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Simple Summary: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common and aggressive
subtype of renal cancer. Abnormal fatty acid metabolism (FAM) is reported to be strongly associated
with multiple malignancies, yet there is limited research in ccRCC. In this manuscript, we reported
the significant role of abnormal FAM in predicting the prognosis of ccRCC. Three independent clinical
cohorts (TCGA, EMTAB and our clinical cohorts with prognostic profiles and gene expression data,
including RNA-seq, microarray and RT-qPCR) were applied as training and two external validation
cohorts. As a result, we successfully constructed and validated a novel FAM-related gene signature
(FAMGS) and nomogram for the overall survival of patients with ccRCC. Additionally, our study
further elucidated the potential immune relevance and molecular mechanisms of abnormal FAM
and the signature. In conclusion, the novel FAMGS constructed in this study offered a promising
prognostic tool in clinic and potential therapeutic targets for ccRCC patients.

Abstract: This study aims to explore the role of abnormal fatty acid metabolism (FAM) in ccRCC
and construct a novel fatty acid metabolism-related gene signature (FAMGS) for prognosis. Three
independent ccRCC cohorts, including The Cancer Genome Atlas, E-MTAB-1980 and our clinical
cohort (including RNA-seq, microarray and RT-qPCR data), were applied as training and two
independent validation cohorts. Firstly, FAM levels were found to be significantly decreased in
ccRCC and correlated with degrees of malignancy, confirming the pivotal role of FAM in ccRCC.
Applying the least absolute shrinkage and selection operator cox regression, we established a novel
FAMGS for overall survival (OS). The FAMGS divided patients into low or high-risk groups in
the training cohort and were successfully validated in both the EMTAB and our clinical validation
cohorts. Additionally, the FAMGS serves as an independent risk factor for OS of ccRCC. Results of the
immune cell abundance identifier (ImmuCellAI) algorithm and gene set variation analysis (GSVA)
revealed that patients in the high-risk group have comprehensively impaired metabolism, including
lipids, amino acids and tricarboxylic acid cycle-related pathways and a more immunosuppressive
tumor microenvironment. In conclusion, our study constructed and validated a novel FAMGS, which
may improve the risk stratification optimization and personalized management of ccRCC.

Keywords: clear cell renal cell carcinoma; fatty acid metabolism; gene signature; prognosis; nomogram

1. Introduction

Renal cell carcinoma (RCC) is the second-leading cause of death in urological tumors,
with approximately 5% of all new cases among adult men and 3% of all new cases among
adult women annually [1]. Clear Cell Renal Cell Carcinoma (ccRCC) is the most prevalent
and aggressive subtype of RCC and is responsible for the majority of kidney-cancer-related
deaths [2]. Unfortunately, in the absence of useful biomarkers, ccRCC has a poor prognosis
at an advanced stage. Therefore, accurate and early prognostic biomarkers are essential for
ccRCC patients and in great need in clinical practice.
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Fatty acids are required for cell membrane formation, energy storage, signaling
molecule production and further biological processes. Increased fatty acid metabolism
(FAM) could be a response to the high metabolic demand of cancer cells, which is closely
connected to multiple cellular processes, for example, cell growth, cell transformation, tu-
mor development and disease progression [3]. Energy metabolism reprogramming, which
can sustain the production of ATP and macromolecules needed for cell growth, division and
survival, is a common feature in cancer cells [4]. In addition to glucose metabolism, dysreg-
ulation of FAM has also become better understood and appreciated in recent years [5]. An
increase in lipid storage was found in the tumor tissues of patients with ccRCC compared
with normal kidney tissues. Horiguchi et al. found that fatty acid synthase levels are
correlated with tumor aggressiveness and poor patient survival in RCC [6]. Wettersten
et al. found that levels of enzymes involved in β-oxidation, the critical step in fatty acid
metabolism, decreased in ccRCC tissues [7]. However, the regulatory mechanism of the
FAM pathway in ccRCC has not been elucidated. Consequently, identifying fatty acid
metabolism-related gene signatures (FAMGS) might open up new avenues for exploring
the pathology and treatment of ccRCC.

Our study elucidated the role of FAM in patients with ccRCC and combined different
methods to establish the FAMGS for prognosis. Importantly, we successfully validated the
prognostic value of the FAMGS in an independent ccRCC cohort and our clinical cohort.
Finally, using the FAMGS and clinicopathological features, a nomogram was constructed
and verified to enhance prediction power.

2. Materials and Methods
2.1. Data source and Processing

The RNA-sequencing data of 530 ccRCC patients with available follow-up data
obtained from the TCGA database [8] was used as the training cohort. E-MTAB-1980
(EMTAB) cohort (with 101 samples with expression profiles) obtained from the ArrayEx-
press database [9] served as validation cohorts. In our clinical cohort, the following criteria
were used to select 21 pairs of ccRCC and adjacent normal samples: (1) patients with
surgical treatment at the Beijing Chao-Yang Hospital; (2) patients without any neoadjuvant
chemotherapy and other special treatments; (3) patients who underwent initial surgery in
our hospital. Two pathologists identified the final diagnosis of the samples. Additionally,
the microarray dataset GSE73731 accessed from GEO [10] served as another independent
cohort for the subgroup analysis. The clinical characteristics of the TCGA, EMTAB and our
clinical cohorts are shown in Table 1. This study was carried out in accordance with The
Code of Ethics of the World Medical Association (Declaration of Helsinki). All patients
signed the informed consent and this study was approved by the ethics committees of
Beijing Chao-Yang Hospital.

2.2. Candidate Selection and Signature Establishment

We extracted the FAM-related gene set (HALLMARK_FATTY_ACID_METABOLISM)
which contains 158 genes from Molecular Signatures Database v7.4 [11]. Single-sample
gene set enrichment analysis (ssGSEA) was employed to calculate the performance of the
FAM-related gene set in the training cohort. Univariate Cox proportional hazard regression
analysis was applied to recognize prognostic genes with a p-value < 0.05 in the training
cohort. Then least absolute shrinkage and selection operator (LASSO) Cox regression
analysis was used to further establish the optimal FAM gene signature [12]. The risk
score formula of the signature is derived by using the LASSO regression coefficient and

normalized expression level of genes: the FAMGS risk score =
n
∑
i

Coefficient(mRNAi)×

Expression(mRNAi).
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Table 1. Clinical characteristics of patients in the TCGA training, EMTAB validation cohorts and
Chao-Yang clinical validation cohort.

Characteristics TCGA Training Cohort EMTAB Validation Cohort Chao-Yang Validation Cohort

Number of Patients 530 101 21

Overall Survival (IQR) 1181.5 (520, 1912) 1530 (1020, 2430) 848 (712,916)

Overall Survival Status (%) Survival 357 (67.36) 78 (77.23) 17 (80.95%)
Deceased 173 (32.64) 23 (22.77) 4 (19.05%)

Age (IQR) 61 (52, 70) 64 (56, 72) 67 (62.5, 72.5)

Gender (%) Male 344 (64.91) 77 (76.24) 16 (76.19%)
Female 186 (35.09) 24 (23.76) 5 (23.81%)

Grade (%) G1 14 (2.64) 13 (12.87) 2 (9.52%)
G2 227 (42.83) 59 (58.42) 14 (57.14%)
G3 207 (39.06) 22 (21.78) 5 (23.81%)
G4 74 (13.96) 5 (4.95) 0 (0.00)

Not Available 8 (1.51) 2 (1.98) 0 (0.00)

AJCC Stage (%) Stage I 265 (50.00) 66 (65.35) 13 (61.91%)
Stage II 57 (10.75) 10 (9.90) 4 (19.05%)
Stage III 123 (23.21) 13 (12.87) 2 (9.52%)
Stage IV 82 (15.47) 12 (11.88) 2 (9.52%)

Not Available 3 (0.57) 0 (0.00) 0 (0.00)

Abbreviations: TCGA: The Cancer Genome Atlas; EMTAB: E-MTAB-1980; IQR: Interquartile range; AJCC:
American Joint Committee on Cancer.

2.3. Quantitative RT-qPCR and Risk Score Calculations of Clinical Cohort

The HiScript III RT SuperMix Kit (R32301, Vazyme, Nanjing, China) was used to
reverse transcribe total RNA from clinical samples into cDNA. The expression levels of
RNAs were determined using the AceQ qPCR SYBR Green Master Mix (R323-01, Vazyme,
China) by ABI 7500 (Applied Biosystems, Foster City, CA, USA). Based on the 2−∆∆Ct
method, expression levels of target RNAs were normalized to GAPDH. Table S1 lists the
used primers. Risk scores for each ccRCC patient in the clinical cohort were calculated
according to the previous studies using non-normalized cycle threshold (Ct) values based
on the formula: mean Ct (ACAA2, ACADL, ALDH3A2, CPT2, HGPD, PTPRG)—mean Ct
(CPOX, ENO2, ENO3, TDO2) [13,14].

2.4. Bioinformatics and Statistical Analyses

R software (version 4.1.2) was used to process data. We divided patients in the TCGA
training cohort into low and high-risk groups according to the optimal cutoff risk score mea-
sured by the R package “survival” [15] and the remaining validation cohorts were assigned
by the group proportion of the training cohort. Univariate and multivariate cox analysis
was conducted with the R package “survival”. The R package “survival ROC” was used to
evaluate the prognostic role of Kaplan–Meier (K-M) curves and time-dependent receiver
operating characteristic (tROC) [16]. LASSO analysis was conducted using the R package
“glmnet” [17]. Additionally, stratification analysis was conducted based on the clinical
characteristics of different subgroups. An annotated gene set file (msigdb.v7.4.entrez.gmt)
was selected to perform GSVA, which used the FAMGS risk scores to explore potential
biological functions [18]. A web tool Immune cell abundance identifier (ImmuCellAI)
was used to analyze the tumor immune status of each patient [19]. The R “pheatmap”
package was used to generate a heatmap plot [20]. The R package ‘rms’ was applied to plot
nomograms and calibration curves [21]. Decision curve analysis (DCA) was conducted to
measure the clinical benefits with the R package ‘ggDCA’. Categorical variables were pre-
sented as counts (percentages), while continuous variables were presented as median with
interquartile range (IQR). Kruskal−Wallis test was used to analyze differences between
multiple groups and Wilcoxon test was used to compare differences between two groups.
This study considered the p-value < 0.05 as statistically significant.
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3. Results
3.1. Study Design and Cohort Characteristics

In the beginning, we confirmed the hypothesis that the FAM served as the major risk
factor for OS in ccRCC patients. Next, Univariate Cox and LASSO Cox regression were
combined to establish the FAMGS for overall survival. Subsequently, we evaluated the
prognostic value of the FAMGS in the validation cohort. Additionally, stratification analysis
of clinical characteristics was performed in the training cohort and two independent
validation cohorts. Functional enrichment and immune cell analysis were employed to
further explore the signature’s potential molecular mechanisms and immune relevance.
Subsequently, we summarized a speculative mechanism diagram. Finally, we construct
and validate the nomogram based on the FAMGS in the TCGA training and EMTAB,
respectively. A flow diagram is shown in Figure 1.

Clinical baseline characteristics of patients in the TCGA training cohort, EMTAB
validation cohort and Chao-Yang clinical validation cohort are described in Table 1. The
median (IQR) OS in the TCGA training cohort was 1181 (520–1912) days, which had
357 (67.36%) deaths. The E-MTAB-1980 validation cohort contained 101 patients, who had
a median (IQR) OS of 1530 (1020–2430) days and 23 (22.77%) deaths. In the Chao-Yang
validation cohort, the median (IQR) OS was 848 (712–916) days, with 18 (85.71%) deaths.
Additionally, we collected clinicopathological data for all patients, which included age,
gender, tumor grade and AJCC stage.
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Figure 1. Flow diagram of study design. FAM: Fatty acid metabolism; TCGA: The Cancer Genome
Atlas; KIRC: Kidney renal clear cell carcinoma; LASSO: Least absolute shrinkage and selection opera-
tor; FAMGS: Fatty acid metabolism gene signature; GSVA: Gene set variation analysis; ImmunCellAI:
Immune cell abundance identifier; qRT-PCR: Real-time Quantitative Polymerase Chain Reaction.
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3.2. Fatty Acid Metabolism Confirmed as a Crucial Factor in ccRCC

The ssGSEA enrichment score of the FAM pathway was calculated for 530 cancer
tissues and 72 cancer-adjacent normal tissues in the TCGA training cohort. We observed
a lower FAM enrichment score in both paired and non-paired tumors compared with
normal kidney tissues (p < 0.0001; Figure 2A,B). Then, we used the median cutoff of the
ssGSEA enrichment score to subdivide tumor samples into two groups. The beeswarm
plots indicated that patients with different clinical characteristics, including gender, tumor
grade, AJCC stage and status, had strikingly different ssGSEA enrichment scores (p < 0.001;
Figure 2D–F), but they were not substantially different with different ages (p = 0.33; Figure
S1A). More remarkably, The K–M survival analysis showed that the lower FAM enrichment
score has a pooled hazard ratio (HR; 95% confidence interval (CI)) = 2.41 (1.76–3.29) and
p < 0.0001 (Figure 2C).
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Figure 2. Clinical correlation of fatty acid metabolism pathway in patients with ccRCC. Beeswarm
plots comparing the ssGSEA scores in all ccRCC samples and all adjacent normal tissues (A),
paired ccRCC samples and adjacent normal tissues (B) and different tumor grades (D), AJCC stage
(E) and gender (F). (C) Kaplan–Meier analysis showed that patients with lower ssGSEA scores of
fatty acid metabolism exhibited worse OS. ccRCC: Clear Cell Renal Cell Carcinoma; ssGSEA: Single-
sample gene set enrichment analysis; AJCC: American Joint Committee on Cancer; HR: Hazard ratio;
CI: Confidence interval. p values less than 0.05 were considered to be statistically significant. ns: No
significance, *** p < 0.001.
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3.3. Construction and Validation of the FAMGS for Prognosis

According to the univariate Cox analysis, 88 candidate prognostic FAM-related genes
were identified (p < 0.05; Table S2). Afterward, Univariate Cox proportional hazard
regression analysis was employed to screen prognostic genes for ccRCC. According to
the results of ten-fold cross-validation, we chose the model of λ value of 0.0501 to over-
come overfitting (Figure S1B,C). Finally, the LASSO Cox algorithm was used to integrate
10 genes to establish the FAMGS. Each patient’s risk score is calculated as follows: risk
score = (−0.2219 × expression level of CPT2) + (−0.0416 × expression level of ACADL) +
(−0.2152 × expression level of PTPRG) + (0.0897 × expression level of CPOX) + (0.0429 ×
expression level of *TDO2) + (−0.0428× expression level of *HPGD) + (0.0104× expression
level of *ENO2) + (0.0944 × expression level of *ENO3) + (−0.0298 × expression level of
*ALDH3A2) + (−0.0536 × expression level of *ACAA2). LASSO coefficients for FAMGS
are shown in Figure S1D. Following the optimal cutoff value calculated from the FAMGS
risk scores, patients were categorized into low- and high-risk groups.

The K–M survival plots demonstrated that patients with higher FAMGS risk scores ex-
hibited worse OS, DSS and PFS in the TCGA training cohort (HR = 3.82, 95% CI = 2.82–5.18,
p < 0.0001; HR = 5.97, 95% CI = 3.63–9.81, p < 0.0001; HR = 3.52, 95% CI = 2.48–4.99,
p < 0.0001; Figure 3A,E,G). Then, the prognostic value of FAMGS for OS was validated in
the EMTAB validation cohorts (HR = 4.27, 95% CI = 1.81–10.07, p = 0.00032; Figure 3C)
and Chao-Yang clinical cohort (HR = 10.54, 95% CI = 1.067–104.2, p = 0.044; Figure 3J). To
investigate differential expression in tumor tissues and normal tissues, real-time quantita-
tive polymerase chain reaction (RT-qPCR) was used to analyze the expression of the ten
FAMGS genes between 21 pairs of ccRCC and adjacent normal samples. Clinical samples
showed significant downregulation of the following genes: CPT2, ACAA2, HPGD and
ALDH3A2, while the expression of ENO2, TDO2, CPOX, ACADL and PTPRG was sig-
nificantly upregulated in the tumor tissue (p < 0.01; Figure 3I). The tROC analysis further
validated the prognostic value of the FAMGS (Figure 3B,F,H). The areas under the curve
(AUCs) of the FAMGS were evaluated and then results showed 1-year (AUC = 0.763), 3-year
(AUC = 0.736) and 5-year (AUC = 0.749) OS, 1-year (AUC = 0.788), 3-year (AUC = 0.775)
and 5-year (AUC = 0.807) DSS and 1-year (AUC = 0.712), 3-year (AUC = 0.736) and 5-year
(AUC = 0.766) PFS in the TCGA training cohort. Moreover, we verified the AUCs or
1-year (AUC = 0.716), 3-year (AUC = 0.744) and 5-year (AUC = 0.739) OS in the EMTAB
cohort(Figure 3D). The above results all demonstrated the high-prediction accuracy of our
signature, while the K–M survival analysis (HR = 1.09, 95% CI = 0.39–3.07, p = 0.87; Figure
S1E) and tROC analysis (1-year AUC = 0.571, 3-year AUC = 0.511, 5-year AUC = 0.505;
Figure S1F) of DFI in the TCGA training cohort showed no difference. To determine the
prognostic value of FAMGS, a stratification analysis was conducted. According to four
clinical characteristics (age, sex, tumor grade and AJCC stage), patients in the TCGA cohort,
EMTAB cohort and GSE73731 cohort were divided into two groups. Among three cohorts,
the FAMGS maintained a highly consistent predictive capacity for ccRCC patients in sub-
groups of tumor grade, AJCC stage and gender (Figure 3K–M and Figure S2B–D,F–H).
Meanwhile, the results of the age subgroup did not show a significant difference in the
TCGA cohort (p = 0.27; Figure S2A) and EMTAB cohort (p = 0.7; Figure S2E).
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Figure 3. Construction and validation of the fatty acid metabolism-related prognostic signature.
Kaplan–Meier survival curves of OS (A), DSS (E) and PFS (G) in the TCGA cohort. 1- (B), 3- (F) and
5- (H) year-dependent ROC curves of OS, DSS and PFS in the TCGA cohort. Kaplan–Meier survival
curves of OS in the EMTAB (C) and clinical cohort (J). (D) 1-, 3- and 5-year-dependent ROC curves
of OS in EMTAB cohort. (I) The barplot exhibits the expressions of ten genes in FAMGS evaluated
by RT-qPCR in 21 ccRCC samples and paired adjacent normal samples. Beeswarm plots comparing
the FAMGS risk score in different tumor grades (K), AJCC stage (L) and gender (M). OS: Overall
survival; DSS: Disease-specific survival; PFS: Progression-free survival; ccRCC: Clear Cell Renal Cell
Carcinoma; TCGA: The Cancer Genome Atlas; EMTAB: E-MTAB-1980; ROC: Receiver operating
characteristic; FAMGS: Fatty acid metabolism gene signature; RT-qPCR: Real-time Quantitative
Polymerase Chain Reaction; HR: Hazard ratio; CI: Confidence interval. p values less than 0.05 were
considered to be statistically significant. ns: No significance, ** p < 0.01, *** p < 0.001.

3.4. Comprehensive Enrichment Analyses and Immune Infiltration

Firstly, GSVA was conducted to better understand biological processes that may affect
the prognosis. Correlation analyses were performed between GSVA scores of each pathway
and genes of the FAMGS in the TCGA training cohort and EMTAB validation cohort
(Table S3). A high level of FAMGS risk scores and risk gene expressions significantly
correlated with metabolism inhibition and cell proliferation (Figure 4A), which indicated
a poor prognosis in high-risk patients. Additionally, in the validation set, similar results
were investigated (Figure 4C).

The infiltration levels of 24 immune cells were obtained from the ImmuCellAI and
then correlation analysis was performed for utilizing infiltration scores, risk scores and
gene expressions. The results of the TCGA training and the EMTAB validation datasets
both showed that risk scores had a significantly positive correlation with regulatory T cells
and exhausted T cells, while being inversely correlated with major immune effector cells,
including B cells, neutrophils and central memory T Cells (Table S4; Figure 4B,D). Based on
the observations above, high-risk scores indicated the immunosuppressive status of the
tumor environment.
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Figure 5 summarizes and demonstrates a speculative mechanism diagram containing
FAM-related aberrant metabolic alterations and immune cell clustering. Risk genes, includ-
ing ENO2, ENO3, TDO2 and CPOX, have high expression levels in the high FAM-related
gene score groups and promoted glycolysis, acetyl-CoA synthesis and heme biosynthetic,
respectively, which led to an increase in fatty acid synthesis and immunosuppressive mi-
croenvironment in tumor tissue. In contrast, protective genes, including ACAA2, ACADL,
CPT2, ALDH3A2 and HPGD, have high expression levels in the low FAM-related gene
score group. The decrease in fatty acid is due to an increased degradation in the a-oxidation,
B-oxidation and Lipoxygenase pathways.
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ImmuCellAI: Immune cell abundance identifier; FAMGS: Fatty acid metabolism gene signature;
TCGA: The Cancer Genome Atlas; EMTAB: E-MTAB-1980.
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pathway of fatty acid synthesis and decomposition.
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3.5. Establishment and Verification of a Nomogram Model According to the FAMGS

To investigate prognostic factors for OS in TCGA cohorts, univariate and multivari-
ate Cox regression analyses were conducted in the TCGA training cohort. As a result,
the FAMGS and three clinical factors (including age, AJCC stage and tumor grade) were
screened out to be independent predictors of prognosis (p < 0.05) for ccRCC (Table 2). By
integrating independent clinical prognostic factors, we constructed a nomogram allowing
ccRCC patients to assess 1-, 3- and 5-year OS (Figure 6A). As demonstrated by receiver
operating characteristic (ROC) curves, the nomogram was more accurate in predicting than
either single factor (Figure 6B). After that, tROC of 1-, 3- and 5-year OS also indicated an
improved prediction (Figure S3A–C). Moreover, the calibration plots for one, three and
five years of OS demonstrated excellent consistency between observations and predic-
tions (Figure 6C–E). Finally, DCA curves suggested that our nomogram has wide clinical
practicability (Figure S3G–I).

Table 2. Univariate and multivariate Cox regression analyses for predicting OS in the TCGA training
cohort and EMTAB validation cohort.

TCGA Training Cohort

Univariate Multivariate

Factors HR (95% CI) p Value HR (95% CI) p Value

FAMGS Risk
Score 3.729 (2.752–5.053) <0.001 2.647 (1.911–3.673) <0.001

Age 1.825 (1.333–2.5) <0.001 1.624 (1.18–2.234) 0.003
Gender 0.941 (0.691–1.283) 0.7
Grade G1 + G2 1 G1 + G2 1

G3 1.947 (1.339–2.832) <0.001 G3 1.222 (0.823–1.813) 0.321
G4 5.235 (3.521–7.787) <0.001 G4 1.616 (1.01–2.587) 0.045

AJCC Stage Stage I + II 1 Stage I + II 1
Stage III 2.51 (1.713–3.678) <0.001 Stage III 1.75 (1.172–2.611) 0.006
Stage IV 6.192 (4.341–8.833) <0.001 Stage IV 3.618 (2.403–5.448) <0.001

EMTAB Validation Cohort

Univariate Multivariate

Factors HR (95% CI) p value HR (95% CI) p value

FAMGS Risk
Score 4.419 (1.872–10.431) <0.001 2.964 (1.073–8.184) 0.036

Age 2.262 (0.891–5.747) 0.086 1.717 (0.604–4.823) 0.313
Gender 0.441 (0.131–1.486) 0.187
Grade G1 + G2 1 G1 + G2 1

G3 3.015 (1.247–7.288) 0.014 G3 1.193 (0.425–3.347) 0.738
G4 12.378 (3.222–47.557) <0.001 G4 3.277 (0.699–15.351) 0.132

AJCC Stage Stage I + II 1 Stage I + II 1
Stage III 5.651 (1.985–16.081) 0.001 Stage III 3.284 (1.084–9.948) 0.036
Stage IV 9.298 (3.551–24.341) <0.001 Stage IV 6.246 (2.116–18.438) <0.001

Abbreviations: OS: Overall survival; TCGA: The Cancer Genome Atlas; EMTAB: E-MTAB-1980; HR: Hazard ratio;
CI: Confidence interval. FAMGS: Fatty acid metabolism gene signature; AJCC: American Joint Committee on
Cancer. p values less than 0.05 were considered to be statistically significant.

Then, the EMTAB cohort was utilized to verify the predictive ability of the nomogram.
Univariate and multivariate Cox regression analyses were carried out to validate the
FAMGS’s predictive power. The results showed that the signature could independently
predict the prognosis of patients with ccRCC. Based on the fixed nomogram formula of the
training cohort, we calculated scores of the signature and each prognostic predictor. The
ROC revealed the developed model retains good predictive performance (Figure 6F). In
addition, a good agreement is found in the results of 1-, 3- and 5-year calibration curves
for OS (Figure 6G–I). Furthermore, tROC of 1-, 3- and 5-year OS (Figure S3D–F) and DCA
curves of predicted 1-, 3- and 5-year OS (Figure S3J–L) indicated the nomogram model
showed a better performance than other independent predictors.
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Figure 6. Construction and validation of a nomogram of OS for ccRCC patients. (A) Nomogram for
predicting the probability of 1-, 3- and 5-year OS for ccRCC patients. Time-dependent ROC curves
of the nomogram, the FAMGS, age, tumor grade and AJCC stage in the TCGA training cohort (B)
and EMTAB validation cohort (F). Calibration plots of the nomogram for predicting the probability
of OS at 1, 3 and 5 years in the TCGA training cohort (C–E) and EMTAB validation cohort (G–I).
OS: Overall survival; ROC: Receiver operating characteristic; FAMGS: Fatty acid metabolism gene
signature; AJCC: American Joint Committee on Cancer.

4. Discussion

ccRCC is one of the most common subtypes of RCC, with high mortality and unsat-
isfied prognosis [2]. Radiation tests and renal biopsy are the most common methods of
diagnosing and surgical resection is the main therapeutic method for ccRCC patients [22].
However, the curative effect and prognosis of terminal ccRCC patients are poor. A deeper
understanding of molecular mechanisms and biomarkers is urgent to explore individ-
ualized treatment improvements and prognostic evaluation. In ccRCC, increased lipid
uptake, storage and lipogenesis contribute to rapid tumor growth via metabolic reprogram-
ming [23]. As a metabolic disease, ccRCC is generally associated with reprogramming of the
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tricarboxylic acid cycle, glucose metabolism and fatty acid metabolism [7]. Due to intensive
metabolic reprogramming studies, the role of fatty acid metabolism in malignancies has
been increasingly recognized over recent years [4,24–26]. To date, there have been several
fatty acid metabolism gene signatures developed for different types of cancer, such as
hepatocellular carcinoma [27], colorectal cancer [28], glioma [29] and ccRCC [30]. However,
the signature in ccRCC lacks effective performance evaluation, such as the concordance
index or the AUC and external validation of the prognostic value. Although some evidence
from previous studies demonstrated increased lipid storage and utilization of lipids for
membrane synthesis in ccRCC, the specific role of FAM in terms of prognosis or functional
contribution in ccRCC still needs further study and confirmation [2,7,31]. In order to
address the above problems, our study aims to apply multiple cohorts to investigate and
verify the prognostic value of FAM in ccRCC.

This study confirmed FAM as an important predictor of survival among ccRCC
patients. We establish a FAMGS of great prognostic value for OS utilizing TCGA RNA-
sequencing data. The FAMGS prognostic value was then verified via microarray and
qRT-PCR data, including an independent cohort and our clinical cohort, which showed
consistent and significant results. The three datasets used as training and validation cohorts
were based on three different platforms and methods (TCGA: RNA-seq, E-MTAB-1980: mi-
croarray and Chaoyang clinical cohort: qRT-PCR), which robustly confirmed the reliability
of our novel gene signature and indicated a strong translational potential. When used across
different platforms in sub-group analysis, the FAMGS still showed a significant ability to
discriminate against high-risk patients, indicating that it can be used in pooled populations.
Moreover, after integrating traditional clinical characteristics in ccRCC patients, FAMGS
remained an independent prognostic factor in both the training and validation cohorts,
processing superior prognostic value to the clinical characteristics, including tumor grade
and age. The FAMGS and other clinical characteristics were integrated into a nomogram
model to develop predictive ability. The nomogram has proven to be an accurate prognostic
indicator for ccRCC patients based on ROC curve analysis and DCA curves. In addition, a
good calibration of the OS nomogram was observed in the validation set.

The ccRCC patients had higher levels of fatty acylcarnitines and carnitine than normal
controls; nevertheless, the specific mechanisms of different lipid metabolism, including
fatty acid metabolism, have not yet been systematically investigated [7]. According to the
robust results, we summarized a speculative mechanism diagram combining potential
molecular mechanisms and immune relevance of the FAMGS. The results revealed that
tumor tissue with high FMAGS had metabolic disorders, including FAM, amino acid
metabolism, heme metabolism and glucose metabolism. We found the increased expression
of glycolysis-related genes (ENO2 and ENO3), heme biosynthetic-related genes (CPOX)
and amino acid catabolism-related genes (TOD2) all contributed to the increased fatty acid
production. In contrast, expression of normal lipid catabolism pathway-related genes,
including α-Oxidation gene (ALDH3A2), β-Oxidation genes (ACAA2, ACADL and CPT2)
and lipoxygenase-related gene (HPGD), was found to increase, which led to a reduction
in fatty acid accumulation. Previous studies that showed metabolic alterations modify
the tumor microenvironment meet our results [32]. At the single-cell level, the FAM
hallmark pathway of ccRCC was found significantly repressed compared with normal
renal tubular epithelium [33]. We found accumulation of Exhausted T cells, Natural and
Induced T Regulatory Cells in the tumor tissue with high FAMGS. It is worth noting
that Lim et al. found that lipid metabolism, especially fatty acid, is one of the most
enriched pathways in intratumoral Treg cells [34]. In the TME, with increasing FAMGS in
the tumor tissue, immune cells undergo a switch from an immune-active to an immune-
suppressive state. Above all, this contributes to the poor prognostic outcome for the patients.
Moreover, the diagram contains information about the sites of action of relevant biomarkers
in fatty acid metabolism. The detailed mechanism of some biomarkers was investigated
in other cancer types. For example, CPT2, a protective biomarker in our study, was
found in E2F1 and E2F2-mediated repression of CPT2, providing a lipid-rich environment
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required for hepatocarcinogenesis [35]. ENO3 inhibits the growth and metastasis of HCC
through Wnt/β-Catenin signaling pathway but serves as a risk biomarker in our model [36].
In addition, TDO2 has the function of transducing the tumor immune escape via the
IDO1/TDO2–KYN–AhR signaling pathway [37]. The FAMGS contains five biomarkers
that were studied in ccRCC, but others have never been examined [38–41]. In summary,
further investigation of the biological functions associated with the FAMGS is required
in ccRCC.

However, our research still has some limitations. Firstly, as this is a retrospective study,
the FAMGS needs to be further validated in prospective trials to confirm its prognostic
robustness and clinical usefulness. Secondly, it is necessary to carry out more experiments
to clarify the biological functions of fatty acid metabolism underlying the FAMGS.

5. Conclusions

In conclusion, we established and verified the FAMGS and nomograms for prognosis
in ccRCC, which could improve risk stratification and guide FAM-targeted treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/cancers14194943/s1, Table S1: Sequences of primers used for real-time quantitative polymerase
chain reaction. Table S2: Identified 88 candidate genes by Univariate Cox regression analyses for
predicting OS in the TCGA training cohort. Table S3: Correlation analysis with GSVA scores, FAMGS
risk scores and gene expressions in the TCGA training cohort and EMTAB validation cohort. Table S4:
Correlation analysis with ImmuCellAI infiltration scores, FAMGS risk scores and gene expressions in
the TCGA training cohort and EMTAB validation cohort. Figure S1: (A) Beeswarm plots comparing
the ssGSEA scores in age. (B,C) The LASSO Cox regression model was used to identify the most
robust markers, with an optimal\lambda value of 0.0617. (D) Distribution of LASSO coefficients of the
FAM-related gene signature. (E) Kaplan–Meier survival curves of DFI in TCGA cohort. (F) 1-, 3- and
5-year-dependent ROC curves of DFI in TCGA cohort. ssGSEA: Single-sample gene set enrichment
analysis; LASSO: Least absolute shrinkage and selection operator; FAM: Fatty acid metabolism; DFI:
Disease-free interval; TCGA: The Cancer Genome Atlas; ROC: Receiver operating characteristic;
HR: Hazard ratio; CI: Confidence interval. p values less than 0.05 were considered to be statistically
significant. Figure S2: Stratification analysis of FAMGS. Beeswarm plots comparing the FAMGS
risk score in the age in the TCGA training cohort (A) and EMTAB validation cohort (E). Beeswarm
plots comparing the FAMGS risk score in different tumor grades, AJCC stage and gender in the
TCGA training cohort (B–D) and EMTAB validation cohort (F–H). FAMGS: Fatty acid metabolism
gene signature; TCGA: The Cancer Genome Atlas; EMTAB: E-MTAB-1980; AJCC: American Joint
Committee on Cancer. p values less than 0.05 were considered to be statistically significant. ns: no
significance, * p < 0.05, *** p < 0.001. Figure S3: ROC and DCA curves. ROC curves of 1-, 3- and
5-year OS predicted by the nomogram in the TCGA training cohort (A–C) and EMTAB validation
cohort (D–F). DCA plots of the nomogram, the FAMGS and clinical characteristics for predicting
the probability of OS at 1, 3 and 5 years in the TCGA training cohort (G–I) and EMTAB validation
cohort (J–L). ROC: Receiver operating characteristic; DCA: Decision curve analysis; TCGA: The
Cancer Genome Atlas; EMTAB: E-MTAB-1980; FAMGS: Fatty acid metabolism gene signature; OS:
Overall survival.
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