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Simple Summary: Endometrial cancer is common amongst women and rates are increasing annually.
The diagnosis of this condition for women with bleeding after the menopause is invasive and often
painful with many more women undergoing investigation than needed. A simple, non-invasive
blood or urine test for the diagnosis of endometrial cancer is being sought. This review summarizes
the current research on blood and urine tests and their diagnostic accuracy for detecting endometrial
cancer. Whilst many blood and urine tests have been assessed there is currently no test that has
a similar accuracy to biopsy of the uterine lining. However, this review demonstrates that there
are some potential candidates which need to be explored by larger studies and on bigger groups
of women.

Abstract: Endometrial cancer rates are increasing annually due to an aging population and rising
rates of obesity. Currently there is no widely available, accurate, non-invasive test that can be
used to triage women for diagnostic biopsy whilst safely reassuring healthy women without the
need for invasive assessment. The aim of this systematic review and meta-analysis is to evaluate
studies assessing blood and urine-based biomarkers as a replacement test for endometrial biopsy
or as a triage test in symptomatic women. For each primary study, the diagnostic accuracy of
different biomarkers was assessed by sensitivity, specificity, likelihood ratio and area under ROC
curve. Forest plots of summary statistics were constructed for biomarkers which were assessed by
multiple studies using data from a random-effect models. All but one study was of blood-based
biomarkers. In total, 15 studies reported 29 different exosomal biomarkers; 34 studies reported 47
different proteomic biomarkers. Summary statistic meta-analysis was reported for micro-RNAs,
cancer antigens, hormones, and other proteomic markers. Metabolites and circulating tumor materials
were also summarized. For the majority of biomarkers, no meta-analysis was possible. There was
a low number of small, heterogeneous studies for the majority of evaluated index tests. This may
undermine the reliability of summary estimates from the meta-analyses. At present there is no liquid
biopsy that is ready to be used as a replacement test for endometrial biopsy. However, to the best of
our knowledge this is the first study to report and meta-analyze the diagnostic accuracy of different
classes of blood and urine biomarkers for detection of endometrial cancer. This review may thus
provide a reference guide for those wishing to explore candidate biomarkers for further research.
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1. Introduction

Endometrial cancer (EC) is the most common form of uterine cancer and arises from
the lining of the uterus, known as the endometrium. In 2020, GLOBOCAN the World
Health Organizations’ International Agency for Research on Cancer recorded 417,367 new
cases of uterine cancer and 97,370 deaths making this the fourth most common cancer of
women and the third leading cause of cancer mortality in females after breast and lung
cancer [1]. Incidence in the UK has increased by around 55% since the 1990s with 9700
women diagnosed per year in 2016–2018 [2]. The rise in cases of EC diagnosed annually
is set to increase globally by 30% by the year 2040 [3]. This is likely due to the advancing
age of the population and rising rates of obesity. Currently if diagnosed and treated at
International Federation of Gynecology and Obstetrics [FIGO] Stage I or II, EC 5-year
survival rates are around ~92% and 75%, respectively, whereas advanced stage III and
IV ECs have 5-year survival rates of 48% and 15%, respectively [4–6]. Strategies for early
diagnosis are therefore critical.

Symptoms suspicious for EC are post-menopausal bleeding, unscheduled bleeding
on hormone replacement therapy (HRT), persistent intermenstrual or irregular bleeding,
hematuria or abnormal vaginal discharge. Although EC is less commonly diagnosed in
pre-menopausal women, in the UK, 6.5% of women diagnosed with EC between 2015–2017
were less than 50 years old [7]. In post-menopausal women with bleeding, transvaginal
ultrasound scan (TVS) is performed as a triaging test to assess endometrial thickness (ET).
An ET < 4 mm is associated with an <1% risk of EC [8,9]. For those with an ET > 4 mm, an
endometrial biopsy is recommended as the gold standard diagnosis of EC [8]. However,
in symptomatic perimenopausal or pre-menopausal women with risk factors for EC, the
National Institute of Clinical Excellence recommend hysteroscopy and targeted biopsy in
the first instance as TVS has limited value in women who are still menstruating [10].

Whilst the gold standard of EC diagnosis, endometrial biopsy has an almost 99%
accuracy, the current technique for triaging with ultrasound lacks specificity resulting in
more than 50% of patients needing invasive biopsy [11]. Furthermore, failure to obtain
a biopsy in the outpatient setting is common and occurs in around one third of women,
often due to sampling failure or pain during the investigation [12]. In these patients, repeat
investigations are needed, often under general anesthetic which is not without associated
risks and costs [13]. A simple, easy to administer, non-invasive test that could triage
women with EC for diagnostic biopsy whilst safely reassuring healthy women, would
vastly improve patient care over the current model. The ideal detection tool would be
simple to perform, non-invasive to obtain, accurate in reassuring women without disease
and cost effective to allow implementation as a screening program within the primary
care setting.

‘Liquid biopsy’ has the potential to offer this solution and refers to the sampling and
analysis of non-solid biological tissue for its tumoral elements [14]. These elements might
be circulating tumor cells (CTCs), cell-free tumor DNA (ctDNA), as well as extracellular
vesicles (EVs), microRNAs (miRNAs), mRNA, long noncoding RNAs (lncRNAs), small
RNA, circulating cell-free proteins, and tumor-educated platelets (TEPs) [14]. Many body
fluids can be used for liquid biopsy, however the most non-invasive and widely investigated
fluids are blood and urine. Multiple approaches have been employed in the search for
diagnostic cancer biomarkers. Advances in areas such as proteomics, metabolomics and
genomic sequencing have increased the scope for individual or panels of biomarkers
to be discovered. However, biomarkers must overcome several hurdles before they are
implemented into clinical practice; discovery, validation, and verification [14]. An ideal
biomarker should be accurate and reproducible between laboratories. Its clinical validity
should be reported in terms of sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV). However, between given studies, it is difficult to
compare the performance of one or multiple biomarkers unless they share a fixed false
positive rate. For this reason, the area under the curve (AUC) value of a receiver operator
characteristic (ROC) curve plotting Sensitivity over the False Positive Rate (1- Specificity)
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gives an objective comparison between test performance with one value and is therefore
the best tool of comparison between studies analyzing the same marker [15,16].

The aim of this systematic review is to evaluate studies assessing blood and urine-
based biomarkers as a replacement test for endometrial biopsy or as a triage test to inform
the decision to perform endometrial biopsy. Specific objectives are to provide summary
estimates of the diagnostic accuracy of blood or urinary biomarkers for the diagnosis of
EC compared to endometrial biopsy and to assess the diagnostic utility of biomarkers that
could differentiate between benign and malignant endometrium.

2. Materials and Methods

The study was carried out according to the Cochrane Collaboration recommendations
as well as the Preferred Reporting Items for Systematic Review and Meta-analysis of Diag-
nostic Accuracy Studies (PRISMA-DTA) [17]. This study was registered with PROSPERO,
registration number: CRD42020202191 [18].

2.1. Literature Search

Systematic literature searches were carried out in the NICE Healthcare Databases
Search tool using CINAHL, EMBASE, Medline and Pubmed. The database was searched
from 2000 to January 2022. The search was restricted to English language papers, full text
articles and non- review articles. The search strategy included the following key words:
(endometrial cancer [Title/Abstract]) AND (biomarker [Title/Abstract]. Cross-referencing
of key texts and grey literature (Google Scholar) searches were also carried out.

Titles and abstracts were screened for the eligibility of the study and evaluated by
two different operators (RK, SW). Relevant articles were retrieved in full-text and assessed
against the inclusion criteria. Inclusion criteria were as follows; firstly, studies evaluating
the diagnostic accuracy of either blood or urine biomarkers for EC detection; second, those
studies diagnosing EC using endometrial histopathological assessment as the reference
test; third, those studies reporting AUC as well as sensitivity and specificity and fourth
those studies comparing a control group cohort without EC. Reviews, letters, conference
reports, and duplicated publications were excluded to make sure only primary publications
of original studies were included. Studies not reporting diagnostic accuracy with AUC
and studies where biomarker performance was reported with only grouped markers were
excluded from further analysis. Studies solely reporting HE4 or CA125 where multiple
systematic reviews and meta-analyses have already been published were excluded from
further review [19–22].

2.2. Data Extraction and Quality Assessment

Data was extracted using a standard form that included methods, basic study popula-
tion characteristics, inclusion and exclusion criteria and accuracy of diagnostic tests used.

The risk of bias was evaluated by three independent authors (RK, SW, JC) in each
study using the Diagnostic Precision Study Quality Assessment Tool (QUADAS-2) as
recommended by the Cochrane Collaboration [23]. Any discrepancies between authors
were discussed and the opinion of a third reviewer was sought. The assessment was carried
out with use of the Review Manager Software (Version 5.4, The Cochrane Collaboration,
London, UK, 2020).

Each study was deemed to be at ‘low’, ‘high’ or ‘unclear’ risk for each of four domains.
Studies were deemed as having low methodological quality when they were at high or
unclear risk of bias or when there was high concern regarding applicability in at least in
one domain. The original signaling question, ‘Was a case-control design avoided?’ was
amended to ‘Was a two-gate design avoided?’ in agreement with the Cochrane study
of Nissenblat et al., 2016 [24]. Diagnostic accuracy studies are cross-sectional in nature,
comparing an index test with the reference standard in the same group of participants.
Study investigators measure the parameters at a single point in time and classify the groups
by the outcome of the reference standard test. Therefore, unlike in epidemiological studies,
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the terminology ‘cohort’ and ‘case- control’ is less informative so ‘single-gate’ and ‘two-gate’
design was subtitled. This question was included because a two-gate design has more
potential to introduce selection bias and overestimate accuracy of a given biomarker [25].

2.3. Statistical Analysis

For each primary study, a diagnostic accuracy of different biomarkers was assessed by
sensitivity, specificity, likelihood ratios and area under ROC curve with their 95% confidence
intervals. It is common that primary studies report sensitivity and specificity for a study-
specific cut off. AUC cannot be generated where source data is not available and thus it
was necessary for inclusion criteria for this to be reported. Where the AUC 95% confidence
interval (CI) was not reported in the text, study authors were contacted individually for
missing data. Where no response was received the decision to calculate the standard error
of the mean using non-parametric Wilcoxon’s statistics was assessed individually [15,26].
If study numbers of cases and control patients reached less than 60 and no 95% CI for AUC
was reported, the reliability of this method was deemed suboptimal and hence the paper
was excluded from meta-analysis. A weighted summary AUC was calculated with the
assumption of non-homogeneity and non-normality of empirical sensitivity and specificity
as reported by Zhou et al. [15]. Forest plots of summary statistics were constructed using
the data from the random-effect models. The heterogeneity of the studies was established
by using Cochran’s heterogeneity statistics Q, which was calculated as the weighted sum
of squared differences between the individual study effects and pooled effect across the
studies [27]. I2, assesses the percentage of variation across individual studies that is due to
heterogeneity rather than chance and does not depend on the number of studies included
in the meta-analysis [27]. Values (I2) of 0–40% might be insignificant, 30–60% considered as
moderate, 50–90% substantial and 75–100% considerable. Publication bias was evaluated
by the Egger regression and Beggs’ correlation tests with funnel plots [27]. Analyses were
carried out with MedCalc software (MedCalc Software 20.112, Ostend, Belgium).

3. Results

The literature search of MEDLINE, EMBASE and PUBMED yielded 1951 citations.
A total of 56 studies were included in the systematic review. Publications were then
grouped by biomarker category into publications relating to exosomal biomarkers, pro-
teomic biomarkers, metabolomic biomarkers and circulating tumor materials (CTMs).
Proteomic biomarkers were further sub-categorized. Those biomarkers that were reported
in studies on two or more occasions were included for meta-analysis. Those biomarkers
reported by one study only were included in the systematic review and tabulated in order
of test performance statistics. A flow diagram of the literature review is shown in Figure 1
in accordance with PRISMA guidance [28].

3.1. Assessment of Quality and Heterogeneity of Studies

The methodological quality of studies was assessed using the QUADAS-2 for exo-
somal, proteomic, metabolomic and studies discussing circulating tumor material. Data
was inputted and tabulated graphically as seen in Figures 2–5. The key area of concern
for multiple studies was the patient selection domain where a two-gate study design
was chosen.
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3.2. Meta-Analysis of Exosomal Biomarkers

15 studies reported 29 different exosomal biomarkers and studied a total of 5527 pa-
tients of which 2530 had a diagnosis of EC and 2456 were non-cancerous control group
patients. All biomarkers were obtained by blood sample. The control groups consisted of
healthy women with normal endometrium as well as those with benign endometrial lesions
such as polyps and fibroids. Only studies of micro-RNA 21, 27a, and 223 were suitable
for meta-analysis after meeting the inclusion criteria [29–35]. None of the included studies
reported positive predictive values (PPV) or negative predictive values (NPV) (Table 1).
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Table 1. Summary table of performance of Micro-RNAs for detection of endometrial cancer.

Authors m-RNA Cases (n) Controls
(n) AUC 95% AUC Sensitivity Specificity

Acceptable performance

Fan et al., 2021 1 [36] 484 92 102 0.644 0.566 to 0.722 - -

Fan et al., 2021 1 [36] 204-5p 92 102 0.668 0.592 to 0.743 - -

Fan par. 2021 1 [36] 195-5p 92 102 0.669 0.593 to 0.745 - -

Fan et al., 2021 1 [36] 143-3p 92 102 0.677 0.602 to 0.751 - -

Fan et al., 2021 1 [36] 423-3p 92 102 0.689 0.611 to 0.767 - -

Montagnana et al., 2016 1 [35] 186 46 28 0.700 0.580 to 0.830 - -

Good performance

Montagnana et al., 2016 1 [35] 222 46 28 0.720 0.590 to 0.850 - -

Jiang et al., 2016 1 [37] 887-5p 20 20 0.728 0.563 to 0.892 0.950 0.600

Jia et al., 2013 1 [34] 204 26 22 0.740 0.594 to 0.885 - -

Schuhn et al., 2022 1 [38] 200c 20 157 0.740 0.666 to 0.815 1.000 0.573

Torres et al., 2012 1 [39] 100 34 14 0.740 0.592 to 0.897 0.640 0.790

Fan et al., 2021 1 [36] 20b-5p 92 102 0.756 0.689 to 0.823 - -

Wang et al., 2014 1,2 [32] 15b 31 33 0.767 0.653 to 0.882 0.740 0.697

Schuhn et al., 2022 1 [38] 320b 20 157 0.774 0.702 to 0.845 0.950 0.659

Schuhn et al., 2022 1 [38] 652 20 157 0.775 0.651 to 0.859 0.900 0.598

Fang et al., 2018 1 [40] 93 176 100 0.781 0.724 to 0.842 - -

Torres et al., 2012 1 [39] 199b 34 14 0.786 0.642 to 0.892 0.790 0.710

Schuhn et al., 2022 1 [38] 375 20 157 0.796 0.712 to 0.880 0.850 68.700

Excellent performance

Torres et al., 2012 1 [39] 99a 34 14 0.810 0.669 to 0.909 0.760 0.790

Tsukamoto et al., 2015 1 [30] 30a-3p 28 28 0.813 0.638 to 0.987 - -

Jia et al., 2013 1 [34] 222 26 22 0.837 0.726 to 0.948 - -

Jia et al., 2013 1 [34] 186 26 22 0.865 0.755 to 0.974 - -

Torres et al., 2013 1 [41] 449a 34 14 0.879 0.814 to 0.943 - -

Torres et al., 2013 1 [41] 1228 34 14 0.890 0.829 to 0.951 - -

Outstanding performance

Tsukamoto et al., 2015 1 [30] 135b 28 28 0.972 0.913 to 1.00 - -

Wang et al., 2018 2 [42] 29-b 356 149 0.976 0.951 to 1.00 0.960 0.979

Ghazala et al., 2021 1 [21] 150-5p 36 36 0.982 0.955 to 1.00 0.890 1.000

Zheng et al., 2019 1,2 [43] 93 100 100 0.990 0.976 to 1.00 0.930 0.970

Montagnana et al., 2016 1 [35] 204 46 28 1.000 - - -

Tsukamoto et al., 2015 1 [30] 205 28 28 1.000 - - -
1 Controls with normal endometrium. 2 Controls with benign lesions (polyps). AUC: Area Under the Curve;
CI: Confidence Interval.

3.2.1. Micro RNA-21

Three studies examined the diagnostic accuracy of MiRNA 21 as a biomarker for
the diagnosis of EC (Figure 5, Table 2). The study by Gao et al., 2016 examined test
performance against two control cohorts, one with healthy endometrium and one cohort
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with benign endometrial changes [29]. Sensitivity and specificity varied between the studies
(0.640–0.850 and 0.760–0.920, respectively). The summary weighted AUC was deemed
excellent at 0.825 (95%CI 0.735–0.915, p < 0.001). There was considerable heterogeneity
between studies as seen by a Q-test score of 13.4 and I2 of 77.6%.

Table 2. Summary table of the performance of Micro-RNA 21.

Author Cases (n) Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Gao et al., 2016 [29] 50 50 0.710 0.598 to 0.822 0.640 0.760 - -

Tsukamoto et al.,
2015 [30] 12 12 0.757 0.543 to 0.971 - - - -

Gao et al., 2016 [29] 50 50 0.831 0.738 to 0.924 0.700 0.920 - -

Bouziyane et al.,
2021 [31] 71 54 0.925 0.870 to 0.980 0.850 0.868 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.2.2. Micro-RNA 27a

Mi-RNA 27a was assessed by two studies, Wang et al., 2014 and Ghazala et al., 2021
(Table 3) [32,33]. The study by Wang examined test performance against a control cohort
with both normal and benign endometrial changes. The study by Ghazala included a
control cohort with normal endometrium only. The summary weighted AUC was out-
standing and calculated at 0.925 (95%CI 0.801–1.000, p < 0.001) (Figure 5). There was
considerable heterogeneity between studies as seen by both the Q test and I2 test (10.3 and
90.3%, respectively).

Table 3. Summary table of the performance of Micro-RNA 27a.

Author Cases (n) Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Wang et al., 2014 [32] 31 33 0.813 0.699 to 0.927 0.770 0.818 - -

Ghazala et al., 2021 [33] 36 36 1.000 1.000 to 1.000 1.000 1.000 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.2.3. Micro-RNA 223

Mi-RNA 223 was reported by three studies (Table 4) [32,34,35]. The summary weighted
AUC for Mi-RNA 223 was excellent at 0.813 (95%CI 0.735 to 0.890, p < 0.001). Tests for
heterogeneity showed moderate heterogeneity between studies (Q = 4.12, I2 = 51.5%).

Table 4. Summary table of the performance of Micro-RNA 223.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Jia et al., 2013 [34] 26 22 0.727 0.576–0.878 0.084 - - -

Wang et al., 2014 [32] 31 33 0.768 0.650–0.886 0.065 0.650 0.818 -

Montagnana et al.,
2016 [35] 74 28 0.880 0.795–0.965 0.043 - - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.
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3.3. Protein Based Biomarkers

There were 35 studies reporting 47 different proteomic biomarkers (after the exclusion
of CA-125 and HE-4 as previously described) and a total of 3526 patients of which 1483
had a diagnosis of EC and 2043 were non-cancerous control group patients [44–79]. A
total of 34 studies were assessing blood-based biomarkers and one study a urine derived
biomarker [64]. The control groups comprised of healthy women with normal endometrium
as well as those with benign endometrial lesions such as polyps and fibroids. The summary
of the diagnostic accuracy and performance of those biomarkers is outlined in Table 5. For
the purpose of meta-analysis, proteomic markers were classed as cancer antigens (CA-15.3,
CA-19.9, CA-72.4, CEA), hormones (leptin, visfatin, prolactin) and other proteomic markers
(G-CSF, YKL-40 and DJ-1).

Table 5. Summary table of the performance of all proteins not eligible for inclusion in meta-analysis.

Author Biomarker Cases
(n)

Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Poor performance

Lin et al., 2021 [44] AFP 101 475 0.490 0.385–0.594 0.710 0.345 - -

Moore et al., 2008 1 [45] SMRP 156 171 0.505 0.443–0.568 - - - -

Lin et al., 2021 [44] SCC-Ag 101 475 0.512 0.407–0.617 0.903 0.208 - -

Lawicki et al.,
2012 1,2 [46] IL-3 65 40 0.527 0.413–0.641 0.800 0.980 0.830 0.430

Kim et al., 2012 1 [47] NLR 238 596 0.539 0.495–0.583 - 0.512 0.591 -

Lawicki et al.,
2012 1,2 [46] GM-CSF 65 40 0.557 0.445–0.669 0.140 0.930 0.750 0.430

Unuvar et al., 2020 [48] TNC 38 21 0.575 0.440–0.703 0.605 0.619 0.742 0.464

Acceptable performance

Orywal et al., 2013 [49] Total
ADH 40 52 0.623 0.507–0.739 0.690 0.770 0.620 0.610

Unuvar et al., 2020 [48] Neopterin 38 21 0.633 0.498–0.755 0.447 0.857 0.850 0.462

Kim et al., 2012 1 [47] Neutrophil 238 596 0.641 0.598–0.684 - 0.794 0.237 -

RosKar et al., 2021 [50] Tie-2 36 36 0.652 0.525–0.779 - - - -

Cymbaluk-Ploska
et al., 2020 [51] FGF23 98 84 0.660 0.582–0.738 - - - -

Torres et al., 2019 [52] EpCAM 45 20 0.667 0.540–0.780 0.420 0.950 0.021 0.998

Unuvar et al., 2020 [48] Periostin 38 21 0.668 0.533–0.785 0.526 0.857 0.870 0.500

Cymbaluk-Ploska
et al., 2018 [53]

Galectin-
3 92 76 0.680 0.600–0.760 0.670 0.700 - -

Orywal et al.,
2013 1,2 [49] ADH1 40 52 0.682 0.570–0.793 0.600 0.630 - -

Kim et al., 2012 1 [47] MNM 238 596 0.696 0.655–0.737 - 0.629 0.691 -

Ge et al., 2020 [54] Fibrinogen 127 96 0.690 0.625–0.724 0.925 0.244 - -
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Table 5. Cont.

Author Biomarker Cases
(n)

Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Good performance

Lin et al., 2020 [44] GP6 94 112 0.700 0.630–0.770 - - - -

Kim et al., 20121 [47] Monocyte 238 596 0.706 0.665–0.747 - 0.550 0.773 -

Ge et al., 2020 [54] Fibrinogen 127 96 0.717 0.654–0.779 0.945 0.346 - -

Lin et al., 2020 [44] GP4 94 112 0.720 0.650–0.790 - - - -

Lin et al., 2020 [44] GP12 94 112 0.730 0.660–0.800 - - - -

Omer et al., 2013 [49] SAA 64 34 0.730 0.600–0.860 0.687 0.586 0.786 0.459

Unuvar et al., 2020 [48] IDO 38 21 0.733 0.602–0.840 0.868 0.571 0.786 0.706

Lin et al., 2020 [55] GP14 94 112 0.740 0.680–0.810 - - - -

Lawicki et al.,
2012 1,2 [46] SCF 65 40 0.751 0.659–0.843 0.430 0.930 0.900 0.530

Cho et al., 20091 [56] Osteopontin 56 154 0.758 0.678–0.838 0.627 0.779 - -

Cymbaluk-Ploska
et al., 2019 [57]

Lipocalin-
2 52 67 0.760 0.660–0.850 0.840 0.780 - -

Kiseli et al., 2018 [58] pro-GRP 37 32 0.775 0.667–0.882 0.607 0.814 0.680 0.761

Cymbaluk-Ploska
et al., 2017 [59] MMP2 62 50 0.790 0.707–0.873 0.680 0.860 - -

Lawicki et al.,
2012 1,2 [46] M-CSF 65 40 0.794 0.710–0.878 0.690 0.930 0.940 0.680

Nishikawa et al.,
2012 1 [60]

GRO
alpha 39 38 0.799 0.699–0.899 - - - -

Excellent performance

Cymbaluk-Ploska
et al., 2020 [51] FGF21 98 84 0.810 0.748–0.872 - - - -

Wang et al., 2019 [61] Adiponectin 53 98 0.814 0.747–0.881 0.857 0.726 - -

Cymbaluk-Ploska
et al., 2018 [53]

Omentin-
1 92 76 0.820 0.678–0.838 0.850 0.790 - -

Baser et al., 2013 2 [62] SPAG9 63 37 0.820 0.739–0.901 0.740 0.830 0.880 0.645

Jiang et al., 2019 [63] TOPO48 80 80 0.826 0.743–0.913 - - - -

Stockley et al.,
2020 [64] MCM5 * 41 58 0.830 0.740–0.920 0.878 0.759 - -

Torres et al., 2019 [52] CD44 45 20 0.834 0.710–0.920 0.490 1.000 1.000 0.998

Takano et al.,
2010 1 [65]

m/z
28000 40 40 0.860 0.777–0.943 0.943 - - -

Cymbaluk-Ploska
et al., 2018 [53] Vaspin 92 76 0.860 0.804–0.916 0.890 0.830 - -

Takano et al.,
2010 1 [65] m/z 6680 40 40 0.880 0.803–0.957 - - - -

Takano et al.,
2010 1 [65] m/z 9300 40 40 0.880 0.039–0.803 0.957 - - -

Deng et al., 2020 [66] COX2 61 32 0.887 0.822–0.952 0.951 0.719 - -
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Table 5. Cont.

Author Biomarker Cases
(n)

Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Outstanding performance

Torres et al., 2019 [52] TGM2 45 20 0.901 0.790–0.970 0.780 1.000 1.000 0.999

Takano et al.,
2010 1 [65] m/z 3340 40 40 0.920 0.032–0.857 0.983 - - -

Zeng et al., 2016 [67] IL-33 160 160 0.929 0.860–0.998 - - - -

Deng et al., 2020 [66] wnt3a 61 32 0.931 0.881–0.981 0.967 0.812 - -

Ciortea et al.,
2014 1 [68] IL-8 44 44 0.940 0.888–0.992 - - - -

Troisi et al., 2017 1 [69] Progesterone 88 80 0.965 0.925–1.000 - - - -

Zeng et al., 2016 1 [67] IL-31 160 160 0.973 0.945–0.998 - - - -

Troisi et al., 2017 1 [69]
Lactic
Acid 88 80 1.000 - - - - -

1 Controls with normal endometrium. 2 Controls with benign lesions (polyps). * Urine derived biomarker. AUC:
Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predictive value.

3.3.1. Cancer Antigens—CA 15-3

CA 15-3 was reported by three studies (Table 6) [48,55,70]. In the study of Unuvar
et al., 2020, the diagnostic accuracy of CA 15-3 was assessed against healthy controls with
normal endometrium as well as those with benign endometrial changes [48]. The summary
weighted AUC showed good performance reporting 0.608 (95%CI 0.536–0.681 p < 0.001)
(Figure 6). Tests for heterogeneity between studies showed insignificant heterogeneity
(Q = 1.271, I2 = 0.00%; 95%CI: 0.00–69.53).

Table 6. Summary table of the performance of CA 15-3.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Nithin et al., 2018 [70] 38 40 0.630 0.506–0.754 0.447 0.825 0.708 0.611

Unuvar et al., 2020 [48] 38 21 0.593 0.457–0.719 0.526 0.714 0.769 0.455

Lin et al., 2020 [55] 101 475 0.600 0.496–0.705 0.613 0.593 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.3.2. Cancer Antigen—CA 19-9

CA 19-9 was reported by five studies (Table 7) [48,54,55,67,71]. There was a lot of vari-
ation in reporting sensitivity and specificity amongst the studies (0.290 to 0.945 and 0.047 to
1.000, respectively) with Bian et al., 2017 not reporting sensitivity for any markers [71]. The
summary weighted AUC for CA 19-9 was acceptable and calculated at 0.621 (95%CI 0.539
to 0.702, p < 0.001) (Figure 6). Cochrane Q and I2 tests showed considerable heterogeneity
between studies (Q = 13.51, I2 = 85.19%; 95%CI: 56.38–94.97).
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Table 7. Summary table of the performance of CA 19-9.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Zeng et al., 2016 [67] 160 160 0.751 0.645–0.857 0.813 0.479 - -

Bian et al., 2017 1 [71] 105 87 0.510 0.423–0.572 0.163 - 0.510 0.590

Ge et al., 2020 [54] 96 31 0.681 0.615–0.746 0.945 0.047 - -

Unuvar et al., 2020 [48] 38 21 0.528 0.393–0.659 0.290 1.000 1.000 0.438

Lin et al., 2020 [55] 101 475 0.620 0.498–0.743 0.548 0.747 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predictive
value. 1 Wilcoxon statistics used where no 95% CI reported.

3.3.3. Cancer Antigen—CA 72-4

CA 72-4 was reported by three studies (Table 8) [45,71,72]. The summary weighted
AUC for CA 72-4 was good at 0.666 (95%CI 0.488 to 0.845, p < 0.001) (Figure 6). There was
significant heterogeneity between studies (Q = 53.99, I2 =96.30%; 95%CI: 92.19–98.24).

Table 8. Summary table of the performance of CA-72-4.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Moore et al., 2008 [45] 156 171 0.550 0.487–0.614 - - - -

Bian et al., 2017 [71] 105 87 0.561 0.497–0.623 0.113 - 0.500 0.650

Karataş et al., 2018 [72] 41 21 0.893 0.815–0.971 0.976 0.714 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.3.4. Cancer Embryonic Antigen (CEA)

CEA was reported by five studies (Table 9) [48,55,67,70,73]. The summary weighted
AUC for CEA was acceptable, at 0.607 (95%CI 0.542 to 0.671, p < 0.001) (Figure 6). There
was moderate heterogeneity between studies (Q = 6.969, I2 = 42.60%; 95%CI: 0.00–78.90).
There was marked inconsistency in reported sensitivity and specificity between the studies
(0.342 to 0.882 and 0.427 to 0.950, respectively).

Table 9. Summary table of the performance of CEA.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Omer et al., 2013 [73] 64 34 0.550 0.410–0.690 0.587 0.427 0.698 0.316

Zeng et al., 2016 [67] 160 160 0.644 0.524–0.764 0.800 0.457 - -

Nithin et al., 2018 [70] 38 40 0.628 0.504–0.752 0.342 0.950 0.867 0.603

Unuvar et al., 2020 [48] 38 21 0.709 0.576–0.820 0.474 0.905 0.900 0.487

Lin et al., 2021 [55] 101 475 0.513 0.412–0.619 0.882 0.236 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.4. Homonal Biomarkers
3.4.1. Leptin

Leptin was reported by three studies (Table 10) [50,51,53]. The summary weighted
AUC for leptin was good at 0.757 (95%CI 0.882 to 0.531, p < 0.001) (Figure 7). There was
moderate to substantial heterogeneity between studies as shown by Cochran Q (Q = 5.0851)
and I2 statistics, I2 = 60.67% (95%CI: 0.00–88.79).
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Table 10. Summary table of the performance of Leptin.

Author Cases (N) Controls
(N) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Cymbaluk-Ploska
et al., 2018 [53] 92 76 0.790 0.723–0.857 0.840 0.720 - -

Cymbaluk-Ploska
et al., 2020 [51] 98 84 0.790 0.725–0.855 0.820 0.710 - -

RosKar et al., 2021 [50] 36 36 0.634 0.506–0.762 - - - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.
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3.4.2. Prolactin

Prolactin was reported by two studies (Table 11) [70,74]. The summary weighted AUC
for Prolactin was excellent at 0.826, unfortunately however with wide confidence interval
(95%CI 0.576 to 1.000, p < 0.001) as shown in Figure 7. There was considerable heterogeneity
between studies (Q = 33.036, I2 =96.98%; 95%CI: 92.09–98.84). There was also considerable
disparity in reported sensitivity between the studies (0.386 and 0.983).
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Table 11. Summary table of the performance of Prolactin.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Nithin et al., 2018 [70] 38 40 0.634 0.510–0.758 0.386 0.875 0.737 0.593

Yurkovetsky et al.,
2007 [74] 115 135 0.997 0.990–1.004 0.983 0.980 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.4.3. Visfatin

Visfatin was reported by two studies (Table 12) [61,76]. The summary weighted AUC
for Visfatin was poor, 0.552 (95%CI 0.471 to 0.633, p < 0.001) (Figure 7). Additionally, there
was a substantial heterogeneity between studies (Q = 3.683, I2 = 72.85%; 95%CI: 0.00–93.89).

Table 12. Summary table of the performance of Visfatin.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Tian et al., 2013 [75] 120 70 0.603 0.528–0.677 0.758 0.567 - 0.542

Wang et al., 2018 [61] 53 98 0.484 0.388–0.579 - - - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.5. Other Proteomic Markers
3.5.1. YKL-40

YKL-40 was reported by six studies (Table 13) [48,72,76–79]. The summary weighted
AUC for YKL-40 was good, calculated at 0.757 (95% CI 0.667–0.848, p < 0.001)
(Figure 8) [48,70,74–77]. There was a considerable heterogeneity amongst the studies
(Q = 23.8, I2 = 78.98%; 95%CI: 53.94–90.41). There was a significant variation in reported sen-
sitivity and specificity amongst the studies (0.366 to 0.940 and 0.571 to 0.952, respectively).

Table 13. Summary table of the performance of YKL-40.

Author Cases (N) Controls
(N) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Fan et al., 2013 [76] 50 50 0.807 0.709–0.905 0.735 0.816 0.694 0.844

Kemik et al., 2016 [77] 34 60 0.823 0.740–0.906 0.940 0.480 - -

Kotowicz et al., 2017 [78] 41 21 0.804 0.726–0.900 0.689 0.800 - -

Diefenbach et al., 2017 [79] 34 44 0.870 0.785–0.955 0.760 0.930 - -

Karataş et al., 2018 [72] 74 25 0.659 0.521–0.797 0.366 0.952 0.938 0.435

Unuvar et al., 2020 [48] 38 21 0.517 0.383–0.649 0.605 0.571 0.719 0.444

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.
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3.5.2. DJ-1

DJ-1 was reported by two studies (Table 14) [80,81]. The summary weighted AUC
of DJ-1 was excellent at 0.925 (95% CI 0.884 to 0.965, p < 0.001) (Figure 8). There was a
substantial heterogeneity between studies (Q = 3.346, I2 = 70.11%; 95%CI: 0.00–93.28).

Table 14. Summary table of the performance of DJ-1.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Di Cello et al., 2017 [80] 101 44 0.890 0.839–0.941 0.753 0.796 0.583 0.894

Benati et al., 2018 [81] 45 29 0.950 0.910–0.990 0.890 0.900 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.5.3. Granulocyte-Colony Stimulating Factor (G-CSF)

G-CSF was reported by two studies (Table 15) [46,50]. The summary weighted AUC
for G-CSF was acceptable at 0.687 (95% CI 0.610to 0.765, p < 0.001) (Figure 8). There was no
significant heterogeneity between studies (Q = 0.8143, I2 = 0.00%; 95%CI: 0.00–0.00).
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Table 15. Summary table of the performance of G-CSF.

Author Cases (n) Controls
(n) AUC AUC

95%CI Sensitivity Specificity PPV NPV

Lawicki et al., 2012
[46] 65 40 0.715 0.618–0.812 0.210 0.930 0.820 0.450

RosKar et al., 2021 [50] 36 36 0.641 0.513–0.769 - - - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.

3.6. Metabolomic Biomarkers

There were 4 studies reporting the diagnostic accuracy of 23 different metabolomic
biomarkers in a total of 669 patients of which 190 had EC and the remainder were non-
cancerous control group patients. All biomarkers were obtained by blood sample. The
control groups comprised of healthy women with normal endometrium as well as those
with benign endometrial lesions such as polyps and fibroids. Two out of four studies
reported findings on endometroid adenocarcinoma only. One study did not specify the
histological subtype of EC. The summary of the diagnostic accuracy and performance of
those biomarkers is outlined in Table 16.

Table 16. Summary table of the performance of metabolites not eligible for inclusion in meta-analysis.

Author Metabolite Cases (n) Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Good performance

Kozar et al.,
2020 4 [82]

1-
Methyladenosine 15 21 0.746 0.576–0.916 0.670 0.810 - -

Schuhn et al.,
2022 1 [38]

One CpG site
at at S100P, 20 157 0.750 0.641–0.858 0.895 0.545 - -

Schuhn et al.,
2022 1 [38]

Tetrade-
Cenoylcarnitine 20 157 0.751 0.647–0.856 0.800 0.690 - -

Kozar et al.,
2020 4 [82] AC 16:1-OH 15 21 0.759 0.577–0.941 0.600 0.950 - -

Kozar et al., 2020
4 [82] Cer 40:1; 2 15 21 0.768 0.610–0.927 0.670 0.810 - -

Schuhn et al.,
2022 1 [38]

One CpG site
at RAPSN 20 157 0.772 0.665–0.889 0.737 0.752 - -

Schuhn et al.,
2022 1 [38] Carnitine 20 157 0.792 0.710–0.873 0.950 0.579 - -

Schuhn et al.,
2022 1 [38] Acetylcarnitine 20 157 0.800 0.715–0.884 0.950 0.608 - -

Excellent performance

Njoku et al.,
2021 2 [83]

3-
Hydroxybutyrate 67 69 0.817 0.737–0.884 - - - -

Schuhn et al.,
2022 1 [83] Malonylcarnitine 20 157 0.819 0.721–0.918 0.800 0.731 - -

Njoku et al.,
2021 2 [83]

1-1- Enyl-
Stearoyl-2

Oleoyl GPE
67 69 0.825 0.750–0.888 - - - -

Njoku et al.,
2021 2 [83]

3-Hydroxy-
Butyrlcarnitine 67 69 0.826 0.752–0.853 - - - -
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Table 16. Cont.

Author Metabolite Cases (n) Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Kozar et al.,
2020 4 [82] Cer 34:1; 2 15 21 0.835 0.705–0.965 0.730 0.810 - -

Njoku et al.,
2021 2 [83]

1-1- Enyl-
Stearoyl-GPE 67 69 0.841 0.767–0.900 - - - -

Njoku et al.,
2021 2 [83]

1-linolenoyl-
GPC 67 69 0.844 0.776–0.909 - - - -

Njoku et al.,
2021 2 [83]

1-(1-enyl-
stearoyl)-2-
linoleoyl-

GPE

67 69 0.853 0.780–0.910 - - - -

Outstanding performance

Njoku et al.,
2021 2 [83]

1-
Lignoceroyl

GPC
67 69 0.910 0.860–0.950 - - - -

Troisi et al.,
2018 3 [69] Stearic Acid 88 80 0.943 0.893–0.979 - - - -

Troisi et al.,
2018 3 [69] Homocysteine 88 80 0.952 0.906–0.989 - - - -

Troisi et al.,
2018 3 [69] Threonine 88 80 0.979 0.933–1.000 - - - -

Troisi et al.,
2018 3 [69] Valine 88 80 0.999 0.995–1.000 - - - -

Troisi et al.,
2008 3 [69] Myristic Acid 88 80 1.000 0.996–1.000 - - - -

1 Tested by electrospray ionisation tandem mass spectrometry (ESI–MS/MS). 2 Tested by mass spectrometry.
3 Tested by gas-chromatography mass-spectrometry. 4 Tested by the ultra-performance liquid chromatography
coupled with triple-quadruple tandem mass spectrometry (UPLC-TQ/MS). AUC: Area Under the Curve; CI:
Confidence Interval; PPV: positive predictive value; NPV: negative predictive value.

3.7. Circulating Tumor Related Material Biomarkers

There were three studies reporting on circulating tumor related materials. Two studies
reported the diagnostic accuracy of circulating cell-free DNA (cCFDNA) and one study re-
ported on Survivin expressing circulating tumor cells (CTC). All biomarkers were obtained
by blood sample. No studies were eligible for meta-analysis. The performance of these
biomarkers is reported in Table 17.

Table 17. Summary table of the performance of circulating tumor not eligible for inclusion in
meta-analysis.

Author Biomarker Cases (n) Controls
(n) AUC AUC 95%CI Sensitivity Specificity PPV NPV

Cicchillitti et al.,
2017 [84] cCFDNA 59 21 0.704 0.632–0.777 0.521 0.839 - -

Jiang et al.,
2019 [63] cCFDNA 80 80 0.791 0.657–0.887 - - - -

Benati et al.,
2020 [85]

Survivin-
expressing

CTC
40 31 0.870 0.790–0.950 0.800 0.807 - -

AUC: Area Under the Curve; CI: Confidence Interval; PPV: positive predictive value; NPV: negative predic-
tive value.
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4. Discussion

Endometrial cancer is one of the most common malignant tumors in females, and
the primary symptom is abnormal vaginal bleeding or discharge. The frequency with
which this symptom occurs and the invasive nature of endometrial biopsy, means that at
present the triage of women with suspected EC is suboptimal for women and clinicians
alike. The optimum biomarker for EC would have a high sensitivity and specificity for
detecting EC compared to benign and healthy controls. It would be utilizable for both
pre-menopausal and post-menopausal women. Those women at low risk of disease could
be reassured without the need for secondary care interventions such as imaging and biopsy.
The ideal receiver-operating characteristic area under curve (AUC) would be close to 1,
with a minimum of 0.7 to indicate clinical utility as a biomarker. An accurate diagnostic
biomarker utilized in primary care could reduce the number of women referred for painful
and costly investigations and indeed might also be used for consideration of screening of
high-risk groups such as women with Lynch Syndrome or those with multiple risk factors.
Hence, the aim of this study was to determine which biomarkers have been assessed for
their diagnostic accuracy to date.

At present, the biomarkers most assessed for their diagnostic accuracy of EC are serum
CA125 and HE4 which have been reviewed by multiple studies and meta-analyses. The
performance of CA 125 is poor in terms of sensitivity and specificity making it unsuitable
for use [20,21]. HE4 may have utility as a diagnostic tool, however it has been assessed
by several meta-analyses and each of these point to considerable heterogeneity within the
data [21,86,87]. Similarities in the data seem to suggest that HE4 may have high specificity
but a lower sensitivity than would be needed as a primary care screening tool.

There have been promising results yielded from studies assessing biomarker panels
and specifically those using spectroscopic techniques [88,89]. The study by Paraskevaidi
et al. assessed the diagnostic accuracy of infrared spectroscopy as a method of detecting EC
with an overall diagnostic accuracy of 0.83 [88]. Spectroscopic techniques do not allow for
analysis of a single biomarker because peaks may be formed by multiple biological entities.
As such, these studies were not eligible for inclusion into this review; however, they are
simple techniques yielding promising results.

This study identified 35 proteomic biomarkers eligible for inclusion, 34 of which
were serum or plasma based and only one was urine based [64]. These included cancer
antigens, hormonal proteins, adipokines, angiogenic growth factors and other proteins.
Cancer antigens CA15-3, 19-9, 72-4 and CEA were included in the systematic review and
meta-analysis [45,48,54,55,67,70–73]. Overall, they displayed poor diagnostic performance
with summary weighted AUC scores of 0.608–0.666, making these unsuitable for use as
diagnostic biomarkers for EC.

Obesity is accompanied by changes in expression of adipose factors that act both
locally and systemically. With the known link between obesity, insulin resistance and EC,
adipokines and hormones such as leptin have become the focus of intense investigation. In
EC, leptin activates STAT3 proteins, which increase their activity in the process of oncogen-
esis by stimulating proliferation, promoting angiogenesis and avoiding the control of the
immune system. There is a positive correlation between leptin levels and body mass index
(BMI). Adiponectin is predominantly secreted by visceral adipose tissue and is the most
abundant adipokine, with circulating concentrations inversely correlated with adiposity.
This review included three studies of leptin and one study of adiponectin [50,51,53,61]. The
diagnostic accuracy of leptin is moderate with a summary ROC of 0.757. Adiponectin
assessed in one study in tandem with Visfatin showed that adiponectin was inversely associ-
ated with EC risk [61]. The AUC of this adiponectin alone was 0.814 and the adiponectin to
Visfatin ratio 0.838 suggesting some potential as diagnostic biomarkers. However, similarly
to other hormones such as FSH, LH, estradiol and prolactin which are also raised markedly
in EC patients, these may be markers of the major risk factors, obesity and polycystic
ovarian syndrome rather than EC itself, thus showing poorer specificity than required of a
screening biomarker. A meta-analysis of the effect of adipokines in obesity driven cancers
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using mendelian randomization supports this conclusion as they failed to find any causal
role between adipocytokines and EC and other obesity driven cancers [90].

G-CSF, YKL-40 and DJ-1, are other markers that have been implicated as biomarkers
for the detection of EC [46,48,50,72,76–81]. Findings from this review suggest these markers
perform well. YKL-40 is poorly understood but appears to be involved in extracellular
matrix remodeling and angiogenesis, promoting cell proliferation, migration, differentia-
tion, and tissue remodeling processes during cellular responses to inflammation [76–79].
The summary weighted AUC for DJ-1 is 0.786, (95%CI 0.667–0.848), however there is high
heterogeneity of 79%.

Exosomes represent a wide group of membrane-bound lipid particles that originate
from the plasma membrane or the endosomal system and are secreted from cells. Exosomes
released from both healthy and cancer cells, are abundant in body fluids and mediate
cell-to-cell communication by shuttling DNA, RNA, lipids, metabolites, and proteins. In
this way, exosomes are implicated in numerous physiological processes but also partici-
pate in the formation of the tumor microenvironment and cancer progression. Of all the
biomolecules contained in exosomes, miRNAs seem to have the most clinical utility in
EC diagnosis. MiRNAs are small non-coding single stranded molecules that regulate all
hallmarks of cancer as defined by Hanahan and Weinberg, including proliferation, invasion,
angiogenesis, as well as influencing cancer cells chemosensitivity [91].

With regard to the review of exosomal biomarkers, 15 studies were eligible for inclu-
sion, and these reported on 29 different exosomal biomarkers and a total of 5527 patients.
Amongst this group 2530 had a diagnosis of EC and 2456 were non-cancerous control-group
patients [29–43]. Only Mi-RNA 21, 27a, and 223 were suitable for meta-analysis as they met
the inclusion criteria and were reported by two or more studies. The summary ROC score
was 0.825 (95% CI 0.735–0.915), 0.925 (95%CI 0.801–1.00), and 0.813 (95%CI 0.735–0.890) for
MiRNA-21, MiRNA 27a and MiRNA-223, respectively. In comparison to HE4, the relatively
high performance of MiRNAs is promising. However, it must be noted that MiRNA 27a
included in a study by Ghazala et al. reported an AUC of 1.00 making it the perfect test
in terms of sensitivity and specificity, positive and negative likelihood ratio [33]. This has
not been replicated and has likely overestimated the performance of this biomarker on
meta-analysis. The only other study by Wang et al., reported much lower AUC of 0.813 [32].
This may potentially be explained by the fact that Ghazala et al. used a healthy control
cohort whereas Wang included a mixed cohort of those women with PMB who had both
benign disease and normal endometrium. Both cohorts were relatively small in size with
under 75 patients in each study and thus results must be interpreted with caution.

To the best of our knowledge this is the first study to report and meta-analyze the
diagnostic accuracy of different classes sole biomarkers obtained by non-invasive biopsy
for detection of EC and thus it may provide a reference guide for those wishing to explore
candidate biomarkers for research or those wishing to assess the current evidence for
implementation into current practice.

However, there are numerous limitations to this review and the evidence summarized
within it. The main limitation is that there were a low number of small, heterogeneous
studies for the majority of the evaluated index tests. It was not apparent from many studies
whether a ‘test-phase’ had been conducted prior to the biomarker validation phase which
is the point at which the diagnostic accuracy should be assessed. This may undermine
the reliability of the summary estimates from the meta-analyses and is likely to have
contributed to the marked variability in AUC and sensitivity and specificity seen for most
index tests. For the vast majority of biomarkers, no meta-analysis was possible. The
decision to meta-analyze using two studies or more was conducted based on numbers
of study participants in each study and not solely on the number of studies conducted.
However, it is evident that there was significant heterogeneity amongst the biomarkers
analyzed. Formal assessments of heterogeneity, such as Eggers’s test were deemed likely
too unreliable given the low number of studies in most evaluations.
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A significant limitation of this review was also that the studies varied with respect
to the control group used, the type, stage and grade of endometrial cancer, the age of
the cohorts assessed and the cut-off thresholds for index tests. Additionally, most of the
included studies evaluated the diagnostic cut-off thresholds using a ROC analysis without
any subsequent validation in an independent cohort. Lack of validation of the diagnostic
data in conjunction with the low number of studies for the majority of the presented
tests contributed to the low quality of evidence presented in this review. A standardized
methodology for fluid biospecimen collection, processing and storage was published in
2014 and would likely improve the quality of studies if adopted for use by future studies.

The variation in the selection of the case and control groups with inclusion of partici-
pants that may not be reflective of the EC population is also a limitation in this systematic
review. The recent change towards molecular classification has shifted clinicians away
from describing EC cell types as just serous, endometrioid or other histological cell types
however some studies made no attempt to sub-classify their EC population other than to
report grade and stage. Subgroup analysis of data was considered but due to the size of
the studies and relative paucity of studies discussing the same biomarker this would have
yielded no more reliable information.

Most studies do not report whether they attempted to reduce selection bias by consec-
utively enrolling participants. More than two-thirds of the included studies (38/56, 68%)
had a two-gate design and included a wide group of participants who underwent surgery
for various indications. Inclusion of healthy asymptomatic individuals or participants with
other pathological conditions represents a potential selection bias with regard to the control
group, which could have biased the test outcomes. The majority of studies involved a
normal healthy control group which was either age-matched or in some cases non-age
matched. This is likely to overestimate diagnostic accuracy of a biomarker more than in
studies where a one-gate design is used and patients with a presenting symptom such as
PMB go on to be part of the case or control group.

We suggest cautious interpretation of the presented results. Although studies demon-
strated diagnostic potential for a number of tests, the level of heterogeneity, wide confidence
intervals and risk of bias in many studies included in this review undermine reliability of
the presented results, and hence these data are insufficient to confidently inform clinical
practice at this stage. Additional biomarkers, reported in individual studies, displayed
diagnostic estimates that qualified for either replacement or triage tests; however, there
were not enough data for a meaningful recommendation on the use of any of these tests. As
with all biomarkers and index tests, the next phase of validation will be to assess diagnostic
accuracy amongst a non-symptomatic, low risk, low prevalence cohort in order to assess its
performance as a true screening test.

5. Conclusions

In conclusion this systematic review and meta-analysis has sought to summarize the
existing literature on the performance of non-invasive biomarkers for suspected EC triage
and diagnosis. There is a clear need for a biomarker with a low false positive rate that can
be used in primary care to reduce the number of unwarranted, invasive investigations. It
has become clear from review that many biomarkers are still at discovery phase, rather than
validation phase and are thus not at a stage where diagnostic accuracy should be assessed.
There is also a high degree of heterogeneity between studies, this is likely due to studies
reporting on different types of EC. Given that the dualistic Bohkman classification of type-1
and type-2 EC fails to adequately differentiate between EC or provide useful estimates
of prognosis, it is likely studies reporting biomarker performance stratified by EC cancer
subtype will demonstrate different biomarkers detecting different subtypes of EC. At the
very least with more literature available, subgroup meta-analysis will become possible.
Furthermore, it is clear from the review of current literature that two-gate study design may
inflate the diagnostic accuracy of the biomarkers studied. Healthy control group patients are
not reflective of the patient population undergoing evaluation of suspected EC. Until there
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is a diagnostic biomarker identified that is likely to be capable of high-performance triage
amongst the symptomatic population, studies at the biomarker discovery or validation
phase should consider inclusion of both healthy and symptomatic control cohorts.

There is wide recognition that an accurate non-invasive test for EC triage is likely to
confer several advantages over the current standard of ultrasound scan and endometrial
biopsy. These potential advantages include a reduction in cost (both in direct medical
costs and in time off work), reduced discomfort, shorter recovery times and a reduction in
the rate of serious complications associated with surgery. Another benefit of an accurate,
non-invasive diagnostic test for EC is the prospect of early diagnosis and timely therapeutic
interventions to minimize disease progression. Whilst this review highlights several
methodological issues with the current body of evidence, there are some promising findings;
exosomal compounds, in particular MiRNAs have shown moderate to good performance
in the limited available data, but perhaps more reassuringly less heterogeneity between
studies. Similarly, amongst proteomic compounds serum YKL-40 and DJ-1 have good
to excellent performance and a next step might be to consider larger scale prospective
evaluation of these biomarkers in order to determine their utility.
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