recognition is to develop subtype-
specific treatment approaches and translate them into disease management. We believe that
the defined molecular subtypes could have clinical implications for the development of
combination treatment plans and guide the optimal selection of patients for immunotherapy.
For patients with a favorable prognosis and an enhanced local immune phenotype (S1
subtype), immunotherapies may be utilized to boost the preexisting antitumor immunity
of these patients and further improve their outcomes. However, for patients belonging to
the S2 subtype, ICIs therapy alone may be insufficient due to the high density of exhausted
T cells and/or the presence of immune-suppressive mechanisms. For the S2 subtype
patients, the combination of immunotherapy with radiotherapy and chemotherapy, as
well as other emerging treatment options, may be used to amplify or boost the inhibited
immune response.

5. Conclusions

In summary, the present study offers a new perspective on the molecular subtyping of
ESCC and the biological underpinnings of novel therapeutic interventions in a specific sub-
group of ESCC that could potentially be translated into clinical settings both diagnostically
and therapeutically to benefit ESCC patients significantly.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14204970/s1. Table S1: Upregulated and downregulated genes in
the S2 subtype compared to S1 subtype. Table S2: GO category analysis of 305 genes. Table S3: KEGG
pathways analysis of 305 genes. Table S4: List of selected 15 genes and related subtype. Table S5:
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Immunotherapy efficacy prediction of TIDE and ImmuCellAI. Table S6: Top 10 significant p-values
and q-values for LINCS L1000 Chem Pert up.

Author Contributions: Y.Z., H.Y. and Q.X. designed the study. Y.Z., Q.G., X.S. and C.X. provided the
specimens and collected clinical information. Y.S. and Y.W. performed the experiments. Y.S. and S.W.
analyzed all data. Q.X., Y.S. and S.W. wrote the initial manuscript draft. S.H., H.Y., B.Y., N.X. and Y.Z.
critically revised the manuscript and gave valuable insight to the study concept. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Youth Program, National Natural Science Foundation of
China (82102183) and the National Natural Science Foundation of China (82103261 and 81501965).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of The First Affiliated Hospital, School
of Medicine, Zhejiang University (2022-346).

Informed Consent Statement: Written informed consent has been obtained from the patients to
publish this paper.

Data Availability Statement: The datasets generated and/or analyzed during the current study are
available in the National Genomics Data Center repository (https://ngdc.cncb.ac.cn/, accessed on
13 May 2022). Accession: HRA002386.

Acknowledgments: The authors thank the patients for their willingness to cooperate with our study.

Conflicts of Interest: Author Q.X., Y.S., S.W. and Y.W. were employed by the company Canhelp
Genomics. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. He, Y.; Liang, D.; Du, L.; Guo, T.; Liu, Y.; Sun, X.; Wang, N.; Zhang, M.; Wei, K.; Shan, B.; et al. Clinical characteristics and survival
of 5283 esophageal cancer patients: A multicenter study from eighteen hospitals across six regions in China. Cancer Commun.
2020, 40, 531–544. [CrossRef] [PubMed]

3. Yang, S.; Lin, S.; Li, N.; Deng, Y.; Wang, M.; Xiang, D.; Xiang, G.; Wang, S.; Ye, X.; Zheng, Y.; et al. Burden, trends, and risk factors
of esophageal cancer in China from 1990 to 2017: An up-to-date overview and comparison with those in Japan and South Korea.
J. Hematol. Oncol. 2020, 13, 146. [CrossRef] [PubMed]

4. Lu, J.; Tao, H.; Song, D.; Chen, C. Recurrence risk model for esophageal cancer after radical surgery. Chin. J. Cancer Res. 2013, 25,
549–555.

5. Guo, X.-F.; Mao, T.; Gu, Z.-T.; Ji, C.-Y.; Fang, W.-T.; Chen, W.-H. Clinical study on postoperative recurrence in patients with pN0
esophageal squamous cell carcinoma. J. Cardiothorac. Surg. 2014, 9, 150–157. [CrossRef]

6. Liu, Y.; Ren, Z.; Yuan, L.; Xu, S.; Yao, Z.; Qiao, L.; Li, K. Paclitaxel plus cisplatin vs. 5-fluorouracil plus cisplatin as first-line
treatment for patients with advanced squamous cell esophageal cancer. Am. J. Cancer Res. 2016, 6, 2345–2350.

7. Lee, S.J.; Kim, S.; Kim, M.; Lee, J.; Park, Y.H.; Im, Y.-H.; Park, S.H. Capecitabine in combination with either cisplatin or weekly
paclitaxel as a first-line treatment for metastatic esophageal squamous cell carcinoma: A randomized phase II study. BMC Cancer
2015, 15, 693–697. [CrossRef]

8. Moehler, M.; Maderer, A.; Thuss-Patience, P.C.; Brenner, B.; Meiler, J.; Ettrich, T.J.; Hofheinz, R.-D.; Al-Batran, S.E.; Vogel, A.;
Mueller, L.; et al. Cisplatin and 5-fluorouracil with or without epidermal growth factor receptor inhibition panitumumab for
patients with non-resectable, advanced or metastatic oesophageal squamous cell cancer: A prospective, open-label, randomised
phase III AIO/EORTC trial (POWER). Ann. Oncol. 2020, 31, 228–235.

9. Sun, J.-M.; Shen, L.; Shah, M.A.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. KEYNOTE-590
Investigators Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal
cancer (KEYNOTE-590): A randomised, placebo-controlled, phase 3 study. Lancet 2021, 398, 759–771. [CrossRef]

10. Luo, H.; Lu, J.; Bai, Y.; Mao, T.; Wang, J.; Fan, Q.; Zhang, Y.; Zhao, K.; Chen, Z.; Gao, S.; et al. ESCORT—1st Investigators Effect
of Camrelizumab vs. Placebo Added to Chemotherapy on Survival and Progression-Free Survival in Patients with Advanced
or Metastatic Esophageal Squamous Cell Carcinoma: The ESCORT-1st Randomized Clinical Trial. JAMA 2021, 326, 916–925.
[CrossRef]

11. Wang, Z.-X.; Cui, C.; Yao, J.; Zhang, Y.; Li, M.; Feng, J.; Yang, S.; Fan, Y.; Shi, J.; Zhang, X.; et al. Toripalimab plus chemotherapy in
treatment-naïve, advanced esophageal squamous cell carcinoma (JUPITER-06): A multi-center phase 3 trial. Cancer Cell 2022, 40,
277–288.e3. [CrossRef]

https://ngdc.cncb.ac.cn/
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1002/cac2.12087
http://www.ncbi.nlm.nih.gov/pubmed/32845581
http://doi.org/10.1186/s13045-020-00981-4
http://www.ncbi.nlm.nih.gov/pubmed/33138852
http://doi.org/10.1186/s13019-014-0150-4
http://doi.org/10.1186/s12885-015-1716-9
http://doi.org/10.1016/S0140-6736(21)01234-4
http://doi.org/10.1001/jama.2021.12836
http://doi.org/10.1016/j.ccell.2022.02.007


Cancers 2022, 14, 4970 18 of 19

12. Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.-H.; Adenis, A.; et al. CheckMate
648 Trial Investigators Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med.
2022, 386, 449–462. [CrossRef]

13. Paver, E.C.; Cooper, W.A.; Colebatch, A.J.; Ferguson, P.M.; Hill, S.K.; Lum, T.; Shin, J.-S.; O’Toole, S.; Anderson, L.;
Scolyer, R.A.; et al. Programmed death ligand-1 (PD-L1) as a predictive marker for immunotherapy in solid tumours: A guide to
immunohistochemistry implementation and interpretation. Pathology 2021, 53, 141–156. [CrossRef]

14. Rong, L.; Liu, Y.; Hui, Z.; Zhao, Z.; Zhang, Y.; Wang, B.; Yuan, Y.; Li, W.; Guo, L.; Ying, J.; et al. PD-L1 expression and its
clinicopathological correlation in advanced esophageal squamous cell carcinoma in a Chinese population. Diagn. Pathol. 2019, 14,
6–10. [CrossRef]

15. Yang, H.; Wang, K.; Wang, T.; Li, M.; Li, B.; Li, S.; Yuan, L. The Combination Options and Predictive Biomarkers of PD-1/PD-L1
Inhibitors in Esophageal Cancer. Front. Oncol. 2020, 10, 300. [CrossRef]

16. Cavalli, F.M.G.; Remke, M.; Rampasek, L.; Peacock, J.; Shih, D.J.H.; Luu, B.; Garzia, L.; Torchia, J.; Nor, C.; Morrissy, A.S.; et al.
Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2017, 31, 737–754.e6. [CrossRef]

17. Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity network fusion for
aggregating data types on a genomic scale. Nat. Methods 2014, 11, 333–337. [CrossRef]

18. Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration
of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [CrossRef]

19. Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling Tumor Infiltrating Immune Cells with CIBERSORT.
Methods Mol. Biol. 2018, 1711, 243–259.

20. Simon, R.; Lam, A.; Li, M.-C.; Ngan, M.; Menenzes, S.; Zhao, Y. Analysis of Gene Expression Data Using BRB-Array Tools. Cancer
Inform. 2007, 3, 11–17. [CrossRef]

21. Sulakhe, D.; Balasubramanian, S.; Xie, B.; Feng, B.; Taylor, A.; Wang, S.; Berrocal, E.; Dave, U.; Xu, J.; Börnigen, D.; et al. Lynx:
A database and knowledge extraction engine for integrative medicine. Nucleic Acids Res. 2014, 42, D1007–D1012. [CrossRef]
[PubMed]

22. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
23. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn.

2002, 46, 389–422. [CrossRef]
24. Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.;

Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009,
45, 228–247. [CrossRef]

25. Fu, J.; Li, K.; Zhang, W.; Wan, C.; Zhang, J.; Jiang, P.; Liu, X.S. Large-scale public data reuse to model immunotherapy response
and resistance. Genome Med. 2020, 12, 21–28. [CrossRef]

26. Miao, Y.-R.; Zhang, Q.; Lei, Q.; Luo, M.; Xie, G.-Y.; Wang, H.; Guo, A.-Y. ImmuCellAI: A Unique Method for Comprehensive
T-Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy. Adv. Sci. 2020, 7, 1902880. [CrossRef]

27. Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative
HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [CrossRef]

28. Yue, Y.; Lian, J.; Wang, T.; Luo, C.; Yuan, Y.; Qin, G.; Zhang, B.; Zhang, Y. Interleukin-33-nuclear factor-κB-CCL2 signaling
pathway promotes progression of esophageal squamous cell carcinoma by directing regulatory T cells. Cancer Sci. 2020, 111,
795–806. [CrossRef]

29. Nabeki, B.; Ishigami, S.; Uchikado, Y.; Sasaki, K.; Kita, Y.; Okumura, H.; Arigami, T.; Kijima, Y.; Kurahara, H.; Maemura, K.; et al.
Interleukin-32 expression and Treg infiltration in esophageal squamous cell carcinoma. Anticancer Res. 2015, 35, 2941–2947.

30. Yao, J.; Duan, L.; Huang, X.; Liu, J.; Fan, X.; Xiao, Z.; Yan, R.; Liu, H.; An, G.; Hu, B.; et al. Development and Validation of a
Prognostic Gene Signature Correlated with M2 Macrophage Infiltration in Esophageal Squamous Cell Carcinoma. Front. Oncol.
2021, 11, 769727. [CrossRef]

31. Fakhrjou, A.; Niroumand-Oscoei, S.M.; Somi, M.H.; Ghojazadeh, M.; Naghashi, S.; Samankan, S. Prognostic value of tumor-
infiltrating mast cells in outcome of patients with esophagus squamous cell carcinoma. J. Gastrointest. Cancer 2014, 45, 48–53.
[CrossRef]

32. Zheng, L.; Qin, S.; Si, W.; Wang, A.; Xing, B.; Gao, R.; Ren, X.; Wang, L.; Wu, X.; Zhang, J.; et al. Pan-cancer single-cell landscape of
tumor-infiltrating T cells. Science 2021, 374, 6474. [CrossRef]

33. Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J.K.; et al.
Lymphoma/Leukemia Molecular Profiling Project Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 2008, 359,
2313–2323.

34. Sparano, J.A.; Gray, R.J.; Makower, D.F.; Pritchard, K.I.; Albain, K.S.; Hayes, D.F.; Geyer, C.E.; Dees, E.C.; Goetz, M.P.;
Olson, J.A.; et al. Adjuvant Chemotherapy Guided by a 21-Gene Expression Assay in Breast Cancer. N. Engl. J. Med. 2018,
379, 111–121. [CrossRef]

35. Zheng, Y.; Chen, Z.; Han, Y.; Han, L.; Zou, X.; Zhou, B.; Hu, R.; Hao, J.; Bai, S.; Xiao, H.; et al. Immune suppressive landscape in
the human esophageal squamous cell carcinoma microenvironment. Nat. Commun. 2020, 11, 6268. [CrossRef]

36. Evison, B.J.; Sleebs, B.E.; Watson, K.G.; Phillips, D.R.; Cutts, S.M. Mitoxantrone, More Than Just Another Topoisomerase II Poison.
Med. Res. Rev. 2016, 36, 248–299. [CrossRef]

http://doi.org/10.1056/NEJMoa2111380
http://doi.org/10.1016/j.pathol.2020.10.007
http://doi.org/10.1186/s13000-019-0778-4
http://doi.org/10.3389/fonc.2020.00300
http://doi.org/10.1016/j.ccell.2017.05.005
http://doi.org/10.1038/nmeth.2810
http://doi.org/10.1038/nmeth.3337
http://doi.org/10.1177/117693510700300022
http://doi.org/10.1093/nar/gkt1166
http://www.ncbi.nlm.nih.gov/pubmed/24270788
http://doi.org/10.18637/jss.v028.i05
http://doi.org/10.1023/A:1012487302797
http://doi.org/10.1016/j.ejca.2008.10.026
http://doi.org/10.1186/s13073-020-0721-z
http://doi.org/10.1002/advs.201902880
http://doi.org/10.1186/1471-2105-14-128
http://doi.org/10.1111/cas.14293
http://doi.org/10.3389/fonc.2021.769727
http://doi.org/10.1007/s12029-013-9550-2
http://doi.org/10.1126/science.abe6474
http://doi.org/10.1056/NEJMoa1804710
http://doi.org/10.1038/s41467-020-20019-0
http://doi.org/10.1002/med.21364


Cancers 2022, 14, 4970 19 of 19

37. Allegra, J.C.; Woodcock, T.; Woolf, S.; Henderson, I.C.; Bryan, S.; Reisman, A.; Dukart, G. A randomized trial comparing
mitoxantrone with doxorubicin in patients with stage IV breast cancer. Investig. New Drugs 1985, 3, 153–161. [CrossRef]

38. Henderson, I.C.; Allegra, J.C.; Woodcock, T.; Wolff, S.; Bryan, S.; Cartwright, K.; Dukart, G.; Henry, D. Randomized clinical trial
comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. Am. Soc. Clin. Oncol.
Educ. Book 1989, 7, 560–571. [CrossRef]

39. Faulds, D.; Balfour, J.A.; Chrisp, P.; Langtry, H.D. Mitoxantrone. A review of its pharmacodynamic and pharmacokinetic
properties, and therapeutic potential in the chemotherapy of cancer. Drugs 1991, 41, 400–449. [CrossRef]

40. Dunn, C.J.; Goa, K.L. Mitoxantrone: A review of its pharmacological properties and use in acute nonlymphoblastic leukaemia.
Drugs Aging 1996, 9, 122–147. [CrossRef]

41. Weiss, M.A. Treatment of adult patients with relapsed or refractory acute lymphoblastic leukemia (ALL). Leukemia 1997, 11
(Suppl. S4), S28–S30.

42. Tallman, M.S.; Gilliland, D.G.; Rowe, J.M. Drug therapy for acute myeloid leukemia. Blood 2005, 106, 1154–1163. [CrossRef]
43. Kantoff, P.W.; Halabi, S.; Conaway, M.; Picus, J.; Kirshner, J.; Hars, V.; Trump, D.; Winer, E.P.; Vogelzang, N.J. Hydrocortisone with

or without mitoxantrone in men with hormone-refractory prostate cancer: Results of the cancer and leukemia group B 9182 study.
Am. Soc. Clin. Oncol. Educ. Book 1999, 17, 2506–2513. [CrossRef]

44. Tannock, I.F.; Osoba, D.; Stockler, M.R.; Ernst, D.S.; Neville, A.J.; Moore, M.J.; Armitage, G.R.; Wilson, J.J.; Venner, P.M.; Coppin,
C.M.; et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate
cancer: A Canadian randomized trial with palliative end points. Am. Soc. Clin. Oncol. Educ. Book 1996, 14, 1756–1764. [CrossRef]

45. Hoffmanns, H.W.; Altmeier, G. Local application of mitoxantrone in inoperable, stenosing esophageal carcinoma. Preliminary
report. Onkologie 1986, 9, 27–29.

46. Wang, L.; Wei, Q.; Zhang, M.; Chen, L.; Li, Z.; Zhou, C.; He, M.; Wei, M.; Zhao, L. Identification of the prognostic value of immune
gene signature and infiltrating immune cells for esophageal cancer patients. Int. Immunopharmacol. 2020, 87, 106795. [CrossRef]

47. Mao, Y.; Fu, Z.; Zhang, Y.; Dong, L.; Zhang, Y.; Zhang, Q.; Li, X.; Liu, J. A seven-lncRNA signature predicts overall survival in
esophageal squamous cell carcinoma. Sci. Rep. 2018, 8, 8823. [CrossRef]

48. Lu, T.; Chen, D.; Wang, Y.; Sun, X.; Li, S.; Miao, S.; Wo, Y.; Dong, Y.; Leng, X.; Du, W.; et al. Identification of DNA methylation-
driven genes in esophageal squamous cell carcinoma: A study based on The Cancer Genome Atlas. Cancer Cell Int. 2019, 19, 52.
[CrossRef]

49. Zhang, C.; Luo, Y.; Zhang, Z.; Zhang, Z.; Zhang, G.; Wang, F.; Che, Y.; Fang, L.; Zhang, Y.; Sun, N.; et al. Identification of a
Prognostic Immune Signature for Esophageal Squamous Cell Carcinoma to Predict Survival and Inflammatory Landscapes. Front.
Cell Dev. Biol. 2020, 8, 580005. [CrossRef]

50. Gao, J.; Tang, T.; Zhang, B.; Li, G. A Prognostic Signature Based on Immunogenomic Profiling Offers Guidance for Esophageal
Squamous Cell Cancer Treatment. Front. Oncol. 2021, 11, 603634. [CrossRef] [PubMed]

51. Liu, W.; Xie, L.; He, Y.-H.; Wu, Z.-Y.; Liu, L.-X.; Bai, X.-F.; Deng, D.-X.; Xu, X.-E.; Liao, L.-D.; Lin, W.; et al. Large-scale and
high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic
targeting. Nat. Commun. 2021, 12, 4961. [CrossRef] [PubMed]

http://doi.org/10.1007/BF00174163
http://doi.org/10.1200/JCO.1989.7.5.560
http://doi.org/10.2165/00003495-199141030-00007
http://doi.org/10.2165/00002512-199609020-00007
http://doi.org/10.1182/blood-2005-01-0178
http://doi.org/10.1200/JCO.1999.17.8.2506
http://doi.org/10.1200/JCO.1996.14.6.1756
http://doi.org/10.1016/j.intimp.2020.106795
http://doi.org/10.1038/s41598-018-27307-2
http://doi.org/10.1186/s12935-019-0770-9
http://doi.org/10.3389/fcell.2020.580005
http://doi.org/10.3389/fonc.2021.603634
http://www.ncbi.nlm.nih.gov/pubmed/33718151
http://doi.org/10.1038/s41467-021-25202-5
http://www.ncbi.nlm.nih.gov/pubmed/34400640

	Introduction 
	Materials and Methods 
	Acquisition of TCGA Cohort and Multiomics Data Processing 
	Prognostic Features Selection and Survival Analysis 
	Similarity Network Fusion and Consensus Clustering Analysis 
	Assessment of Tumor-Infiltrating Immune Cells 
	Identification of Differentially Expressed Genes between Molecular Subtypes and Functional Enrichment Analysis 
	Signature Gene Identification and Classification Model Construction 
	Acquisition of Chinese ESCC Patient Samples 
	Nucleic Acid Extraction and Gene Expression Profiling 
	Prediction of Immune Checkpoint Blockade Therapy Response and Drug Repurposing 

	Results 
	Integrative Analysis of DNA Methylation and Gene Expression Profiles Reveals Two Molecular Subtypes of ESCC 
	Revealing the Relationship between Molecular Subtypes and Tumor Microenvironment 
	Identification and Evaluation of a 15-Gene Signature for Subtype Classification 
	Independent Validation of the Predictive Power of Molecular Subtypes for Immunotherapy Efficacy 
	Drug Prediction for S2 Subtype ESCC Patients 

	Discussion 
	Conclusions 
	References

