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Simple Summary: Androgen deprivation therapy plays a key role in the therapeutic management
of patients with advanced prostate cancer. However, prediction of response before treatment initia-
tion remains difficult. This study was undertaken to investigate whether 68Ga-PSMA-11 PET/CT
imaging features extracted from different prostatic zones (zone-1, zone-2, and zone-3) might predict
response to androgen deprivation therapy in patients with advanced prostate cancer. Seven radiomic
features extracted from zone-1 were identified as significantly associated with treatment response. In
addition, two radiomic features from zone-2 and two from zone-3 were able to distinguish between
different treatment response groups. Our findings demonstrate the potential usefulness of radiomic
features extracted from different prostatic zones in predicting treatment response prior to androgen
deprivation therapy.

Abstract: Purpose: Prediction of treatment response to androgen deprivation therapy (ADT) prior
to treatment initiation remains difficult. This study was undertaken to investigate whether 68Ga-
PSMA-11 PET/CT features extracted from different radiomic zones within the prostate gland might
predict response to ADT in patients with advanced prostate cancer (PCa). Methods: A total of
35 patients with prostate adenocarcinoma underwent two 68Ga-PSMA-11 PET/CT scans—termed
PET-1 and PET-2—before and after 3 months of ADT, respectively. The prostate was divided into
three radiomic zones, with zone-1 being the metabolic tumor zone, zone-2 the proximal periph-
eral tumor zone, and zone-3 the extended peripheral tumor zone. Patients in the response group
were those who showed a reduction ratio > 30% for PET-derived parameters measured at PET-1
and PET-2. The remaining patients were classified as non-responders. Results: Seven features
(glcm_idmn, glcm_idn, glcm_imc1, ngtdm_Contrast, glrlm_rln, gldm_dn, and shape_MeshVolume)
from zone-1, two features (gldm_sdlgle and shape_MinorAxisLength) from zone-2, and two features
(diagnostics_Mask-interpolated_Minimum and shape_Sphericity) from zone-3 successfully distin-
guished responders from non-responders to ADT. One predictive feature (shape_SurfaceVolumeRatio)
was consistently identified in all of the three zones. Conclusions: this study demonstrates the po-
tential usefulness of radiomic features extracted from different prostatic zones in distinguishing
responders from non-responders prior to ADT initiation.

Keywords: radiomics; prostate cancer; 68Ga-PSMA-11 PET; radiomic zones; androgen deprivation
therapy; treatment response
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1. Introduction

Globally, prostate cancer (PCa) is the second most common cancer among men and the
fifth leading cause of death [1]. The role of positron emission tomography (PET) imaging
in the diagnosis, staging, and assessment of treatment response in patients with PCa is
well-established [2]. 68Ga-labeled prostate-specific membrane antigen (PSMA)-targeted
PET has recently emerged as a promising imaging modality for lesion detection [3,4] and
monitoring of response to androgen deprivation therapy (ADT) in patients with metastatic
PCa [5,6]. There is also evidence that the percentage variations of 68Ga-PSMA-11 PET/CT
imaging parameters measured before and after three months of ADT are clinically useful
in evaluating treatment response [7–9].

PCa is characterized by significant intratumor heterogeneity, which may in turn
affect the biological aggressiveness, disease progression, and therapeutic resistance [10–12].
In recent years, radiomics—which can be defined as the high-throughput extraction of
quantitative features from CT, MRI, or PET images—has been successfully used to predict
clinical and treatment outcomes in patients with malignancies [13–21]. Image texture
analysis—as a quantitative radiomics approach for the analysis of tumor heterogeneity—
has been shown to correlate with established indices of glucose metabolic activity, including
the standardized uptake value (SUV) [22–25]. Moreover, texture features may have a
complementary role to metabolic parameters in the prediction of treatment response [26].

The ability of radiomics to comprehensively characterize PCa tissues from state-of-the-
art PET imaging has attracted significant research interest [27–32]. On analyzing 18F-choline
PET/CT scans of patients with high-risk PCa, Alongi et al. [30] identified three features
(i.e., SUVmin, shape_Sphericity, and idmn_Correlation) that successfully predicted the
occurrence of disease progression at follow-up. However, most studies in the field of PET
radiomics have continued to rely on a cancer-centric model based on feature extraction
from the whole tumor. More recently, the regions of interest have been expanded to include
peripheral tumor areas [33–35]. In a previous study focusing on 11C-choline PET/MRI
imaging, we have proposed dividing the prostate gland into three distinct radiomic zones,
with zone-1 being the metabolic tumor zone, zone-2 the proximal peripheral tumor zone,
and zone-3 the extended peripheral tumor zone [35]. Interestingly, these radiomic zones
were found to have different predictive strengths in classifying risk groups in patients with
PCa [35].

While measurements of circulating prostate specific antigen (PSA) levels may have a
role in predicting response to ADT when PCa has not spread to lymph nodes or skeletal
sites [36], its clinical utility in patients with disseminated disease remains limited. In this
scenario, there is pilot evidence supporting the potential utility of the reduction ratios
of 68Ga-PSMA-11 PET/CT indices measured before and after 3 months of ADT [7,9]. By
expanding our previous work [35], we designed this current study to investigate whether
radiomic features from zone-1 may have clinical value for predicting response to ADT. We
also examined whether features from peripheral areas (zone-2 and zone-3) could be useful
to distinguish between different treatment response groups.

2. Materials and Methods
2.1. Study Patients

Thirty-five patients with advanced prostatic adenocarcinoma were included (Table 1).
All participants were scheduled to undergo ADT for at least 6 months and have completed
nearly 3 months (10–14 weeks) of ADT treatment. Two 68Ga-PSMA-11 PET/CT scans—
termed PET-1 and PET-2—were obtained for each patient before and after 3 months of ADT,
respectively. Ethics approval for this study was received from the Chang Gung Memorial
Hospital institutional review board (reference number: 201801384A0). All participants
provided written informed consent.
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Table 1. General characteristics of the 35 study patients with advanced prostate cancer.

Characteristic Value, n (%)

Age, years (mean ± SD) 70 ± 9.9

Stage (AJCC Manual, eighth edition)
IIIB 7 (20%)
IIIC 3 (9%)
IVA 8 (23%)
IVB 17 (48%)

Serum prostate-specific antigen (ng/mL)

<10 4 (11%)
10–20 9 (26%)
>20 22 (63%)

Gleason score

7 11 (31%)
8 5 (14%)
9 16 (46%)
10 3 (9%)

ISUP grade

2 3 (9%)
3 7 (20%)
4 5 (14%)
5 20 (57%)

ADT regimen

Leuprorelin + bicalutamide 10 (28%)
Leuprorelin + cyproterone 4 (11%)
Leuprorelin + abiraterone 2 (6%)
Triptorelin + cyproterone 1 (3%)
Goserelin + bicalutamide 9 (26%)

Leuprorelin + abiraterone + bicalutamide 2 (6%)
Leuprorelin 2 (6%)

Goserelin 4 (11%)
Degarelix 1 (3%)

Data are given as counts and percentages in parentheses, unless otherwise indicated. Abbreviations: SD, standard
deviation; AJCC, American Joint Committee on Cancer; ISUP, International Society of Urological Pathology;
ADT, androgen deprivation therapy.

2.2. PET/CT Imaging

The acquisition protocol for 68Ga-PSMA-11 PET/CT imaging has been previously
described [9]. In brief, images were acquired on a GE Discovery MI PET/CT scanner (GE
Healthcare, Milwaukee, WI, USA) 60 min after tracer injection (dose range: 103–182 MBq;
median dose: 141 MBq). The following settings were applied for CT imaging: 120 kVp,
automatic mA selection (ranging from 30 to 300 mA), 40 × 0.625 detector collimation, and
0.984 pitch. Transaxial PET images were acquired with the following parameters: field
of view = 700 mm, matrix size = 256 × 256, and slice thickness = 5 mm. The acquisition
time was 3 min per single-bed position, with the acquisition proceeding from the thigh
to the skull. A Bayesian penalized likelihood algorithm (Q.Clear) was used for image
reconstruction. Methods for image calibration included attenuation correction, the point
spread function, and the QCHD-S technique [9].

2.3. PET-Derived Parameters

Region of interest (ROI)-based image segmentation was performed using the LIFEx
software developed in Java [37]. A maximum standardized uptake value (SUV) threshold
of 45% was used to delineate the primary prostate tumor and metastatic lymph nodes
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(Figure 1a,b) [38], whereas a fixed-absolute SUV threshold of 3.0 was applied for metastatic
bone lesions (Figure 1c) [39].
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Figure 1. Illustrative images of a primary prostate tumor (panel (a)), metastatic lymph nodes (panel (b)),
and metastatic bone lesions (panel (c)) identified on a 68Ga-PSMA-11 PET scan performed before the start
of androgen deprivation therapy (PET-1). A maximum standardized uptake value (SUV) threshold of
45% was used to delineate the primary prostate tumor (panel (a)) and metastatic lymph nodes (panel (b)),
whereas a fixed-absolute SUV threshold of 3.0 was applied for metastatic skeletal lesions (panel (c)).

Traditional PET-derived parameters—including SUVmax, SUVmean, metabolic tumor
volume (MTV), and total lesion (TL, calculated by multiplying SUVmean by the MTV)—
were used for assessing treatment response [7,9,40]. Calculation of these indices for the
primary prostate tumor, metastatic lymph nodes, and bone lesions was implemented on a
patient basis using the LIFEx package. All parameters were calculated for both PET-1 and
PET-2 images.

2.4. Analysis of Treatment Response

Patients who had undergone ADT treatment were classified as either responders or
non-responders using the modified PET response criteria in solid tumors (mPERCIST) [41].
With this aim, the primary prostate tumor, metastatic lymph nodes, and bone lesions were
taken into account. Patients in the response group were those who showed a reduction
ratio (RR) > 30% for PET-derived parameters measured on PET-2 versus PET-1 [41]. The
remaining patients were classified as non-responders. The RR was calculated with the
following formula:

RR = −
parameterPET-2 − parameterPET-1

parameterPET-1
× 100%

Parameters included SUVmax, SUVmean, MTV, or TL, respectively. Illustrative exam-
ples of tumor response and non-response are shown in Figure 2.

2.5. Radiomic Zones and Feature Extraction

Radiomic zones (zone-1, zone-2, and zone-3) of the prostate were defined in accordance
with our previous study [35]. Specifically, zone-1 is the metabolic tumor region, zone-2
the proximal peripheral region surrounding zone-1, and zone-3 the expanded peripheral
region reaching to the prostate boundary. In brief, SUV values for zone-1 and zone-2
were 45–100% and 20–45% of SUVmax, respectively. Zone-3 comprised the entire prostate
with the exclusion of zone-1 (Figure 3). After segmentation of the three zones on PET-
1 images, radiomics features were extracted through the open-source Python package
PyRadiomics [42,43]. A total of 119 PyRadiomics features were examined across the
following eight categories: first-order statistics (18 features), diagnosis (12), shape (14), gray
level co-occurrence matrix (glcm) (24), gray level dependence matrix (gldm) (14), gray level
run length matrix (glrlm) (16), gray level size zone matrix (glszm) (16), and neighboring
gray tone difference matrix (ngtdm) (5) [43].
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Figure 2. Illustrative images of response and no response to androgen deprivation therapy (ADT)
of a primary prostate tumor based on metabolic tumor volume. The (A1,B1) PET/CT images were
from 68Ga-PSMA-11 PET scans performed before the start of ADT (PET-1), whereas (A2,B2) were
the corresponding images from 68Ga-PSMA-11 PET scans performed after 3 months of ADT (PET-2).
Response was defined as a reduction ratio > 30% for PET-derived parameters measured on PET-2
versus PET-1.

2.6. Statistical Analysis

We examined PyRadiomics features (n = 119) extracted from the three radiomic zones.
Groups with different response to ADT were compared on normally distributed variables
using independent Student’s t-tests and on skewed parameters with the Mann–Whitney
U test. In each prostatic zone, a radiomic feature was considered useful when it successfully
distinguished ADT response groups and showed an association with treatment outcomes
on at least three of the following traditional PET parameters (i.e., SUVmax, SUVmean, MTV,
and TL). All analyses were undertaken in SPSS, version 25.0 (IBM, Armonk, NY, USA), and
statistical significance was determined by a two-tailed p value < 0.05.
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Figure 3. Depiction of the three radiomic zones on a PET/CT image. Standardized uptake values
for zone-1 and zone-2 were 45–100% and 20–45% of maximum standard uptake value (SUVmax),
respectively. Zone-3 comprised the entire prostate with the exclusion of zone-1.

3. Results
3.1. Response to Androgen Deprivation Therapy

Of the 35 patients with PCa who were staged with 68Ga-PSMA-11 PET imaging before
ADT treatment, 16 had metastatic lymph nodes and 17 had bone metastases. Using the
four traditional PET parameters, patients were classified into different treatment response
groups (Table 2). On average, the percentage distribution of responders and non-responders
for primary tumors (n = 35), metastatic lymph nodes (n = 16), and bone lesions (n = 17) was
as follows: 73%/27%, 84%/16%, and 73%/27%, respectively.

Table 2. Response to androgen deprivation therapy treatment: patient-based classification groups.

PET Parameter and Classification Prostate Tumor
n = 35 (%)

Metastatic Nodes
n = 16 (%)

Bone Metastases
n = 17 (%)

SUVmax
Response 27 (77%) 13 (81%) 13 (76%)

No response 8 (23%) 3 (19%) 4 (24%)

SUVmean
Response 26 (74%) 14 (87%) 10 (59%)

No response 9 (26%) 2 (13%) 7 (41%)

MTV
Response 21 (60%) 14 (87%) 13 (76%)

No response 14 (40%) 2 (13%) 4 (24%)

TL
Response 29 (83%) 15 (94%) 14 (82%)

No response 6 (17%) 1 (6%) 3 (18%)

Patients in the response group were those who showed a reduction ratio > 30% for PET-derived parameters
measured on PET-2 versus PET-1. All other patients were included in the no response group. Abbreviations:
SUV, standardized uptake value; MTV, metabolic total volume; TL, total lesion.
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3.2. Prediction of Treatment Response Using Features from Radiomic Zone-1

Based on SUVmax, SUVmean, MTV, and TL, there were 80, 85, 14, and 28 features
from radiomic zone-1 that were able to distinguish responders from non-responders to
ADT (Figure 4), respectively. Interestingly, the glcm category included 20 features each
for both SUVmax and SUVmean. In addition, the shape category comprised five and nine
features that distinguished between different treatment response groups based on MTV and
TL, respectively. Based on SUVmax or SUVmean, at least one feature from radiomic zone-1
effectively distinguished responders from non-responders. Importantly, we identified
seven features extracted from at least three of the four traditional PET parameters that
successfully predicted treatment response (Table 3). Of them, three—including glcm_idmn
(p = 0.003, 0.002, 0.024, 0.014 for SUVmax, SUVmean, MTV, and TL, respectively), glcm_idn
(p = 0.003/0.002/0.024/0.014 for SUVmax, SUVmean, MTV, and TL, respectively), and
glrlm_rln (p = 0.003/0.001/0.013/1.97 × 10−4 for SUVmax, SUVmean, MTV, and TL,
respectively)—were extracted from all four PET-derived parameters. The remaining four
features were glcm_imc1 (p = 0.002/7.33 × 10−41/0.037 for SUVmax/SUVmean/MTV,
respectively), ngtdm_Contrast (p = 0.004/0.002/0.037 for SUVmax/SUVmean/MTV, re-
spectively), gldm_dn (p = 0.002/0.001/0.009 for SUVmax/SUVmean/TL, respectively),
and shape_MeshVolume (p = 0.038/0.034/0.003 for SUVmax/SUVmean/TL, respectively).
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Figure 4. Distribution of features extracted from the three radiomic zones for distinguishing between
responders and non-responders to androgen deprivation therapy (p < 0.05; independent Student’s t-tests
or Mann–Whitney U test). Features were examined across the following eight categories: first-order
statistics (18 features), diagnosis (12), shape (14), gray level co-occurrence matrix (glcm) (24), gray
level dependence matrix (gldm) (14), gray level run length matrix (glrlm) (16), gray level size zone
matrix (glszm) (16), and neighboring gray tone difference matrix (ngtdm) (5). Abbreviations: SUVmax,
maximum standardized uptake value; SUVmean, mean of standardized uptake value; MTV, metabolic
total volume; TL, total lesion.

The glcm_idmn (inverse difference moment normalized) and glcm_idn (inverse differ-
ence normalized) features are measures of local homogeneity within ROIs. The glcm_imc1
(informational measure of correlation) feature summarizes the correlation between the
probability distributions of texture complexity (complete independency, imc1 = 0; complete
dependency, imc1 = −1). The ngtdm_Contrast feature is a measure of spatial intensity
changes in each ROI. The glrlm_rln (run length non-uniformity) feature is a measure of
the run length similarity throughout an image. Finally, the gldm_dn (dependence non-
uniformity) feature expresses the similarity of dependency throughout an image [43].
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Table 3. 68Ga-PSMA-11 PET/CT features extracted from different radiomic zones in the prediction of
response to androgen deprivation therapy in patients with advanced prostate cancer.

Category Feature Zone-1 Zone-2 Zone-3

SUVmax SUVmean MTV TL SUVmax SUVmean MTV TL SUVmax SUVmean MTV TL

glcm idmn 0.010 0.005 0.018 0.004 0.024 0.008 _ _ _ _ _ _
idn 0.003 0.002 0.024 0.014 0.023 0.009 _ _ _ _ _ _

imc1 0.002 7.33 × 10−41 0.037 _ _ _ _ _ _ _ _ _
ngtdm Contrast 0.004 0.002 0.037 _ _ 0.034 _ _ _ _ _ _
glrlm rln 0.003 0.001 0.013 1.97 × 10−4 0.031 0.012 _ _ _ _ _ _
gldm dn 0.002 0.001 _ 0.009 _ _ _ _ _ _ _ _
Shape MeshVolume 0.038 0.034 _ 0.003 0.01 0.005 _ _ _ _ _ _
gldm sdlgle _ _ _ _ 0.034 0.027 0.045 _ _ _ _ _
shape MinorAxisLength _ _ 0.050 0.025 0.018 0.005 _ 0.015 _ _ _ _

Sphericity _ _ _ _ _ _ _ _ 0.012 0.004 0.034 _

diagnosis Mask-
interpolated_Minimum 0.034 0.025 _ _ _ _ _ _ 0.019 0.023 _ 0.038

shape SurfaceVolumeRatio _ _ 0.017 3.49 × 10−4 0.017 0.018 _ _ 0.010 _ 0.027 _

Abbreviations: SUV, standardized uptake value; MTV, metabolic total volume; TL, total lesion; glcm, gray
level co-occurrence matrix; idmn, inverse difference moment normalized; idn, inverse difference normalized;
imc1, informational measure of correlation 1; ngtdm, neighboring gray tone difference matrix; glrlm, gray
level run length matrix; rln, run length non-uniformity; gldm, gray level dependence matrix; dn, dependence
non-uniformity; sdlgle, small dependence low gray level emphasis. Significant p values are shown in the table.

3.3. Prediction of Treatment Response Using Features from Radiomic Zone-2

Based on SUVmax, SUVmean, MTV, and TL, there were 21, 25, 1, and 2 features from
radiomic zone-2 that were able to distinguish responders from non-responders to ADT
(Figure 4), respectively. The shape category comprised seven, nine, and two features that
distinguished between different treatment response groups based on SUVmax, SUVmean,
and TL, respectively. We identified only one feature (gldm) that effectively distinguished
responders from non-responders based on MTV. Notably, there were two features extracted
from at least three of the four traditional PET parameters that successfully predicted treat-
ment response (Table 3). They included gldm_sdlgle (p = 0.034/0.027/0.045 for SUVmax,
SUVmean, and MTV, respectively) and shape_MinorAxisLength (p = 0.018/0.005/0.015
for SUVmax, SUVmean, and TL, respectively). The gldm_sdlgle (small dependence low
gray level emphasis) feature is a measure of joint distribution of small dependency with
low-intensity SUV for radiomic zone-2. The shape_MinorAxisLength feature expresses the
second-largest axis length of each ROI [43].

3.4. Prediction of Treatment Response Using Features from Radiomic Zone-3

Based on SUVmax, SUVmean, MTV, and TL, there were three, four, two, and four fea-
tures from radiomic zone-3 that were able to distinguish responders from non-responders
to ADT (Figure 4). The shape feature category comprised one, one, two, and two fea-
tures that distinguished between different treatment response groups based on SUVmax,
SUVmean, MTV, and TL, respectively. Moreover, the first-order, diagnosis, and glcm cate-
gories comprised one feature each that distinguished between different treatment response
groups. We identified two features extracted from at least three of the four traditional
PET parameters that successfully predicted treatment response (Table 3). They included
diagnostics_Mask-interpolated_Minimum (p = 0.019/0.023/0.038 for SUVmax, SUVmean,
and TL, respectively) and shape_Sphericity (p = 0.012/0.004/0.034 for SUVmax, SUVmean,
and MTV, respectively). The diagnostics_Mask-interpolated_Minimum feature in radiomic
zone-3 expresses the minimum SUV measured in the entire prostate gland, with the ex-
clusion of tumor volume. The shape_Sphericity feature is a mathematical quantity that
compares the morphology of an object to that of a perfect sphere. The shape_Sphericity of
a perfect sphere is equal to one.

3.5. Surface Volume Ratio in the Three Radiomic Zones

On analyzing the features that distinguished responders from non-responders to ADT,
we found that shape_SurfaceVolumeRatio (SVR) was simultaneously present in all of the
three radiomic zones. Specifically, SVR successfully predicted treatment response according
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to RR changes based on MTV (p = 0.017) and TL (p = 3.49 × 10−4) in radiomic zone-1;
SUVmax (p = 0.017) and SUVmean (p = 0.018) in radiomic zone-2; and SUVmax (p = 0.01)
and MTV (p = 0.027) in radiomic zone-3, respectively (Table 3).

4. Discussion

Prediction of response to ADT prior to treatment initiation is a difficult task. In
this study, we were able to identify several features from prostate radiomic zones that
were able to successfully predict response to ADT in patients with PCa. As expected,
the highest number of predictive features was identified within radiomic zone-1 (i.e., the
metabolic tumor zone; Figure 5). Specifically, seven features extracted from at least three
of the four traditional PET parameters were significantly associated with ADT outcomes.
Responders to ADT were more likely to have lower glcm_idmn, glcm_idn, glcm_imc1,
glrlm_rln, gldm_dn, and shape_MeshVolume values as well as higher ngtdm_Contrast
values (Table 4). Of note, five of these features (i.e., glcm_idmn, glcm_idn, glcm_imc1,
ngtdm_Contrast, and glrlm_rln) were associated with the texture distribution properties
of PET images [43] which are in turn strongly correlated with intra- and inter-tumor
heterogeneity [44–46] and treatment response [26].
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A strength of this study is that the analysis of predictive radiomic features was not
limited to the main metabolic tumor zone (i.e., zone-1). Accordingly, certain features from
both zone-2 and zone-3 were also able to distinguish between treatment response groups.
Findings from zone-2 suggested that responders to ADT were more likely to have lower
shape_MinoAxisLength and higher gldm_sdlgle values, whereas data from zone-3 revealed
that the ADT response group had lower diagnostics_Mask-interpolated_Minimum and
higher shape_Sphericity values (Table 4). These results indicate that radiomic characteris-
tics extracted from peripheral prostatic zones may also have value in the prediction of ADT
response. We have previously shown that distinct radiomic zones are useful for classifying
patients with PCa in different risk groups [35]. In another study, Rodrigues et al. [47]
demonstrated that features extracted from tumor-surrounding regions are strongly associ-
ated with Gleason scores. By taking zone-2 and zone-3 into account, we extracted as much
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radiomics information as possible to assist prediction of ADT treatment outcomes during
the pretreatment phase.

Table 4. Medians and interquartile ranges (IQRs) of predictive features identified within radiomic
zone-1, zone-2, and zone-3 in responders and non-responders to androgen deprivation therapy.

Feature Responders/Non-Responders (Median ± IQR)

Zone-1 SUVmax SUVmean

glcm_idmn 0.948 ± 0.036/0.970 ± 0.022 0.947 ± 0.036/0.968 ± 0.019

glcm_idn 0.850 ± 0.054/0.890 ± 0.043 0.850 ± 0.053/0.885 ± 0.037

glcm_imc1 −0.480 ± 0.213/−0.232 ± 0.168 −0.473 ± 0.341/−0.196 ± 0.096

ngtdm_Contrast 0.853 ± 1.892/0.153 ± 0.494 0.853 ± 2.144/0.210 ± 0.477

glrlm_rln 211.2 ± 247.7/362.1 ± 1019.3 206.9 ± 226.4/528.9 ± 908.7

gldm_dn 114.0 ± 104.5/196.3 ± 81.12 93.42 ± 98.73/97.44 ± 214.4

shape_MeshVolume 4616 ± 6799/9411 ± 23988 4460 ± 5463/13,303 ± 20721

shape_SurfaceVolumeRatio 0.451 ± 0.159/0.396 ± 0.262 0.451 ± 0.155/0.354 ± 0.241

Zone-2

gldm_sdlgle 0.034 ± 0.0225/0.020 ± 0.0165 0.034 ± 0.024/0.0216 ± 0.015

shape_MinoAxisLength 39.18 ± 12.64/46.90 ± 6.837 38.43 ± 12.71/47.00 ± 7.060

shape_SurfaceVolumeRatio 0.558 ± 0.218/0.368 ± 0.108 0.509 ± 0.279/0.426 ± 0.191

Zone-3

shape_Sphericity 0.609 ± 0.093/0.525 ± 0.186 0.614 ± 0.091/0.497 ± 0.152

diagnostics_Mask-
interpolated_Minimum 0.204 ± 0.112/0.320 ± 0.163 0.199 ± 0.127/0.299 ± 0.150

shape_SurfaceVolumeRatio 0.173 ± 0.052/0.211 ± 0.081 0.175 ± 0.053/0.197 ± 0.079
Abbreviations: SUV, standardized uptake value; glcm, gray level co-occurrence matrix; idmn, inverse difference moment
normalized; idn, inverse difference normalized; imc1, informational measure of correlation 1; ngtdm, neighboring gray
tone difference matrix; glrlm, gray level run length matrix; rln, run length non-uniformity; gldm, gray level dependence
matrix; dn, dependence non-uniformity; sdlgle, small dependence low gray level emphasis.

Within radiomic zone-2, two features (gldm_sdlgle and shape_MinorAxisLength) suc-
cessfully predicted treatment response. This observation suggests that joint distribution of
small dependency with low-intensity SUV (gldm_sdlgle) and the second-largest axis length
(shape_MinorAxisLength) of each ROI in this zone are associated with treatment outcomes.
This could reflect the paramount role played by the ring region surrounding the primary
tumor volume in limiting cancer spread to both lymph nodes and distant sites. In general,
radiomic zone-2 was characterized by lower SUV values and less heterogeneity compared to
zone-1. Two features from radiomic zone-3 (diagnostics_Mask-interpolated_Minimum and
shape_Sphericity) were also significantly associated with ADT outcomes. Previously, the
same features extracted from 11C-choline PET images successfully differentiated between
high- and low-risk PCa [30]. An interesting observation from our study is that SVR was
the only feature identified as being associated with response to ADT in all of the three
radiomic zones. Specifically, responders to ADT were more likely to show higher SVR
values from both zone-1 and zone-2 and lower SVR values from zone-3 (Table 4). Notably,
Cuocolo et al. [48] have recently demonstrated that SVR was the strongest independent
predictor of clinically significant PCa among all of the MRI shape features taken into account.

There are several limitations to our study. First, its single-center design may have
limited the external validity of the results. Second, only 35 patients were included. A
larger sample size might have improved the power of the study in terms of identifying
between-group differences and, for that reason, larger prospective cohorts are needed. A
longer follow-up is also necessary to confirm our findings and to evaluate whether the
radiomic features identified in our study are correlated with clinical response to ADT.
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5. Conclusions

Seven features extracted from radiomic zone-1 were significantly associated with
ADT outcomes in patients with PCa. Two features from zone-2 and two from zone-3 were
also able to distinguish between different treatment response groups. If independently
validated in larger studies, feature analysis of different radiomic zones within the prostate
gland could be useful to differentiate responders from non-responders before the initiation
of ADT.
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