
Citation: Mokhtaridoost, M.; Maass,

P.G.; Gönen, M. Identifying Tissue-

and Cohort-Specific RNA Regulatory

Modules in Cancer Cells Using

Multitask Learning. Cancers 2022, 14,

4939. https://doi.org/10.3390/

cancers14194939

Academic Editor: Ulf Leser

Received: 11 August 2022

Accepted: 6 October 2022

Published: 9 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Identifying Tissue- and Cohort-Specific RNA Regulatory
Modules in Cancer Cells Using Multitask Learning
Milad Mokhtaridoost 1,2, Philipp G. Maass 1,3 and Mehmet Gönen 4,5,*

1 Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
2 Graduate School of Sciences and Engineering, Koç University, İstanbul 34450, Turkey
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Simple Summary: Understanding the underlying biological mechanisms of primary tumors is
crucial for predicting how tumors respond to therapies and exploring accurate treatment strategies.
miRNA–mRNA interactions have a major effect on many biological processes that are important
in the formation and progression of cancer. In this study, we introduced a computational pipeline
to extract tissue- and cohort-specific miRNA–mRNA regulatory modules of multiple cancer types
from the same origin using miRNA and mRNA expression profiles of primary tumors. Our model
identified regulatory modules of underlying cancer types (i.e., cohort-specific) and shared regulatory
modules between cohorts (i.e., tissue-specific).

Abstract: MicroRNA (miRNA) alterations significantly impact the formation and progression of
human cancers. miRNAs interact with messenger RNAs (mRNAs) to facilitate degradation or
translational repression. Thus, identifying miRNA–mRNA regulatory modules in cohorts of primary
tumor tissues are fundamental for understanding the biology of tumor heterogeneity and precise
diagnosis and treatment. We established a multitask learning sparse regularized factor regression
(MSRFR) method to determine key tissue- and cohort-specific miRNA–mRNA regulatory modules
from expression profiles of tumors. MSRFR simultaneously models the sparse relationship between
miRNAs and mRNAs and extracts tissue- and cohort-specific miRNA–mRNA regulatory modules
separately. We tested the model’s ability to determine cohort-specific regulatory modules of multiple
cancer cohorts from the same tissue and their underlying tissue-specific regulatory modules by
extracting similarities between cancer cohorts (i.e., blood, kidney, and lung). We also detected tissue-
specific and cohort-specific signatures in the corresponding regulatory modules by comparing our
findings from various other tissues. We show that MSRFR effectively determines cancer-related
miRNAs in cohort-specific regulatory modules, distinguishes tissue- and cohort-specific regulatory
modules from each other, and extracts tissue-specific information from different cohorts of disease-
related tissue. Our findings indicate that the MSRFR model can support current efforts in precision
medicine to define tumor-specific miRNA–mRNA signatures.

Keywords: cancer; machine learning; miRNAs; mRNAs; multitask learning; RNA regulation

1. Introduction

Cancer is one of the most leading causes of death globally. Despite the remarkable
improvements in cancer therapies, cancer patients remain undiagnosed or mistakenly
diagnosed in many cases. This mainly happens when cancer therapy cannot match a
specific disease due to insufficient knowledge of molecular mechanisms [1]. There is a
consensus among cancer biologists that distinct cancers have various molecular subgroups
with unique biological characteristics, which is believed as one of the main reasons for
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drug resistance and less effectiveness treatments [2,3]. Hence, understanding the molecular
mechanism of primary tumor cells and tissues is fundamental to infer the biology of human
tumors and predict how the tumors respond to therapies [4].

MicroRNAs (miRNAs) are important non-protein-coding RNA regulators of gene
expression by directly or indirectly targeting messenger RNAs (mRNAs), and they are
also known to be involved in biological processes that impact the formation, progression
and treatment of various cancer types [5]. However, the functional roles of miRNAs and
their combinatorial effects as regulatory molecules in cellular processes remain elusive [6,7].
Thus, extracting information of miRNA and mRNA relationships from primary tumors
informs about the molecular pathogenesis in the underlying tissue and can provide a
deeper understanding of the biological mechanisms of miRNAs in cancer. This helps to
provide new strategies for further development and application in clinical settings in terms
of early diagnosis and better treatment [8].

The evidence presented thus far, besides similarities in the molecular mechanism of
different cancers from the same tissue and the highly correlated nature of genomic data [9],
clearly demonstrates the need for establishing accurate computational methods to interpret
the regulation of mRNAs by miRNAs in similar tumor tissues.

1.1. Previous Studies

Identifying interactions between miRNAs and mRNAs has been improved in recent
years due to several proposed computational techniques [10–12]. Especially, probabilistic
methods [13–15] led to reported miRNA–mRNA interactions in cancer. Recently, casual
links between miRNAs and mRNAs have been reported [16,17]. However, these studies
ignore the effectual common assumption of mRNA regulation by other mRNAs [18]. Hence,
we formulated a regulatory module as a small subset of mRNAs correlated with each other,
regulated directly or indirectly by a small subset of correlated miRNAs.

Previously, we established a single-task algorithm to identify miRNA–mRNA reg-
ulatory modules in cancer [19]. Here, we apply multitask learning [20,21], to improve
the model’s predictive performance and to extract biological relevant modules. Multitask
learning improves the detection power to identify biomarkers for small sample sizes (i.e.,
various cancer cohorts) by inferring information from abundant data. Multitask learning
has been applied successfully to explore the commonalities between cancer-related tasks
and corresponding treatment. Examples of such studies include cancer drug susceptibil-
ity prediction [22], cancer survival analysis [23], cancer staging [24], diagnosis-specific
genotype–phenotype identification [25], embedding multi-omics data and predicting phe-
notype profile [26], and identification of cancer drug response biomarkers [27].

In this project, we established a multitask learning sparse regularized factor regression
(MSRFR) model to increase the power and consistency of biomarker identification by
targeting sample size disparity in different cancer cohorts of the underlying tissue.

1.2. Our Contributions

MSRFR efficiently extracts tissue- and cohort-specific miRNA–mRNA regulatory
modules of multiple cancer types from a similar origin (i.e., same tissue) using miRNA
and mRNA expression profiles of primary tumors. MSRFR was able to simultaneously
estimate the effective number of modules for each cancer type (cohort-specific) and for
shared modules (i.e., tissue-specific overlaps between cohorts of the same origin), and
extract regulatory modules by imposing a low-rank structure and by grouping correlated
mechanisms. We applied our algorithm on three sets of cancer cohorts of the same tissue
(i.e., blood, kidney, and lung).

The predictive performance of MSRFR and the percentage of regulatory modules
with significant survival analysis identified by MSRFR was significantly higher than the
single-task algorithm [19], which indicates the higher ability of the proposed model in
extracting regulatory modules with biological importance. Moreover, the significance of
tissue-specific regulatory modules in survival analysis suggests that our algorithm was
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able to identify miRNA–mRNA regulatory modules with biological functions in both, the
underlying cohorts and the associated tissue. Enrichment analysis and literature validation
of identified regulatory modules by MSRFR showed disease-associated and tissue-specific
miRNA–mRNA signatures. MSRFR can also be customized to be applied on more than
two cohorts from the same origin.

2. Materials and Methods
2.1. Datasets

In this work, we developed a predictive model that incorporates expression profiles
and clinical phenotypes of multiple cancer cohorts into a unified learning framework to
identify tissue- and cohort-specific miRNA–mRNA regulatory modules. We used Lym-
phoid neoplasm diffuse large B-cell lymphoma (DLBC), Acute myeloid leukemia (LAML),
Kidney renal clear cell carcinoma (KIRC), Kidney renal papillary cell carcinoma (KIRP),
Lung adenocarcinoma (LUAD), and Lung squamous cell carcinoma (LUSC) data sets which
are publicly available by the Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov,
accessed on 10 August 2022). TCGA provided genomic characterizations (including miRNA
and mRNA expression profiles) and clinical information of cancer patients. Our computa-
tional analyses did not include metastatic tumors since their underlying biology is generally
different to primary tumors.

For each cohort, we extracted “BCGSC miRNA Profiling” files for miRNA expression
profiles of all primary tumors, which are preprocessed using the unified miRNASeq pipeline
of TCGA. We also extracted “HTSeq-FPKM” files for mRNA expression profiles of all
primary tumors, which are preprocessed using the unified RNASeq pipeline of TCGA.
Since not all patients had both miRNA and mRNA expression profiles, we eliminated
samples with only one available expression profile and used the primary tumors only with
matched miRNA and mRNA expression profiles. We filtered miRNAs and mRNAs by
discarding those that were expressed in less than 50% of the tumors from the analysis.
Moreover, we considered matched miRNAs and mRNAs of both cohorts incorporated in
each analysis. Hence, the number of miRNAs and mRNAs included in each cancer type
reduced to around 500 miRNAs and 17,000 mRNAs on average.

TCGA also provided “Clinical Supplement” files of all patients. To evaluate the
biological relevance of the identified miRNA–mRNA regulatory modules, we performed
survival analysis in our experiments using extracted survival characteristics of patients
(i.e., days to last follow-up for alive patients and days to death for deceased patients).

2.2. Problem Definition

We developed a machine learning approach that utilizes expression levels of miRNAs
and mRNAs to identify highly correlated miRNA–mRNA regulatory modules in primary
tumors to determine similarities between multiple cancer cohorts of the same origin and
to uncover tissue-specific signatures. In this study, we are given K cohorts indexed by k.
For each cohort, we are given a training set Dk = {(xik, yik)}

Nk
i=1, which contains miRNA

and mRNA levels of Nk tumors, where xik ∈ RD and yik ∈ RT denote miRNA and mRNA
expression profiles of tumor i for cancer k, respectively. All symbols used in our model (in
Section 2.3) are described in Table 1.

https://portal.gdc.cancer.gov
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Table 1. Description of symbols used in the proposed MSRFR model.

Symbol Definition

Y mRNA expression profile matrix
X miRNA expression profile matrix
W Weight matrix of regression model
E Error term matrix

WX Weight matrix to project miRNA profiles into low-dimensional space
WY Weight matrix of linear regression in projected space
N Number of tumors
D Number of miRNAs
T Number of mRNAs
R Dimensionality of projected space
k Index of cohorts (1, ..., K)
S Index of tissue (shared between cohorts)
‖ · ‖F Frobenius norm
‖ · ‖1,1 `1,1 norm

λ1, . . . , λ4 Regularization parameters

2.3. Method

It is believed that the relationship between miRNAs and mRNAs is sparse [28]. Hence,
we formulated the proposed problem as a linear factor multivariate regression model with
a low-rank structure on the coefficient matrix to support this assumption. For a single
cancer cohort, this formulation can be shown as follows:

Y = X

W︷ ︸︸ ︷
WXWY +E, (1)

where WX ∈ RD×R projects D-dimensional miRNA profiles into a R-dimensional space,
WY ∈ RR×T performs linear regression in this R-dimensional projected space, E ∈ RD×T is
the matrix of error terms, and W ∈ RD×T is the coefficient matrix of regression model. In
addition to WX and WY matrices, the dimensionality of the projected space (i.e., R) must to
be estimated in the learning process. With this low-rank assumption, instead of learning W
matrix, we attempted to learn WX and WY matrices. By doing so, we were able to reduce
the number of parameters that needed to be learned. Furthermore, capability of converting
WX and WY matrices into a summation of rank-one matrices is the other major incentive of
this low-rank assumption. Each of these rank-one matrices will be considered as a distinct
miRNA–mRNA regulatory module.

We explored a multitask variant of multivariate regression between miRNA and
mRNA expression profiles of multiple cancer cohorts under the assumption that the
columns of X and Y are centered (i.e., columns with zero mean) and normalized (i.e.,
columns with unit standard deviation). The error terms in E assumed to be independent
and identically distributed Gaussian random variables with zero mean and σ2 variance.

Considering that the total number of responses (mRNAs) and predictors (miRNAs)
are much larger than N, but the number of important factors is typically smaller than N, it
is a credible assumption that the relationship between predictors and responses is sparse.
To fit the model on such data, regularized or penalized methods are needed to perform
dimensionality reduction and feature extraction. Moreover, we intend to extract similarities
of regulatory modules in different tasks (cancer cohorts) which will be interpreted as tissue-
specific miRNA–mRNA regulatory modules. To capture this similarity, a multitask learning
formulation needs to be applied. Consequently, we proposed MSRFR to find tissue- and
cohort-specific miRNA–mRNA regulatory modules of multiple cancer cohorts from their
miRNA and mRNA expression profiles and estimate the effective number of regulatory
modules as follows:
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minimize
1
2

K

∑
k=1
‖Yk − Xk[WX SWX k][W

>
YSW>Yk]

>‖2
F

+ λ1(‖WX S‖1,1 +
K

∑
k=1
‖WX k‖1,1) + λ2(‖WX S‖2

F +
K

∑
k=1
‖WX k‖2

F)

+ λ3(‖WYS‖1,1 +
K

∑
k=1
‖WYk‖1,1) + λ4(‖WYS‖2

F +
K

∑
k=1
‖WYk‖2

F)

with respect to WX S ∈ RD×Rs , {WX k}K
k=1 ∈ RD×Rk , WYS ∈ RRs×T ,

{WYk}K
k=1 ∈ RRk×T

(2)

where {WX S, WYS} and {WX k, WYk}K
k=1 are the model parameters that infer the tissue-

specific and K cohort-specific regulatory modules, respectively. Yk and Xk denotes mRNA
and miRNA expression profiles of cohort k, respectively, {λ1, λ2} ∈ R+ are the user-defined
regularization parameters of the elastic net penalty on WX S and {WX k}K

k=1 matrices,
likewise, {λ3, λ4} ∈ R+ are regularization parameters on WYS and {WYk}K

k=1 matrices,
to restrict the search space by enforcing the sparsity structure on the variables based on
the input data size. Rs and {Rk}K

k=1 are the number of shared regulatory modules (i.e.,
tissue-specific) and cohort-specific regulatory modules of cancer k, respectively. Note that
number of regulatory modules are chosen a priori before optimization such that 1 ≤ Rs,
{Rk}K

k=1 ≤ RU ≤ min(D, T), where parameter RU is the problem-specific upper bound for
the dimensionality of the projected space.

By imposing elastic penalty which linearly combines `1 and Frobenius norms, as
regularization function, we expect two highly correlated features both exist or both absent
in a factor. In other words, elastic net penalty empowered our model to group correlated
miRNAs together and correlated mRNAs together, besides inducing the sparse structure.
In addition to accurately extract all cancers’ miRNA–mRNA regulatory modules separately
by inferring information from all data sets, proposed multitask learning formulation that
uses shared parameters between all tasks (WX S and WYS), which enabled our model to
extract joint regulatory modules from all cohorts to be interpreted as tissue-specific miRNA–
mRNA regulatory modules. The overall view of the developed framework for two cohorts
(i.e., K = 2) is demonstrated in Figure 1. To solve the regularized model, as well as to find
the number of effective latent factors (i.e., number of regulatory modules), an alternating
optimization algorithm was proposed.

Selecting a large or small number of latent factors (i.e., Rs, {Rk}K
k=1 values) would

lead to overfitting or underfitting, respectively. To avoid this, we applied the mechanism
proposed by [29] that guarantees identifying linearly independent modules and learns
how many independent latent factors are needed to explain the data. Since problem (2) is
non-convex, it is not expected to find the exact solution in a reasonable time. However, with
predefined Rs and {Rk}K

k=1 values, problem (2) becomes convex if either {WX S, {WX k}K
k=1}

or {WYS, {WYk}K
k=1} is fixed. This attribute enabled us to apply a heuristic algorithm using

a gradient descent method.
To solve problem (2) with predefined Rs and {Rk}K

k=1 values, we performed Algorithm
A1 with a random initial values of decision variables. We determined the stopping criterion
of the algorithm according to the objective function of the optimization problem (2). We
assumed optimization problem (2) terminates, if | f (t+1) − f (t)|/ f (t) < ε, where f (t+1) and
f (t) are the objective function values of problem (2) in the last two iterations.

Our algorithm starts by fixing the number of latent factors with an initial upper bound
(i.e., Rs = {Rk}K

k=1 = RU). Problem (2) is not jointly convex with respect to all variables,
but if we fix {WX S, {WX k}K

k=1}, it will be convex with respect to {WYS, {WYk}K
k=1} or vice

versa. After converting optimization problem (2) to a convex problem by fixing one set of
variables, the algorithm starts solving it using an alternating optimization strategy. After
convergence, the algorithm checks whether all variable matrices are full rank. If there was
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any matrix that is not full rank, the algorithm reduces the value of related matrices ranks
by one and solves the optimization problem (2) again. For instance, after convergence if
rank(WX i) or rank(WY i) < Ri, ∀i ∈ {S, 1, 2, ..., K}, then the algorithm reduces Ri by one
and starts from the first step. The algorithm is guaranteed to achieve full rank matrices (i.e.,
WX S, WYS, and {WX k, WYk}K

k=1), at the termination.

Regulatory module assignment
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...

W2x

Wsx

W1y

Wsy

W2y
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Figure 1. Overview of the developed framework for identifying key tissue-specific and cohort-specific
regulatory modules of two cancer types from the same origin. (a) Input data that includes miRNA
and mRNA expression profiles of two cancer cohorts. (b) Imposing low-dimensional structure and
multitask learning formulation simultaneously to identify cohort-specific regulatory modules of
two cancer types and shared regulatory modules between them (i.e., tissue-specific), as well as
effective estimation of the number of each regulatory module (i.e., R1, R2, and Rs) using MSRFR
model. (c) Writing the low-rank matrices as the summation of R1, R2, and Rs rank-one matrices
such that each of them corresponds to one miRNA–mRNA regulatory module of first cancer cohort,
second cancer cohort, and tissue-specific regulatory modules. (d) Filtering identified regulatory
modules to test for key modules with biological relevance and functional importance by applying
functional survival and gene set enrichment analyses. (e) Validating the result of the experiment,
first by comparing the result of the study against cross-cohort and healthy sample result to examine
the uniqueness of identified modules, then by literature validation of identified miRNAs in cohort-
specific regulatory modules to see whether they are related to the underlying disease, and finally by
assessing the transcription factor expression in identified modules.

To update variables in each iteration, a gradient descent approach was performed, and
to accelerate the convergence of gradient descent, we applied Prox-Linear update [30]. To
simplify the notation of update steps, k index refers to all k ∈ {1, . . . , K} for the following
steps, and we considered the following notation:

WX Sk =
[
WX S WX k

]
WYSk =

[
W>YS W>Yk

]>
.

The prox-Linear update functions defined as follows:

W(t+1)
X S ← Sλ1/αt

(
W̃(t)
X S − h

(
W̃(t)
X S, W(t+1)

YS

)
/α

(t)
s

)
(3a)

W(t+1)
X k ← Sλ1/αt

(
W̃(t)
X k − h

(
W̃(t)
X k, W(t+1)

Yk

)
/α

(t)
k

)
(3b)

W(t+1)
YS ← Sλ3/βt

(
W̃(t)
YS − g

(
W(t)
X S, W̃(t)

YS

)
/β

(t)
s

)
(3c)
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W(t+1)
Yk ← Sλ3/βt

(
W̃(t)
Yk − g

(
W(t)
X k, W̃(t)

Yk

)
/β

(t)
k

)
(3d)

where S is the soft-thresholding function, such that Sτ(ν) = sign(ν)×max(|ν| − τ, 0), and

h(WX S, WYS) =
K

∑
k=1

(X>k XkWX SkWYSkW>YS − X>k YkW>YS) + 2λ2WX S

h(WX k, WYk) = −X>k YkW>Yk + X>k XkWX SkWYSkW>Yk + 2λ2WX k

g(WX S, WYS) =
K

∑
k=1

(W>X SX>k XkWX SkWYSk −W>X SX>k Yk) + 2λ4WYS

g(WX k, WYk) = −W>X kX>k Yk + W>X kX>k XkWX SkWYSk + 2λ4WYk

are the derivatives of the objective value of problem (2) without the `1-penalties with
respect to variables (detailed equations are available in Appendix A). Moreover, α

(t)
s and

α
(t)
k are the multipliers that have to be greater than the Lipschitz constant (i.e., the smallest

non-negative constant value that satisfies the Lipschitz condition) of h(WX S, W(t+1)
YS ) and

h(WX k, W(t+1)
Yk ), respectively, and β

(t)
s , β

(t)
k are the multipliers that have to be greater than

the Lipschitz constant of g(WX S, WYS) and g(WX k, WYk), respectively. According to the
Equations (A1)–(A4) in Appendix B, the multipliers can be set as follows:

α
(t)
s =

K

∑
k=1
‖X>k XkWX k‖F‖W

(t+1)
YSk W>(t+1)

YS ‖F + 2λ2

α
(t)
k = ‖X>k XkWX S‖F‖W

(t+1)
YSk W>(t+1)

Yk ‖F + 2λ2

β
(t)
s =

K

∑
k=1
‖W>(t)X S X>k Xk[WX S WX kWYk]

(t)‖F + 2λ4

β
(t)
k = ‖W>(t)X k X>k Xk[WX SWYS WX k]

(t)‖F + 2λ4.

Our optimization strategy is described in Algorithm A1 with more details The algo-
rithm’s pseudocode is presented in Appendix C).

For the sake of simplicity, we refer to WX S and {WX k}K
k=1 as WX and refer to WYS

and {WYk}K
k=1 as WY . Similarly, we also refer to RS and {Rk}K

k=1 as R. After finding WX
and WY matrices using the proposed algorithm, we need to extract key miRNA–mRNA
regulatory modules. We first determined weights of each identified regulatory module.
Hence, we normalized each row of WX and each column of WY to unit norm, in order
to set a unified scale for all of the regulatory modules. For this purpose, instead of our
initial decomposition assumption (i.e., W ≈ WXWY ), for each tissue- and cohort-specific
regulatory modules we obtained the low rank decomposition W ≈ W̃XDXDYW̃Y , where
DX and DY are R× R diagonal matrices. The diagonal entries of DX and DY are used
for assigning the importance weight of each underlying regulatory module. To determine
weights of regulatory modules, we sorted the rows of WX and the columns of WY from
the largest one to the smallest one. The regulatory module with the highest importance
(i.e., the first regulatory module) refers to the one that corresponds to the highest diagonal
entry. The first regulatory module is considered in biological relevance analyses (Section 3),
since it reflects the most considerable portion of knowledge.

Similar to our previous strategy [12], we detected miRNAs (mRNAs) for each module
as follows: A miRNA (mRNA) is considered to be selected if the magnitude of its weight is
larger than two over square root of the total number of miRNAs (mRNAs) included.

To pick the key regulatory modules with biological relevance among all identified
regulatory modules, we filtered the regulatory modules by performing functional survival
and functional gene set enrichment analyses [31].
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First, to check if the MSRFR-identified mRNAs are related to the survival rate of all
patients, we classified patients into two groups using k-means clustering based on the
mRNA expression profiles. We then examined survival rates in the clinical parameters
by checking whether there is a statistically significant difference between the two groups
of patients using the log-rank test. Significant survival difference refers to a module with
different mRNA expression levels of patients of the underlying cohort. The main motivation
of this process was exploring the functional importance of identified regulatory modules.

In the second step of filtering, regulatory modules that seem to have biological rel-
evance from filtering step one were further evaluated in functional gene set enrichment
analysis [31].

A regulatory module is categorized as a key regulatory module if “survival analysis
of the corresponding module reports a significant difference between patient groups” and
“underlying module is enriched in either tissue-specific or cohort-specific gene sets”.

Following the biological validation strategy, we attempted to investigate the identi-
fying transcription factors (TFs) in miRNA–mRNA signatures. To determine whether or
not TF regulation is affected by cancer-specific miRNA–mRNA signatures, we assessed
the currently known human TFs [32] in the regulatory modules. We performed 10,000×
permutation analysis to estimate the distribution for the number of TFs in a certain number
of random genes and compare it with the number of TFs in the selected mRNAs by MSRFR
(Section 3.6).

2.4. Experimental Setting

To test the applicability of our MSFRF model, we applied it on three pairs of cancer
cohorts where each originated from the same tissue (blood, kidney, lung).

Specifically, Lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) and Acute
myeloid leukemia (LAML) cohorts, originated from blood, whilst kidney renal clear cell
carcinoma (KIRC) and Kidney renal papillary cell carcinoma (KIRP) occur in kidney, and
Lung adenocarcinoma (LUAD) and Lung squamous cell carcinoma (LUSC) derive from
lung tissue.

To set reasonable values to hyper-parameters of Problem (2), i.e., λ1, λ2, λ3 and λ4,
we considered five values for each parameter based on the size of underlying cohorts in
each experiment. In blood experiments, we considered set {60, 80, 100, 125, 150} for λ1 and
λ3 parameters, and set {10, 15, 20, 25, 30} for λ2 and λ4 parameters. In kidney and lung
experiments, we considered set {150, 200, 250, 300, 350} for λ1 and λ3 parameters, and set
{10, 15, 20, 25, 30} for λ2 and λ4 parameters.

We trained the algorithm with all combinations of predefined parameters using four-
fold cross-validation. Then, we calculated the average root mean square error (RMSE)
of four folds between predicted and actual mRNA expression levels for all parameter
combinations. For each experiment, we picked the set of parameters with the minimum
average RMSE. Finally, the parameters of the three experiments are set as follows:

• Blood→ (λ1λ2, λ3, λ4) = (80, 20, 125, 15),
• Kidney→ (λ1λ2, λ3, λ4) = (300, 25, 300, 30),
• Lung→ (λ1λ2, λ3, λ4) = (250, 15, 300, 30).

We considered RU = 10 as the upper bound on the number of latent factors in all
cohorts of experiments. Thus, due to the number of independent factors that can explain
each cohort/tissue, MSRFR identifies 10 or less than 10 regulatory modules. We also set
the stopping criteria parameter ε to 10−4, and the maximum number of iterations to 103.
Since miRNA and mRNA expression profiles of primary tumors are count data and can
take only non-negative values, we applied log2-transformation before feeding them to the
algorithm. We implemented our algorithm in R.
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3. Results
3.1. Predictive Performance Comparison

We tested the performance of MSRFR by calculating the normalized root mean squared
error (NRMSE) of our algorithm between observed and predicted values of mRNA expres-
sion levels against the single-task algorithm [19] using

Ŷk = Xk[WX S WX k][W
>
YS W>Yk]

>

where k indexes the cancer cohorts.
The predictive performance comparison showed that MSRFR algorithm explained

a higher proportion of variance than the single-task algorithm in five out of six cohorts
using fewer regulatory modules (Table 2). By applying MSRFR in three experiments to
cancer cohorts of blood, kidney, and lung, we identified 75 regulatory modules in total
(12 cohort-specific and 10 tissue-specific modules for blood, 14 cohort-specific and 10
tissue-specific modules for kidney, and 19 cohort-specific and 10 tissue-specific modules
for lung). Figure 2a,b show examples for selected top 10 miRNAs and top 50 mRNAs
identified in the first regulatory modules of KIRC cohort and kidney tissue, respectively.
The first regulatory module refers to the extraction of the most significant result from each
cohort/tissue. Selected miRNAs and mRNAs for all regulatory modules identified by
MSRFR are presented in Supplementary Table S1.
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Figure 2. Heat map of top 10 miRNAs and top 50 mRNAs of as (a) cohort-specific regulatory module
identified in KIRC and (b) tissue-specific regulatory module identified for kidney, clustered into
two groups of patients using k-means clustering on mRNA expression values. Red colors indicate
over-expression (i.e., higher than the population mean), and blue colors indicate lower expression
(i.e., lower than the population mean). The font sizes of miRNAs and mRNAs are proportional to the
magnitudes of their weights inferred by our algorithm.

Table 2. Predictive performance values of MSRFR vs. single-task algorithm on six data sets incor-
porated in this study, in terms of average NRMSE over mRNAs and their selected ranks. Improved
performance is highlighted with bold fonts.

MSRFR Single-Task

Cohort Rank NRMSE Rank NRMSE

DLBC 13 0.7664 19 0.5803
LAML 19 0.6708 20 0.7479
KIRC 18 0.7412 20 0.9796
KIRP 16 0.7626 20 0.7838

LUAD 20 0.7840 20 0.8832
LUSC 19 0.8039 20 0.8870

3.2. Functional Survival Analysis of Identified Regulatory Modules

To assess the findings of our MSRFR algorithm, we compared results between different
cohorts and tissues. By including the clinical parameters (i.e., survival of patients), we
clustered patients into two groups by applying k-means clustering on the expression values
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of the selected mRNAs. Next, we acquired the expression values of selected miRNAs
and mRNAs and used the expression profiles of both cancers in each tissue to cluster
the patients and to address their survival rates (Figure 2a,b). Significant differences were
determined using the log-rank test.

For tissue-specific analysis, we selected the overlap of regulatory modules with signif-
icant differences in both cancer cohorts of the same tissue. Interestingly, we find that the
differences in expression levels of the identified miRNA–mRNA signatures seem to relate
to survival differences in the different cancer patient groups (Figure 3). These figures indi-
cated that the identified regulatory module is highly effective in capturing the biological
mechanism of both cohorts, and it is associated with kidney tissue.
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Figure 3. Kaplan-Meier survival curves of two patient groups identified using k-means clustering
algorithm for (A) cohort-specific regulatory module identified in KIRC cohort, and tissue-specific
regulatory module identified for kidney using the same subgroup of selected mRNAs in (B) KIRC
and (C) KIRP patients.

In 27 of 75 identified regulatory modules in total (36%), we observed a significant
survival difference between the two groups (i.e., p-value < 0.05 in the log-rank test). To
demonstrate the detection power of clinical characterization using the proposed method,
we compared the percentage of regulatory modules with significant survival differences in
this study against another algorithm [19]. Table 3 shows all identified regulatory modules
and those with significant survival differences by MSRFR model and our recently reported
single-task algorithm [19]. The percentage of significant survival analysis is higher in
MSRFR algorithm, even though, in MSRFR we have two filters for survival analysis of
tissue-specific regulatory modules using the expression value and clinical information of
both underlying cohorts.

Table 3. Number of identified regulatory modules and regulatory modules with significant survival
differences, found by MSRFR and single-task algorithm for cohorts incorporated in this study.

MSRFR Single-Task

Cohort or Tissue All Survival All Survival

DLBC 3 1 19 0
LAML 9 3 20 4
Blood 10 3 - -

KIRC 8 6 20 8
KIRP 6 2 20 0

Kidney 10 6 - -

LUAD 10 4 20 14
LUSC 9 1 20 2
Lung 10 1 - -

Total (%) 75 27 (36) 119 28 (23.53)
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3.3. Tissue-Specificity and Disease Association of Key Regulatory Modules

We next performed enrichment analysis of selected mRNAs in the first regulatory
modules by using cell type signatures [33] and disease association [34] to address if the
underlying tissues in tissue-specific regulatory modules and signatures that are cohort-
specific can be found. Of note, we observed specific cell type signatures in all tissue-specific
modules that related to the underlying tissues (Figure 4A–C).
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Figure 4. Summary of enrichment analysis in cell types of tissue-specific regulatory modules of (A)
blood, (B) kidney and (C) lung. Examples of enrichment analysis of tissue-specific regulatory modules
of (D) KIRP and (E) LUAD in DisGeNET. Red arrows in (A–C) depict cell-type and tissue-related
terms and disease-relevant terms in (D,E).

Regarding disease association of cohort-specific regulatory modules, we found disease
associated terms that are relevant to the cohort-specific regulatory modules (Figure 4D,E),
thereby validating that MSRFR can specifically determine tissue-specific and cohort-specific
miRNA–mRNA signatures.

3.4. Comparing miRNA–mRNA Signatures in Cross-Cohort Combinations and with
Healthy Samples

Next, we examined the uniqueness of identified modules by applying the MSRFR
algorithm on a total of 12 combinations of cohorts that did not originate from the same
tissue (DLBC–KIRC, DLBC–KIRP, DLBC–LUAD, DLBC–LUSC, LAML–KIRC, LAML–KIRP,
LAML–LUAD, LAML–LUSC, KIRC–LUAD, KIRC–LUSC, KIRP–LUAD, and KIRP–LUSC).
We found 118 tissue-specific modules and 220 cohort-specific modules in a total of 12
experiments. Of note, only 4/118 (3.39%) of tissue-specific regulatory modules presented
significant survival differences, while 64/220 (29.10%) of cohort-specific regulatory modules
are significant in survival analysis (Figure 5A). The ratio of significant survival differences
in the related cohort experiments was 10/30 (33.33%) and 17/45 (37.78%) for tissue-specific
and cohort-specific regulatory modules, respectively (Table 3).



Cancers 2022, 14, 4939 13 of 19

cohort-specific tissue-specific

0

20

40

60

same tissue unrelated tissue

M
od

ul
es

 w
ith

 s
ig

ni
fic

an
t s

ur
vi

va
l d

iff
er

en
ce

s 
(%

)

DLBC

LAML

KIRC

KIRP

LUAD

LUSC

M
od

ul
es

 w
ith

 s
ig

ni
fic

an
t s

ur
vi

va
l d

iff
er

en
ce

s 
(%

)

0

5

10

15

20

20

13

5

3 3

1 1 1 1

21A B

Figure 5. (A) Number of cohort-specific and tissue-specific regulatory modules in cross-cohort exper-
iments with significant survival analysis based on clinical information. (B) Box plot demonstrating
the percentage of tissue- and cohort-specific regulatory modules with significant survival analysis in
experiments with cohorts from the same tissue and unrelated tissues.

Accordingly, survival analysis based on clinical information in non-relevant cohort
pairs was significantly lower than identified regulatory modules with significant survival
differences in tissue-specific regulatory modules. However, there is no significant difference
in cohort-specific regulatory modules (Figure 5B). These findings indicate that MSRFR
identifies tissue-specific regulatory modules with biological relevance using cohorts from
the same tissue rather than miRNA–mRNA signatures from non-related tissues.

We conclude that MSRFR increases the detection power of the model by multitask
formulation, enhances the capacity of the model in grouping genes that participate in
the same processes while extracting fewer modules, effectively determines biologically
related miRNA–mRNA regulatory modules by inferring information from other tasks and
it distinguishes tissue- and cohort-specific regulatory modules from each other to extract
tissue-specific information from different cohorts of disease-related tissue.

We also applied MSRFR on healthy samples of kidney and lung that are deposited in
TCGA and compared the findings to the two cohort-specific and their shared tissue-specific
first regulatory modules. We found marginal overlaps between healthy and disease samples
(Figure 6), indicating that MSRFR effectively determines miRNA–mRNA signatures related
to primary tumors.
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Figure 6. Venn diagram of overlap detected miRNA and mRNA signatures by MSRFR using primary
tumors and healthy samples of (A) lung and (B) kidney.
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3.5. Literature Validation of Identified miRNA–mRNA Signatures

We investigated the relevance of the identified cohort-specific regulatory modules
underlying cancer using a literature survey validation by checking whether identified
miRNAs are important for formation or progression of the corresponding cancer type. For
68 selected miRNAs out of 161 identified miRNAs (42.24%) in the first regulatory module of
six different cohorts, we found published records in PubMed. The ratio of selected miRNAs
with literature support in LUAD and LUSC cohorts was higher than in the other cohorts
(Figure 7). Detailed information on all 68 miRNAs is reported in Supplementary Table S2,
indicating that MSRFR effectively determines cancer-related miRNAs in cohort-specific
regulatory modules.
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Figure 7. Selected miRNAs and those with literature validation support.

Moreover, to see if identified miRNA–mRNA signatures are known in the literature
(PubMed), we investigated all possible duplex combinations of the top 2 and top 10
selected miRNAs and mRNAs of each cohort/tissue. Specifically, we looked for direct or
indirect associations as biomarkers in the formation, progression, or treatment of cancer.
For example, mir-152 and mir-30e, the top two selected miRNAs by MSRFR for LUSC
cohort, have been shown to improve the non-invasive diagnosis of renal cell carcinoma [35].
mir-142 and APAF1 as target gene are proposed as a promising non-invasive diagnostic
biomarker of hepatocellular carcinoma [36], which have been detected by MSRFR for kidney
tissue. ASXL2 and BPTF were suggested for a potential therapeutic approach for human
diseases [37], and MSRFR identified both in lung tissue. In total, we were able to validate
30 records in PubMed, including miRNA–miRNA, miRNA–mRNA, and mRNA–mRNA
interactions, which are listed in Supplementary Table S3.

3.6. Abundance of Transcription Factor mRNAs in miRNA–mRNA Signatures

To check if TF expression could be affected in the investigated primary tumors and
their specific miRNA–mRNA signatures, we assessed the currently known 1639 human TFs
[32] in our nine regulatory modules (first regulatory module in each cohort/tissue). MSRFR
found 1030 mRNAs on average in these nine regulatory modules (Supplementary Table S1).
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To test if the number of overlapping TFs is meaningful, we developed a permutation
test and compared our result with random sets of genes. To this end, we randomly picked
1030 genes 10,000× and compared the percentage of TFs among random experiments and
MSRFR results. The maximum average of randomly identified TFs was 10.49%. In 6 out
of 9 cohorts/tissues the average number of TFs identified by MSRFR deterministically
dominates the average number of TFs in random genes (Figure 8A). We also found that
the difference in the median of TFs in random genes and selected mRNAs by MSRFR is
significantly greater (Mann-Whitney test p-value = 0.004) than in random sets (Figure 8B).

The detailed information on detected TFs in regulatory modules are listed in
Supplementary Table S4.
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Figure 8. (A) Histogram of TFs that are present in each investigated primary tumors and their shared
tissue-specific overlaps (blood, kidney, lung). Grey bars represent randomized results of 10,000 gene
lists, and colored lines show average TFs in key regulatory modules identified by MSRFR. (B) Box
plot of the average TFs detected by MSRFR vs. identified in random gene lists.

4. Discussion

Understanding the underlying biological mechanisms of primary tumors is crucial for
predicting how tumors respond to therapies. miRNAs’ interactions with mRNAs have a major
effect on many biological processes that are important in the formation and progression of
cancer. Therefore, identifying both cohort- and tissue-specific miRNA–mRNA regulatory
modules of cancers have received considerable interest due to its importance in cancer biology.

This study introduces a pipeline to extract tissue- and cohort-specific miRNA–mRNA
regulatory modules of multiple cancer types from the same origin using matched miRNA
and mRNA expression profiles of primary tumors. We generated a multitask sparse
regularized factor regression model which was able to successfully extract and distinguish
tissue- and cohort-specific regulatory modules and estimate the effective numbers of cohort-
specific and tissue-specific regulatory modules.

Out of all six considered cohorts, MSRFR model outperformed single-task regression
method in 5/6 cohorts (see Table 2). We were able to identify mRNAs that are related
to tissue type and that were enriched in disease-relevant terms. The identified miRNAs
were also reported in the investigated primary tumors, and finally, TFs in the determined
miRNA–mRNA signatures indicate their strong involvement in pathogenesis. The sets
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of experiments with cohorts from unrelated tissues to the phenotype showed marginal
overlaps. This indicates that MSRFR determines significant differences between cohorts
and identifies tissue-specific modules from the same tissue.

Collectively, these results show that the proposed model is highly effective in iden-
tifying key miRNA–mRNA regulatory modules and distinguishing cohort-specific and
tissue-specific regulatory modules.

There is an abundant room for further progress in determining similarities in molecular
patho-mechanisms. Extensions of this study can be applied to investigate other diseases
where similar primary cells are involved to find cohort-specific mechanisms together with
the mechanisms shared among underlying conditions. Moreover, further work is required
to establish complementary research on other RNAs in the non-coding genome, such as
long non-coding RNAs, to decode their functional similarities in different conditions.
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.3390/cancers14194939/s1, Supplementary Table S1: Identified miRNAs–mRNA list, Supplemen-
tary Table S2: Supporting evidence for cohort-specific identified miRNAs, Supplementary Table S3:
Supporting evidence for importance of interaction between identified miRNAs and mRNAs, Supple-
mentary Table S4: Verification of identified TFs.
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(A2)

‖g(W(t)
X S, WYS)− g(W(t)

X S, W′YS)‖F

= ‖
K

∑
k=1

(WT(t)
X S XT

k XkW(t)
X Sk[(WYS −W′YS)

T WT
Yk]

T) + 2λ4(WYS −W′YS)‖F

≤ (
K

∑
k=1
‖WT(t)
X S XT

k Xk[WX S WX kWYk]
(t)‖F + 2λ4)‖WYS −W′YS‖F

(A3)

‖g(W(t)
X k, WYk)− g(W(t)

X k, W′Yk)‖F

= ‖WT(t)
X k XT

k XkW(t)
X Sk[W

T
YS (WYk −W′Yk)

T ]T + 2λ4(WYk −W′Yk)‖F

≤ (‖WT(t)
X k XT

k Xk[WX SWYS WX k]
(t)‖F + 2λ4)‖WYk −W′Yk‖F

(A4)
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Appendix C

Algorithm A1 Optimization algorithm

Input: {Xk}K
k=1 ∈ RNk×D, {Yk}K

k=1 ∈ RNk×T , λ1 ∈ R+, λ2 ∈ R+, λ3 ∈ R+, λ4 ∈ R+, RU ∈ Z++

Output: W?
X S, W?

YS, R?
S, {W?

X k, W?
Yk, R?

k}
K
k=1

RS, {Rk}K
k=1 ← RU

ρ = 0
while ρ == 0 do

t← 0
{WX k}K

k=1 ← a random matrix from RD×Rk

WX S ← a random matrix from RD×RS

while optimization problem (2) not converged do

W(t+1)
X S ← update WX S using (3a)

{W(t+1)
X k }

K
k=1 ← update {WX k}K

k=1 using (3b)

W(t+1)
YS ← update WYS using (3c)

{W(t+1)
Yk }K

k=1 ← update {WYk}K
k=1 using (3d)

t← t + 1
end while
if rank(W(t+1)

X S ) < RS or rank(W(t+1)
YS ) < RS then

RS ← RS − 1
else

ρ ++
end if
for k = 1 to K do

if rank(W(t+1)
X k ) < Rk or rank(W(t+1)

Yk ) < Rk then
Rk ← Rk − 1

else
ρ ++

end if
end for

ρ =

⌊
ρ

K + 1

⌋
end while
W?
X S ← W(t+1)

X S , {W?
X k}

K
k=1 ← {WX k}K

k=1

W?
YS ← W(t+1)

YS , {W?
Yk}

K
k=1 ← {WYk}K

k=1
R?

S ← RS, {R?
k}

K
k=1 ← {Rk}K

k=1
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