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Simple Summary: The clinical application of PARPis in patients with ovarian cancer has unre-
solved issues, and whether PARPis can have a similar first-line efficacy to that of platinum-based
chemotherapy is still undefined. This study used the PDX model to explore the above problems. We
demonstrated that the PDX model can reflect PARPi efficacy more accurately than BRCA mutation,
homologous recombination deficiency positivity, and platinum sensitivity. Moreover, the novel
clinical and molecular biomarkers suggested that KRAS overexpression was associated with PARPi
sensitivity. Additionally, ATK1 enrichment could lead to PARPi resistance, and CA125 less than
10 U/mL during chemotherapy can be a potential indicator for the therapeutic use of PARPi. Above
all, PARPis cannot replace platinum-based chemotherapy as first-line treatment in our preclinical
trial, indicating that chemotherapy-free tests in the unselected population are not recommended.

Abstract: (1) The accuracy of patient-derived xenografts (PDXs) in predicting ADP-ribose polymerase
inhibitor (PARPi) efficacy in ovarian cancer was tested, novel biomarkers were investigated, and
whether PARPis could replace platinum-based chemotherapy as a first-line therapy was explored.
(2) PDXs were reconstructed for 40 patients with ovarian cancer, and niraparib, olaparib and pacli-
taxel, and carboplatin (TC) sensitivity tests were conducted. Whole exon sequencing and homologous
recombination deficiency (HRD) scores were performed, and patient clinical information was col-
lected. The molecular biomarkers were identified by reverse-transcription quantitative PCR and
immunoblotting. (3) Niraparib and olaparib sensitivity were tested in 26 patients and showed high
consistency. Approximately half of BRCA wild-type, HRD-negative, and platinum-resistant patients
may benefit from PARPis. AKT1 enrichment indicated PARPi resistance; high KRAS expression
indicated PARPi sensitivity. CA125 below 10 U/mL during chemotherapy has a sensitivity and
specificity similar to platinum sensitivity in predicting PARPi efficacy. Niraparib and TC sensitivity
tests were performed on 23 patients, and TC showed a better response in this preclinical trial. (4) PDX
can indicate individualized PARPi efficacy. Decreased CA125 levels and KRAS and ATK1 expression
levels may be novel biomarkers. The preclinical evidence does not support the implementation of
PARPis as the first-line treatment in an unselected population.
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1. Introduction

Poly ADP-ribose polymerase inhibitors (PARPis) have inspired a new era in epithelial
ovarian cancer treatment, with PARPis serving as targeted drugs that competitively inhibit
the PARP family, kill tumor cells with homologous recombination deficiency (HRD), and
benefit survival [1]. Niraparib and olaparib have been approved by the American Food
and Drug Administration (FDA) as advanced post-first-line treatments and maintenance
therapies for ovarian cancer, given the significant improvement in patient survival [2–7].
China has also recently decided to cover these two medicines with medical insurance for
ovarian cancer patients.

Many questions have surfaced with the wide use of PARPis clinically. Most notably, gy-
necologic oncologists lack evaluation criteria of the clinical efficacy for PARPi maintenance
therapy, and the current molecular and clinical indicators for PARPis, such as BRCA1/2
mutations (BRCA1/2muts), homologous repair deficiency (HRD) status, and platinum
drug response, lack accuracy [8]. PARPis only benefited two-thirds of relapsed patients
with BRCA1/2 mutations [9,10]. The HRD score is a sign of gene scarring. This score
can accumulate over time and cannot reflect the real-time appearance of drug resistance,
such as that of BRCA recovery mutations [11]. Platinum-sensitive patients have genomic
instability due to interstrand crosslink repair deficiency, not HRD [12]. Moreover, wild-type
BRCA1/2 (BRCA1/2wt), HRD-negative (HRD–), and platinum-resistant patients can still
obtain a benefit from PARPis [13–18]. Interestingly, the OReO study demonstrated that
BRCA1/2mut and HRD status lost their close relationship with therapeutic effect as PARPi
treatment lines increased [19,20].

As a result, some patients have to endure the economic burden and suffer from
drug-related adverse reactions, such as bone marrow suppression and digestive system
symptoms, without survival benefits. Furthermore, some lose the opportunity for PARPi
benefits. Finding a method that more accurately reflects the individual efficacy of PARPis
and exploring other clinical and molecular biomarkers are critical for precision treatment
with PARPis.

Another phenomenon that caught our attention was the expanding population benefit
from PARPis. The Ambition (KGOG 3045) clinical study supported the treatment effect
of olaparib in combination with antiangiogenic agents or immunotherapy (PD-L1) on
platinum-resistant advanced ovarian cancer with HRD+ [21]. Even more encouraging,
preliminary data from a multicenter, prospective, phase 2, single-arm clinical study (NANT)
confirmed the efficacy and safety of niraparib monotherapy in neoadjuvant therapy for
advanced ovarian cancer patients who bore unresectable lesions [22,23]. These positive
results have led us to consider the use of PARPis as a first-line treatment and whether
PARPis can replace platinum-based chemotherapy for treating ovarian cancer patients
after surgery.

Patient-derived xenografts (PDXs) can simulate tumor development, evolution, and
drug response. They are considered one of the best preclinical models because they retain
the histopathological, genetic, and tumor microenvironment characteristics of the original
tissue [24]. As such, this study re-established PDX models derived from 40 ovarian cancer
patients randomly selected from our established PDX library [25] and conducted niraparib,
olaparib, and paclitaxel and cisplatin sensitivity tests to evaluate whether PDXs can provide
a more accurate personalized efficacy of PARPis, to search for other clinical and molecular
markers of PARPis, and to explore the possibility of niraparib as a first-line treatment.
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2. Materials and Methods
2.1. Patients

All patients in this study were from the Department of Obstetrics and Gynecology of
Peking Union Medical College Hospital. Informed consent was obtained, and all proce-
dures followed the ethical principles of the Institutional Review Board of Peking Union
Medical College Hospital [25]. Clinical information, including PARPi history, therapeutic
type (maintenance/treatment), treatment scenario (first-line/second-line), and prognostic
information, was updated. Since the median follow-up time was less than two years, the
primary endpoint was progression-free survival (PFS), and the secondary endpoint was
overall survival (OS).

2.2. Establishment of the PDX Models and Performance of Drug Sensitivity Tests

After recovering cryopreserved tumor tissue and implanting a 3 mm × 3 mm × 3 mm
tumor mass into female NOD-Prkdcem1Idmo-Il2rgem2Idmo (NPI) mice aged six to eight weeks,
we monitored tumor volume and body weight regularly. All procedures were conducted
following the ‘Guiding Principles in the Care and Use of Animals’ (China).

Pathological characteristics and the lymphocyte ratio were examined before tissue
cryopreservation [25]. All the tumor tissues of PDX models were compared with the
original tumor tissues for the consistency of pathology and characteristic proteins. The
tumor lymphocyte ratio was detected before cryopreservation of tumor tissues in each
PDX model in order to avoid the change of ovarian cancer tumor tissues into lymphoma.
Leukocytes were identified as CD19+ and CD45+ (CD19 antibody and PE anti-human
CD45 antibody), and samples containing less than 1% leukocytes were qualified for further
mouse-to-mouse transplantation.

Then, a drug sensitivity test was performed when the tumor grew to 200 mm3. Clini-
cally used olaparib (Lynparza, AstraZeneca AB, Cambridge, UK), niraparib (Zejula, Glaxo-
SmithKline, Bingford, UK), paclitaxel (Anzatax, Hospira Australia Pty Ltd., Melbourne,
Australia), and carboplatin (Paraplatin, MYERS SQUIBB AE, Dubai, United Arab Emirates)
were adopted and compared with normal saline (NS), 0.5% methylcellulose (0.5% MC) or
10% HP-β-CD PBS as a vehicle depending on the dissolved reagent.

PDX models generated from the same patient were randomly divided into experimen-
tal and control groups (four repeated in each) and received one of the following treatments:
(1) niraparib 50 mg/kg (qd) or olaparib 75 mg/kg (qd) via intragastric administration;
(2) paclitaxel 30 mg/kg (every four days × 8 cycles) and carboplatin 25 mg/kg (every
five days × 6 cycles) via intravenous injection; or (3) the same volume and approach of the
corresponding vehicle. Mouse body weight and tumor volume were recorded every three
days. The administration was continued until the mice could no longer tolerate the drug,
the tumor reached four times the initial volume, or the administration persisted for more
than 150 days. Then, tumor tissue was harvested after the mice were euthanized.

2.3. Response Evaluation

The best response (%) calculated based on the Modified Response Evaluation Criteria
in Solid Tumors (mRECIST) was used to evaluate PARPi efficacy (Table S1). PFS and OS
in the PDXs were defined as the interval between the start of administration and when the
tumor had doubled and quadrupled in size, respectively [24]. As long as more than half of
the PDX models in the experimental group achieved stable disease (SD), partial response (PR),
or complete response (CR) and the best response or survival in the experimental group was
better than that in the vehicle group, a patient was considered to respond to PARPis.

2.4. WES of Patient Samples and Data Analysis

Tumor and normal tissues were used for whole exon sequencing (WES). The DNA
extraction, gene library establishment, and quality control procedures were the same as
those in our previous article [25]. Paired tumor and normal tissues were used to detect
somatic mutations. The data were analyzed by TCGA-MC3, a scalable open-source scientific
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approach for mutation calling of tumor exomes using multiple genomic pipelines. All
mutations with at least two callers were maintained and annotated by VEP to ensure
accuracy, followed by filtering of noncoding regions, mutations of types 2 and 3 in the
ClinVar (201912) database, and mutations whose frequencies were more significant than
1% among East Asian populations in the ExAC and gnomAD databases to obtain final
somatic mutations. The HaplotypeCaller module of GATK was used to detect germline
mutations, which were further filtered by the officially recommended hard-filter criteria of
SNP/INDEL and the remaining filter conditions, such as somatic mutations. GSITIC2.0
was used to calculate significantly changed regions (Q-value = 0.01) to determine the copy
number variation (CNV) status. DeconstructSigs (R package) based on nonnegative matrix
decomposition was employed to extract 96 somatic mutation patterns, map them onto
30 features, and correlate them to data in the COSMIC (version 2) database to predict
mutation-driving factors. The HRDscore algorithm, which considers genome heterozygous
deletions (LOH), telomere allele imbalances (TAI), and large fragment migrations (LST),
was built by Precision Scientific Co. (Beijing).

2.5. RNA Extraction and RT-qPCR

Tissue was crushed, and total RNA was extracted with TRIzol reagent (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). The mRNA was reverse transcribed into cDNA us-
ing the PrimeScript cDNA Synthesis Kit (Takara Bio, Inc., Kusatsu shi, Japan). Applied
Biosystems SYBR Green Master Mix (Thermo Fisher Scientific, Inc., US) was employed for
qPCR. GAPDH was used as the internal reference. NCBI Primer Blast was used to design
the following primers: GAPDH forward 5′-ACCCAGAAGACTGTGGATGG-3′, reverse 5′-
TCTAGACGGCAGGTCAGGTC-3′; KRAS forward 5′-ACAGGCTCAGGACTTAGCAA-3′, re-
verse 5′-AAGGCATCATCAACACCCAGA-3′; ATK1 forward 5′-CTGCACAAACGAGGGGA
GTA-3′, reverse 5′-TCACGTTGGTCCACATCCTG-3′.

2.6. Protein Extraction and Immunoblotting

Tissue was crushed in RIPA lysis buffer (Beyotime Institute of Biotechnology) with
PMSF (1%) (Beyotime Institute of Biotechnology) and a cocktail (1%) (Roche, Basel, Switzer-
land). This was followed by rotation at 4 ◦C for 60 min and centrifugation at 12,000 rpm
at 4 ◦C for 15 min. Then, the supernatant was obtained. The protein concentration was
determined using a bicinchoninic acid assay kit (LABLEAD). SDS−PAGE loading buffer
(Beyotime Institute of Biotechnology) was added to the protein samples, and then the
samples were boiled at 100 ◦C for 10 min. The 25 µg protein sample was subjected to
SDS−PAGE electrophoresis (4% concentrated gel and 10% separated gel). Then, it was
transferred to a PVDF membrane (EMD Millipore, Burlington, MA, USA), which was
ultimately incubated in 5% skim milk at room temperature for one hour. The sealed PVDF
membrane was then incubated with the following primary antibodies overnight at 4 ◦C:
rabbit anti-actin monoclonal antibody (mAb) (1:1000; ABclonal, cat. no. A2319), rabbit
anti-KRAS polyclonal antibody (pAb) (1:1000; ABclonal, Wuhan, China, cat. no. A1190)
and rabbit anti-AKT1 mAb (1:1000; ABclonal, cat. no. A20799). After elution in TBST
(LABLEAD), the membrane was incubated in HRP-conjugated goat anti-rabbit IgG (H + L)
secondary antibodies (1:5000; ABclonal, cat. no. A5014) at room temperature for one hour.
Enhanced chemiluminescence (Thermo Fisher Scientific, Inc., Waltham, MA, USA) was
used to detect the signal.

2.7. Statistics

Comparisons between the treatment and vehicle groups were performed by Student’s
t-tests or Mann−Whitney U tests (measurement data) and chi-squared tests or Fisher’s
exact tests (ranked data). The kappa coefficient value was used for consistency analysis,
McNemar’s test was used for paired classification data analysis, and the log-rank test and
Kaplan–Meier method were used for survival analysis. All data statistics were calculated
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by SPSS 26.0 (IBM Corporation, Armonk, NY, USA). A p value less than 0.05 was considered
statistically significant.

3. Result
3.1. Patient Characteristics and PARPi Sensitivity Test

Forty patients were enrolled, and the detailed clinical information is depicted in Table
S2. All patients except patient 34 (P34) underwent niraparib sensitivity testing (177 PDXs in
the experimental group and 181 PDXs in the vehicle group), and olaparib sensitivity testing
was performed for 27 patients (109 PDXs in the experimental group and 104 PDXs in the
vehicle group). A total of 26 patients underwent both sensitivity tests simultaneously. The
experimental group achieved superior drug efficacy compared to the vehicle group. This was
indicated by the fact that the niraparib group induced a significantly higher response rate
(59.89% vs. 33.15%, p < 0.001) and median best response rate (47.34% vs. 109.62%, p = 0.001)
compared to the vehicle group, and a similar pattern was observed in the olaparib cohort
(72.48% vs. 33.65%, p < 0.001; 37.06% vs. 113.52%, p = 0.001, respectively) (Figure S1).

3.2. PDX Is a More Accurate Indicator of the Individualized Efficacy of PARPis

Among the 26 patients who underwent both niraparib and olaparib sensitivity tests,
only 4 patients had different efficacy (no significant difference, p = 1.00 and high consistency,
Kappa index = 0.675, p = 0.001) (Figure 1A, Table S3). In addition, all four patients with clear
cell carcinoma (CC) were resistant to PARPis. BRCAmut and HRD+ are relatively reliable
indicators of PARPi sensitivity in primary patients with HGSOC, and platinum sensitivity
seemed to be a decent indicator in relapsing patients (Table S4, and tumor volume changes
of typical patients are depicted in Figure S2). These findings were consistent with clinical
experience and confirmed the repeatability and veracity of PDXs for evaluating PARPi efficacy.
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Figure 1. PDXs can reflect PARPi efficacy. (A) Results of the niraparib (upper row) and olaparib
(lower row) susceptibility tests in PDXs derived from 26 patients. Each square represents a response
to a drug (red: nonresponder; blue: responder), and each column represents a patient (the patient
number is at the bottom). Patients who were treated with PARPis as first-line (B) or second-line
(C) maintenance therapy were divided into the responder (red) and nonresponder (blue) groups
according to the PDX drug sensitivity test, and the differences in PFS between these two groups
were compared. The upper picture depicts the Kaplan–Meier curve and log-rank value between the
responder and nonresponder groups. The lower table shows the number of patients who did not
reach the endpoint at the corresponding time points in each group.

BRCAmut, HRD+, and platinum sensitivity are not accurate indicators of PARPi
response since approximately half of BRCAwt, HRD-, and platinum-resistant primary
patients respond to PARPis. Additionally, none of these indicators significantly increased
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the prediction effect for PARPi benefit (Table S4). The correlation between PARPi efficacy
and BRCAmut and HRD+ was even weaker in relapsed patients (Table S4).

Furthermore, we explored the evaluation efficacy of PDX in patients. Patients who
were clinically treated with PARPis as first-line (13 patients) and second-line (9 patients)
maintenance therapy were included (Table S5). They were divided into two groups ac-
cording to the PARPi response suggested by PDXs. In first-line maintenance patients,
the PARPi-effective group had significantly longer PFS than the PARPi-ineffective group
(Figure 1B). However, this was not observed in patients with second-line maintenance
(Figure 1C) due to a small number of enrolled patients and various second-line treatment
regimens. This suggests that PDXs can screen patients with more significant survival
benefits from PARPis among the population meeting the existing administration indicators.

3.3. Using PDX to Detect Novel Molecular Indicators of PARPis

Patients with WES results and similar sensitivity to olaparib and niraparib were di-
vided into a PARPi-effective group (12 patients) and a PARPi-ineffective group (8 patients),
and the genome characteristics of these groups were compared.

3.3.1. CNVs

The effective group showed enriched Myc amplification and APC deletion (Figures 2A
and S3A). In addition, AKT1 deficiency was significantly enriched in the effective group,
and KRAS deficiency was significantly enriched in the ineffective group (Tables S6 and S7).
The distribution of CNVs in the two groups was slightly different. The chemotherapeutic
resistance-related genes (mainly AKT1 and ERBB1) and EGFR tyrosine kinase inhibitor-
related genes were decreased in the effective group, and multiple tumor driver genes
(mainly Myc) were increased in the ineffective group (Figure 2B).

3.3.2. Gene Mutations

The number of functional loss sites in the effective group was significantly increased
compared with that in the ineffective group (92.25 ± 51.40 vs. 56.63 ± 20.65, p = 0.047)
(Figure S3B). Then, we analyzed driving mutations in epithelial ovarian cancer. TP53
mutations were the most common (63%), followed by NF1 (20%) and NF2 (10%) mutations.
Additionally, these mutations were enriched in the effective group in general, especially
BRCA1/2 mutations (Figure 2C). Nevertheless, no significant difference in gene mutations
was detected (Table S8). In the signature analysis, only age was identified as significantly
different between the effective group (lower) and the ineffective group (higher) (Figure S3C).
Mutual exclusion and coexistence examination of mutated genes highlighted a coexisting
trend of BRCA1-LRP1B and NOTCH1-LATS1 mutations in the effective group, but the
differences were not significant (Figure S3D,H).

3.3.3. Verification by RNA and Protein

Patients in the niraparib responder (P08, P15, P24) and nonresponder (P17, P23,
P32) groups were randomly selected to explore the effects of KRAS and AKT1 on PARPi
efficacy. In both the pre-niraparib and post-niraparib tissues, the RNA levels of KRAS
in the responder group were significantly higher than those in the nonresponder group,
but AKT1 showed no significant difference (before treatment, p = 0.618; after treatment,
p = 0.389) (Figure 2D,E). Therefore, we further explored the change in AKT1 expression after
treatment. After niraparib treatment, the AKT1 level showed an increasing trend, although
there was no statistical significance (Figure 2F). The protein analysis showed similar results.
The KRAS level before treatment in the responder group was significantly higher than that
in the nonresponder group, but there was no significant difference after treatment (p = 0.402)
or in the AKT1 level (before treatment, p = 0.125; after treatment, p = 0.055) (Figure 2G–I).
Similarly, AKT1 levels significantly increased after niraparib treatment, while KRAS levels
significantly decreased after niraparib treatment in the responder group (Figure 2J,K).
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Figure 2. Finding novel molecular biomarkers of PARPis. (A) The copy number variations (CNVs)
in the olaparib and niraparib response groups. The bottom of the figure indicates the chromosome,
the left number is the GISTIC Gscore (CNV frequency multiplied by CNV amplitude), and the right
number is the q-value. The upper figure shows gene deletions (blue), and the lower figure shows
gene enrichments (red). The detailed loci of any statistically significant CNVs (p < 0.01) are labeled.
(B) The cluster analysis of CNVs in the responder and nonresponder groups. (C) Driver mutation
analysis in the responder and nonresponder groups. The RNA (D–F) and protein (G–K) levels of
KRAS and AKT1 were measured in the PDX tumor tissue before and after niraparib administration
in the responder and nonresponder groups (three in each). Differences in KRAS and AKT1 RNA
levels between the responder and nonresponder groups before (A) and after (B) niraparib treatment.
(C) Changes in AKT1 RNA levels before and after niraparib treatment in the same patient. (D) The
immunoblotting result, followed by the analysis of its gray values. Differences in KRas and Akt1
protein levels between the responder and nonresponder groups before (E) and after (F) niraparib
treatment. Changes in Akt1 (G) and KRas (H) levels before and after niraparib treatment in the same
patient from the responder group.
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These experiments suggest that tumor tissues with high KRAS expression are re-
sponsive to niraparib and that the enrichment of AKT1 during treatment might lead to
drug resistance.

3.4. Using PDX to Detect Novel Clinical Indicators of PARPis

Platinum sensitivity is the clinical indicator for niraparib when it is used as mainte-
nance therapy. However, it takes at least six months to determine the platinum response
in naive patients, which can delay the administration. The degree of CA125 reduction
during chemotherapy may partly reflect the sensitivity to platinum-based chemotherapy.
As a result, this study investigated whether the lowest CA125 level (truncated at 10 U/mL)
during chemotherapy could replace platinum sensitivity as a predictor of PARPi efficacy.
Seventeen out of twenty-two patients with CA125 levels of no more than 10 U/mL were
platinum-sensitive, while 5 out of 15 patients with CA125 levels less than 10 U/mL were
platinum-resistant. The sensitivity and specificity of CA125 for predicting the efficacy of
PARPis were 77.27% and 66.67% (Figure 3A), respectively, while those of platinum sensitiv-
ity were 86.36% and 40.00% (Figure 3B), respectively. These values were not significantly
different (p = 0.687, p = 0.289, respectively) (Figure 3C,D).
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sensitivity of the CA125 level and platinum response to predict niraparib efficacy. (D) Comparison of
the specificity of the CA125 level and platinum response to predict niraparib efficacy.

3.5. Using PDX to Perform Clinical Trials
3.5.1. Reproducing NOVA, PRIMA, and SOLO I Trials

PDXs from five platinum-sensitive relapsing patients with HGSOC were employed to
mimic the NOVA study. Both the PFS and OS of the niraparib group were significantly better
than those of the control group (Figure S4A,B). Five platinum-sensitive primary patients
with BRCAmut were employed to mimic the SOLO I study, and all PDXs in the experimental
group had a longer PFS and OS than those in the vehicle group (Figure S4C,D). Seven
platinum-sensitive advanced patients with residual lesions after surgery were employed to
imitate the PRIMA study, including two patients with HRD+ and one with BRCAmut. All
PDXs, HRD+ PDXs, and HRD- PDXs benefited from niraparib, as did the small number of
BRCAmut patients who could not be analyzed effectively (Figure S4E–J).

3.5.2. Attempting a Prospective Trial to Determine Whether Niraparib Could Replace
Chemotherapy as First-Line Treatment for Ovarian Cancer

We further recruited PDXs established by 23 naive patients and compared the efficacy
of the vehicle, niraparib, and TC chemotherapy. The efficacy evaluation indexes included
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best response (%), response category rate, PFS, and OS. The TC group exhibited a better
treatment effect than the niraparib group among the general population (Figures 4A,B and
S5A,B) and patients in the HRD+ or BRCAmut subgroups (Figures 4C–F and S5C–F). We
noticed that 11 patients responded to both niraparib and TC (Figure 4G). Thus, we further
explored this possibility in these patients and observed the same results (Figures 4H,I and
S5G,H). Nevertheless, niraparib and TC demonstrated a similar efficacy in several patients
(P08 and P15) (Figure 4J), and two TC-resistant patients responded to niraparib (Figure 4G).
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Figure 4. Comparing the efficacies of niraparib and TC in PDX. The survival outcomes of the control,
niraparib, and TC chemotherapy groups in PDXs of naive patients (A,B), the HRD+ subgroup
(C,D), or the BRCA mutation subgroup (E,F) were analyzed. (G) Results of the niraparib and TC
susceptibility tests evaluated by PDXs in 23 patients. (H,I). The survival outcomes of the control,
niraparib, and TC chemotherapy groups in patients who simultaneously responded to niraparib and
TC. (J) Tumor volume changes due to the vehicle (red), niraparib (green), and TC (blue) treatments
in 2 patients (P08 and P15) who were responsive to niraparib but not TC. The italic p value in
each Kaplan–Meier survival curve figure indicates the comparison of those three groups, and the
p value (bold and italic), hazard ratio (HR), and 95% confidence interval (CI) represent the comparison
between the niraparib and TC groups. TC, paclitaxel and carboplatin chemotherapy; PFS, progression-
free survival; OS, overall survival.

Therefore, PDX can reproduce the clinical trials well, and niraparib has not yet been
indicated as a replacement for TC chemotherapy in the first-line treatment of ovarian cancer
in our preclinical trial.

4. Discussion

PDXs are considered one of the best preclinical models. In PDXs, the original tumor
tissue is subcutaneously transplanted into immunodeficient mice, and PDXs retain their
molecular and pathological characteristics, drug response, and tumor microenvironment
despite host selection pressure [24,26–28]. The samples in the PDX model library used in
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this paper have been compared with the original tumor genome, transcriptome, proteome,
and chemotherapy response data and have shown good consistency [25].

PDXs have been used to screen small-molecule targeted drugs for various tumors, and
HGSOC-PDXs have been used to explore the PARPi response of patients with RAD51 or
BRCA1 methylation and the therapeutic effect of PARPis combined with other drugs [29–31].
However, whether PDXs can accurately reflect PARPi efficacy has not been clearly indicated in
experiments because few studies have reported consistent results on the correlation between
BRCAmut and olaparib sensitivity [24,26]. In this study, the niraparib and olaparib sensitivity
tests showed high consistency in PDXs established from the same patient, suggesting the
repeatability of the PDX model for evaluating PARPi efficacy. Naive HGSOC patients with
BRCAmut and HRD+ were more responsive to PARPis than platinum sensitivity. Additionally,
platinum sensitivity seemed to be a more reliable indicator in relapsed patients, as identified
by clinical experience and trials. Moreover, the PDX model reproduced the NOVA, PRIMA,
and SOLO I trials. These results suggest that the PDX model can accurately predict the
PARPi response.

The most prominent problem with PARPis in ovarian cancer is the lack of adequate
application metrics, and BRCA mutation, HRD status, and platinum sensitivity are not
perfect indicators for PARPis [10,14–17,32,33]. The mechanism of PARPis can partially
explain this phenomenon. Although PARPis can lead to a ‘synthetic lethal’ interaction
with HRD, the compensatory effects of other DNA damage repair pathways, BRCA1/2
recovery mutations, high expression of drug resistance pumps, and changes in tumor
metabolism may cause acquired PARPi resistance [34]. In addition, other molecular defects
in the homologous recombination (HR) pathway have the same killing effect (called ‘BR-
CAness’) [35]. Platinum agents lead to chromosomal cross-linking and kill tumor cells once
nucleotide excision repair deficiency exists, indicating the presence of genomic instability
and not HRD [12]. Therefore, we tested the accuracy of the current indicators and explored
novel molecular and clinical indicators using PDXs.

In this experiment, we found that 20% of HRD+ and 40% of platinum-sensitive naive
HGSOC patients had no response to PARPis, and approximately half of BRCAwt, HRD-,
and platinum-resistant HGSOC patients responded to PARPis. In addition, we screened
subpopulations with more significant survival benefits from patients clinically treated with
PARPis as first-line maintenance therapy, demonstrating that the PDX model can effectively
avoid the above limitations of clinical and molecular indications. Thus, the PDX model
serves as a ‘black box’ that provides a more accurate and objective efficacy prediction than
BRCAmut, HRD+, and platinum sensitivity.

PDX models feature patient-specific therapeutic effects and thus provide a possible
tool for searching for molecular and clinical biomarkers of PARPis. Our research suggested
that tumors with high KRAS expression were sensitive to PARPi treatment, and increased
AKT1 expression after PARPi treatment may be associated with PARPi resistance.

The oncogene KRAS is associated with tumor development and drug resistance. Re-
search has revealed that MEK inhibitors obstructing abnormally activated KRAS signaling
pathways could trigger and amplify PARPi efficacy by increasing double-strand DNA
breaks and activating the STING signaling pathway [36]. Although TP53 mutations are
predominant in high-grade serous carcinoma and are the most common pathological type
of epithelial ovarian cancer, KRAS mutations are more common in low-grade serous carci-
noma and endometriosis-driven pathological types (clear cell or endometrioid carcinoma).
PARPis are mainly used in the treatment of HGSOC patients, given that BRCA1/2 muta-
tions mainly exist in HGSOC. The relationship between the KRAS expression level and
PARPi efficacy in this study may provide a new direction for further preclinical trials of
PARPi usage in such rare ovarian cancers and other malignancies with predominant KRAS
mutations, such as colon cancer [37,38].

Through WES, ATK1 deletion mutations were enriched in the PARPi-sensitive group.
We found that ATK1 was significantly enriched in tumors after PARPi application, and the
residual tumor cells after PARPi administration were mostly drug-resistant cells after drug



Cancers 2022, 14, 4649 11 of 14

screening, which indicated that AKT1 enrichment might be related to PARPi resistance.
However, there was no difference in AKT1 between the sensitive group and the drug
resistance group, which may be caused by the insufficient number of tissues included.
Additionally, PARPis activate AKT to form the phosphorylated ATM-Nemo-Akt-MTOR
complex, located in the mitochondria, to protect cells from oxidative stress [39]. These two
studies are consistent with our results, but further studies need to explore the underlying
mechanisms in more detail.

Platinum sensitivity is the clinical indicator for PARPis, and the decrease in CA125 is
closely correlated with platinum reactivity [8,40,41]. Therefore, adopting 10 U/mL as the
cutoff value, this study showed that the minimum level of CA125 during chemotherapy
could replace the platinum response as a predictor for the use of PARPis given that the two
methods had similar sensitivity and specificity. This suggests that patients with CA125 less
than 10 U/mL during chemotherapy can use PARPis as maintenance therapy immediately.

The other aspect that caught our attention was that PARPis have continuously ex-
panded their application in ovarian cancer treatment, from posterior-line treatment to
second-line maintenance to the current first-line maintenance [2–7]. Moreover, a study sup-
ported niraparib monotherapy as a neoadjuvant agent in advanced ovarian patients who
cannot undergo optimal cytoreductive surgery [22,23]. Given this, we questioned whether
PARPis had a similar first-line treatment effect to that of platinum-based chemotherapy
in the PDX model. Unfortunately, TC consistently outperformed niraparib. However, it
is undeniable that niraparib has shown similar efficacy to TC in several patients, and TC-
resistant patients may benefit from niraparib. However, there is no approach to distinguish
this subpopulation except the PDX susceptibility test. Therefore, clinical trials should be
conducted with caution.

A limitation of this study is the small number of included patients. This made it
challenging to analyze the molecular targets related to PARPi efficacy and identify sub-
groups that could benefit from niraparib as first-line treatment. The long time period that
is required for model formation and drug sensitivity testing is often listed as a limitation
to clinical application. However, the median PDX formation time was five months, and
the median drug sensitivity testing time for patients lacking sensitivity (no effects on OS)
was 23 days. That is, the PARPi maintenance efficacy results could be obtained within six
months, which would not affect patient use of PARPis.

5. Conclusions

PDX models can better represent the personal therapeutic efficacy of PARPis in ep-
ithelial ovarian cancer than BRCA1/2mut, HRD+, and platinum sensitivity. High KRAS
expression was correlated with PARPi sensitivity, and the accumulation of AKT1 during
PARPi treatment might lead to PARPi resistance. A minimum CA125 of less than 10 U/mL
during chemotherapy can be used as a clinical indicator of PARPi sensitivity. PARPis
are not yet an alternative to platinum-based chemotherapy as a first-line treatment for
ovarian cancer.
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