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Simple Summary: The hybrid images obtained at the CEUS present an overlap of the tumor in
grayscale over the enhancement pattern, which allows an appropriate evaluation of the entire lesion
without including in the analysis the peritumoral area. We hypothesized that the spatial heterogeneity
of tissue enhancement differs depending on histological characteristics. Therefore, the aim of this
study was to evaluate the diagnostic performance of radiomic features extracted from standardized
hybrid CEUS data for the assessment of hormone receptor status, HER2 status, tumor grade and
Ki-67 in patients with primary breast cancer. The clinical benefit of this study would be to use CEUS
and bioinformatics tools for improved biopsy planning or even guiding treatment decisions.

Abstract: The purpose of this study was to evaluate the diagnostic performance of radiomic fea-
tures extracted from standardized hybrid contrast-enhanced ultrasound (CEUS) data for the assess-
ment of hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, tumor
grade and Ki-67 in patients with primary breast cancer. Methods: This prospective study included
72 patients with biopsy-proven breast cancer who underwent CEUS examinations between October
2020 and September 2021. Results: A radiomic analysis found the WavEnHH_s_4 parameter as
an independent predictor associated with the HER2+ status with 76.92% sensitivity, and 64.41%
specificity and a prediction model that could differentiate between the HER2 entities with 76.92%
sensitivity and 84.75% specificity. The RWavEnLH_s-4 parameter was an independent predictor
for estrogen receptor (ER) status with 55.93% sensitivity and 84.62% specificity, while a prediction
model (RPerc01, RPerc10 and RWavEnLH_s_4) could differentiate between the progesterone receptor
(PR) status with 44.74% sensitivity and 88.24% specificity. No texture parameter showed statistically
significant results at the univariate analysis when comparing the Nottingham grade and the Ki-67
status. Conclusion: Our preliminary data indicate a potential that hybrid CEUS radiomic features
allow the discrimination between breast cancers of different receptor and HER2 statuses with high
specificity. Hybrid CEUS radiomic features might have the potential to provide a noninvasive, easily
accessible and contrast-agent-safe method to assess tumor biology before and during treatment.
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1. Introduction

Contrast-enhanced ultrasound (CEUS) is a valuable imaging technique in the assess-
ment of breast pathology. Several studies in the literature have demonstrated the usefulness
of CEUS in differentiating benign and malignant breast lesions, evaluating pathological
characteristics of breast cancer (estrogen and progesterone receptors, histological grade,
human epidermal growth factor receptor 2, Ki-67), detecting the sentinel lymph node and
even predicting the response to neoadjuvant chemotherapy (NAC) [1–4].

Breast tumor structure consists of a high degree of heterogeneity observed at histologi-
cal and genetic levels, and increased intratumor genetic heterogeneity is associated with
poor clinical outcomes.

Radiomics (through texture analysis) is a technique based on the extracting and
processing of image-specific parameters that provide an objective description of image
content by quantifying the distribution patterns and intensity of pixels. Radiomics is able to
extract features from medical images that can be used to understand relationships between
the imaging heterogeneity and the genetic and phenotypical characteristics of tumors, and
it can be integrated in prediction models that may improve diagnostic, prognostic and even
expect treatment outcomes. The basic principle of the ultrasonography-based radiomic
analysis is that a pathological process that alters the tissue produces a modified ultrasound
signal, which will in turn give textural features with different values from those of the
normal structure [5–7].

Radiomics allows an objective and quantitative characterization of the morphology,
texture and pharmacokinetic behavior of breast tumors by obtaining features that are not
visible to the naked eye, therefore improving the predictive power of medical imaging [8].

Breast radiomics studies are mostly applied to the diagnosis of breast cancer, the
prediction of the molecular classification, lymph nodes metastasis and molecular markers
of invasiveness [9–12]. Luo et al. [13] found in their study that radiomics had better perfor-
mance in distinguishing breast lesions than BI-RADS, and according to Wang et al. [14],
radiomics was superior in differentiating small benign and malignant breast lesions.

Several studies have already reported the value of radiomic analyses of contrast-
enhanced imaging techniques such as dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) and contrast-enhanced spectral mammography (CESM) in predicting
breast cancer molecular subtypes with a similar performance [9,10,15,16]. Both techniques
provide functional information on neoplastic neo-angiogenesis reflecting underlying tumor
biological characteristics. Furthermore, Wang et al. [17] found a correlation between CEUS
and acoustic radiation force impulse (ARFI), which also provides quantitative features,
regarding the assessment of HER-2 expression levels in breast cancer.

The hybrid images obtained at the CEUS represent an overlap of the tumor in grayscale
over the enhancement pattern, which allows an appropriate evaluation of the entire lesion
without including in the analysis the peritumoral area.

We hypothesized that the spatial heterogeneity of tissue enhancement differs depend-
ing on histological characteristics. Therefore, the aim of this study was to evaluate the
diagnostic performance of radiomic features extracted from standardized hybrid CEUS
data for the assessment of hormone receptor status, HER2 status, tumor grade and Ki-67 in
patients with primary breast cancer.

The clinical benefit of this study would be to use CEUS and bioinformatics tools for
improved biopsy planning or even guiding treatment decisions.

2. Materials and Methods

This prospective study was approved by the Institutional Review Board (Num-
ber/Date: 280/11 August 2020), and informed consent was obtained from each patient
before performing CEUS. The informed consent included information related to the pur-
pose and duration of the study; risks; benefits; responsibility of the participant; the rights of
the participant to withdraw from the study; confidentiality; and the procedure, including
the way of administration of the contrast agent and contraindications.
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2.1. Study Design and Population

Between October 2020 and September 2021, 87 patients underwent CEUS examinations.
CEUS was performed only in patients with suspicious breast lesions detected at

mammography and/or ultrasound and classified according to the American College of
Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) in 4A, 4B, 4C
or 5. None of the included patients had contraindications for the administration of con-
trast media such as hypersensitivity to sulfur hexafluoride (or any of the components of
SonoVue®), acute cardiac failure, recent acute coronary syndrome or clinically unstable
ischemic cardiac disease, known right-to-left shunts, severe rhythm disorders or pulmonary
hypertension (pulmonary artery pressure >90 mmHg), uncontrolled systemic hypertension
and respiratory distress syndrome.

All the patients agreed to perform biopsy.
We excluded from the study benign biopsy-proven lesions and malignant lesions

under 6 mm diameter due to the difficulty of depicting their margins.
Figure 1 summarizes the flowchart of the patient selection.

Figure 1. Flowchart of patient inclusion in the study.

2.2. Image Acquisition

All breast CEUS examinations were acquired with a LOGIQ S8 ultrasound machine
(General Electric Ultrasound Korea, Seongnam-si, Korea).

Before the contrast examination, the lesion was assessed on both grayscale and color
Doppler ultrasound to identify the scanning plane with the largest diameter of the lesion
and with the richest vascularization.

For all the examinations, we set the mechanical index (MI) at 0.06, the gain of 100–120 dB,
single focus, image depth of approximately 3–4 cm and SonoVue® (sodium hexachloride
microbubbles; Bracco, Amsterdam, The Netherlands) was administered intravenously as a
bolus of 2.4 mL followed by a flush of 5 mL sodium chloride 0.9% using a 20-gauge cannula.

Before the examination, we asked the patients not to speak or move and avoid coughing
or extensive breathing movements during the image acquisition in order to avoid artifacts.
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All CEUS examinations were performed by the same physician, before the biopsy
and the images were recorded for at least 180 s. We started recording the examination
synchronously with the injection of the contrast agent. No patient presented side effects to
SonoVue® (sensitivity at the injection site, hypersensitivity reactions such as facial flushing,
nausea, bradycardia, hypotension or anaphylactic shock).

2.3. Image Processing

The images were processed by the same physician who performed the examinations
using the time-intensity curve (TIC) analysis software integrated into the ultrasound device.

The start cine loop was selected when the first microbubbles arrived in the lesion, and
the stop cine loop at the end of the examination (around second 180). On the touch panel
for the fitting curve, “Gamma variate” was selected, and as smoothing “Gaussian 600 ms”.

A region of interest (ROI) was placed in the most perfused area of the malignant lesion.
Corresponding to the peak of the selected ROI, the “Hybrid image” option was selected on
the touch panel.

2.4. Reference Standard

The pathology reports of all biopsied lesions were considered as the gold standard. The
reports of malignant lesions included information regarding the histological tumor grade,
the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) status and the value of Ki-67.

2.5. Texture Analysis (TA)

A texture analysis was conducted on hybrid CEUS images acquired at the peak. In the
MaZda program, all the hybrid images had a black and white appearance, but even in these
conditions the overlap of the perfusion map on the grayscale image could be observed
even with the naked eye.

The TA protocol comprised of the following five steps: image pre-processing, lesion
segmentation, feature extraction, feature selection and prediction.

To ensure the repeatability and the reproducibility of our results, in the first step of
our texture analysis process, the images were normalized. Therefore, we excluded the
grey-level variations that could affect the true textures of the images. In the second step, the
segmentation process was performed semi-automatically, based on gradient and geometry
coordinates, therefore lowering the variability produced by the manual segmentation.

2.5.1. Image Pre-Processing and Segmentation

Tumor segmentation was performed by an experienced breast radiologist. Contours
were depicted on hybrid images. Multifocality or bilaterality of breast tumors was not
observed in any patient.

A semi-automatic level-set technique was used for the definition and positioning of
ROI using gradient and geometry coordinates. As this technique does not require the
manual delineation of the structure of interest contours, the inter- and intra-observer re-
producibility was not assessed in this study. The researcher placed a seed in the area of
interest, and the software automatically delineated the area based on gradient and geomet-
rical contours. When necessary, manual corrections were applied (Figure 2). Before the
extraction of texture parameters, the imported image’s grey levels were normalized based
on the mean and three standard deviations of grey level intensities to reduce the contrast
and brightness variations (which could affect the true image textures). The parameters are
detailed in the table below (Table 1).
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Figure 2. Contrast-enhanced ultrasound (CEUS) of histologically proven breast cancer; (a) grayscale
image; (b,c) hybrid images with the tumor applied regions of interest (ROIs) that were automatically
delineated by the software (green) and the final ROI after manual correction (red).

Table 1. Texture parameters.

Radiomics Features Computation
Method

Computational
Variations Class

Perc.01–99%, Skewness, Kurtosis, Variance, Mean - - Histogram

GLevNonU, LngREmph, RLNonUni, ShrtREmp, Fraction 6 bits/pixel 4 directions RLM

Teta 1–4, Sigma - - ARM

InvDfMom, SumAverg, SumVarnc, SumEntrp, Entropy, DifVarnc,
DifEntrp, AngScMom, Contrast, Correlat, SumOfSqs

6 bits/pixel;
5 between-pixel

distances
4 directions COM

WavEn 5 scales 4 frequency bands WT

GrNonZeros, percentage of pixels with nonzero gradient, GrMean,
GrVariance, GrSkewness, GrKurtosis 4 bits/pixel - AR

AR, absolute gradient; RLM, run length matrix; COM, co-occurrence matrix; ARM, auto-regressive model;
WT, wavelet transformation; Mean, histogram’s mean; Variance, histogram’s variance; Skewness, histogram’s
skewness; Kurtosis, histogram’s kurtosis; Perc.01–99%, 1st to 99th percentile; GrMean, absolute gradient mean;
GrVariance, absolute gradient variance; GrSkewness, absolute gradient skewness; GrKurtosis, absolute gradi-
ent kurtosis; GrNonZeros, percentage of pixels with nonzero gradient; RLNonUni, run-length nonuniformity;
GLevNonU, grey level nonuniformity; LngREmph, long-run emphasis; ShrtREmp, short-run emphasis; Fraction,
the fraction of image in runs; AngScMom, angular second moment; Contrast, contrast; Correlat, correlation;
SumOfSqs, the sum of squares; InvDfMom, inverse difference moment; SumAverg, sum average; SumVarnc, sum
variance; SumEntrp, sum entropy; Entropy, entropy; DifVarnc, the difference of variance; DifEntrp, the difference
of entropy; Teta 1–4, parameters θ1–θ14; Sigma, parameter σ; WavEn, wavelet energy.

2.5.2. Feature Extraction

The feature computation from every ROI was automatically performed by the MaZda
software version 4.6 (MaZda, Institute of Electronics, Technical University of Lodz,
Lodz, Poland).

2.5.3. Feature Selection

First, the MaZda software allows the selection of the best-suited parameters for dif-
ferentiating between classes through several reduction methods. We applied a selection
method based on Fisher coefficients (F, the ratio of between-class to within-class variance).
This method allowed us to select a set of the ten most discriminative features that were best
suited to discriminate between selected groups [18].

Second, the parameters highlighted by the selection method underwent a statistical
analysis. The absolute values recorded by each of the previously selected parameters were
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compared between groups by conducting a univariate analysis test (the Mann–Whitney U
test). The statistical significance level was set at a p-value of below 0.05. Features that did
not meet the above-mentioned criteria were excluded from further analysis.

Abbreviations of feature characteristics produced by the extraction algorithm appeared
in the feature name generated by the MaZda software. The first letter indicated the color
channel through which the image was computed (R” identifies the red color channel).
This color channel was automatically chosen by the software; the investigators had no
intervention on this procedure.

2.5.4. Class Prediction

A multivariate analysis was performed to identify which of the previously selected
parameters were independent predictors for PR and HER2 status. The analysis was con-
structed using the “enter” input model, and the coefficient of determination (R-squared)
and the variance inflation factor (VIF) were computed from the same data. The final pre-
diction model included only variables that showed a p-value of below 0.05 following a
multivariate analysis. In addition, features that showed high VIF (>104) were excluded
from further analysis due to multicollinearity. Finally, the predicted values were saved
and subsequently used in a receiver operating characteristics (ROC) analysis to assess
the diagnostic power of the entire prediction model. The ROC analysis was also used to
determine the diagnostic power of other parameters that showed statistically significant
results at the univariate analysis. The ROC analysis implied the calculation of the area
under the curve (AUC), sensitivity and specificity, all with 95% confidence intervals (CIs).
Sensitivity (Se) and specificity (Sp) were computed from the same data, without further
adjustments. A statistical analysis was performed using a commercially available dedicated
software, MedCalc v14.8.1 (MedCalc Software, Mariakerke, Belgium).

3. Results

A total of 72 patients with biopsy-proven malignant breast lesions were included in
the study. Participants’ ages ranged from 29 to 83 years (56.5 + 14.34, mean age + SD). All
the characteristics regarding the patients are listed in Table 2.

Table 2. Patients’ characteristics.

Patients’ Characteristics Number Frequency (%)

Mean age, years (range) 56.5 (29–83)

Mean lesion size, mm (range) 24.07 (7–60)

Pathological Type
DCIS 1 1.38
DCIS + Borderline phyllodes 1 1.38
IDC NST 63 87.56
IDC with mucinous components 1 1.38
Tubular carcinoma 1 1.38
Papillary carcinoma 2 2.77
Malignant phyllodes 1 1.38
ILC 2 2.77

Nottingham grade
I 11 15.28
II 39 54.17
III 22 30.55

Estrogen receptor status
Negative 13 18.05
Positive 59 81.95
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Table 2. Cont.

Patients’ Characteristics Number Frequency (%)

Progesterone receptor status
Negative 34 40.27
Positive 38 59.73

Her2 status
Negative 59 81.94
Positive 13 18.06

Ki-67
<20% 35 48.61
≥20% 37 51.39

Luminal subtype
A 29 40.27.
B 30 41.66
HER2+ 6 8.33
Triple-negative 7 9.74

The extracted parameters for each histological characteristic (Nottingham grade, ER,
PR, HER2 status and Ki-67) are listed in Table 3.

Table 3. Texture parameter depending on histological characteristics.

Nottingham I vs. Nottingham II + III

Texture Parameters F p-Value
Nottingham I Nottingham II + III

Median IQR Median IQR

RATeta3 0.3089 0.2832 0.49 0.43–0.56 0.51 0.46–0.57
RATeta4 0.2881 0.3289 0.16 0.12–0.17 0.14 0.12–0.16

RCV4D6DifVarnc 0.2458 0.2293 6.53 3.37–7.71 7.04 5.51–7.98
RCV3D6DifVarnc 0.2428 0.321 5.15 2.80–6 5.45 4.42–6.07
RCV5D6DifVarnc 0.238 0.2356 7.43 3.77–9.16 8.39 6.18–9.69
RCV2D6DifVarnc 0.2191 0.4151 3.45 2–3.91 3.52 2.89–3.91
RWavEnHH_s-4 0.2097 0.1532 6.44 4.18–10.63 9.67 6.40–13.32

RATeta2 0.2073 0.3132 −0.58 −0.64–−0.48 −0.59 −0.64–−0.55
RCZ3D6DifVarnc 0.2029 0.3535 6.52 3.23–7.06 6.47 5.34–7.42
RCN2D6DifVarnc 0.2006 0.4244 3.71 2.24–4.75 4.07 3.31–4.71

ER Negative vs. ER Positive

Texture Parameters F p-Value
ER Negative ER Positive

Median IQR Median IQR

RWavEnLH_s-4 0.4951 0.0181 39.44 34.77–51.97 31.64 18.5–44.76
RWavEnHL_s-4 0.3413 0.0854 26.66 17.677–31.83 18.34 11.67–27.36

RATeta1 0.3017 0.1535 0.93 0.92–0.94 0.93 0.91–0.93
RWavEnLL_s-6 0.2874 0.1665 1511.37 1024.61–2972.41 1168.38 711.04–1775.91
RWavEnLL_s-5 0.2851 0.1901 1347.99 1034.33–3232.67 1137.51 703.89–1882.82
RWavEnHL_s-6 0.2467 0.1535 25.66 14.75–46.63 16.93 12.07–30.72

RPerc10 0.2042 0.1141 15 7.5–25.75 10 3–15.75
RWavEnLL_s-4 0.1957 0.2627 1193.40 889.87–3281.36 1108 688.71–1738.54

RPerc50 0.1926 0.2951 25 21.5–53.25 24 18.25–35
RWavEnLL_s-3 0.1771 0.3758 1238.59 744.08–3315.79 1019.02 676.08–1729.19
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Table 3. Cont.

PR Negative vs. PR Positive

Texture Parameters F p-Value
PR Negative PR Positive

Median IQR Median IQR

RPerc01 0.3341 0.0108 7 2–12 2 2–7
RPerc10 0.325 0.0352 13.5 6–20 8.5 2–16

RWavEnLH_s-4 0.2964 0.0195 36.66 27.74–48.28 28.88 17.57–38.36
RWavEnLL_s-5 0.2809 0.1117 1408.29 773.71–2509.74 1125.22 617.94–1697.62
RWavEnLL_s-4 0.2634 0.1307 1257.85 729.63–2883.87 1039.67 533.92–1671.16

RPerc50 0.2541 0.1181 25 21–43 23.5 15–33
RWavEnLL_s-3 0.2473 0.152 1324.88 715.54–2705.42 1008.67 537.07–1652.83
RWavEnLL_s-6 0.2454 0.1586 1408.96 786.48–2145.92 1142.90 742.80–1637.12

RMean 0.2444 0.1067 31.58 25.23–47.44 28.54 19.63–35.84
RCZ4D6SumAverg 0.2439 0.0973 16.50 13.01–24.54 14.80 10.57–18.86

Ki-67 Negative vs. Ki-67 Positive

Texture Parameters F p-Value
Ki-67 Negative Ki-67 Positive

Median IQR Median IQR

RWavEnLH_s-6 0.17 0.1446 42.28 27.07–56.67 32.77 15.98–50.05
RATeta4 0.1309 0.1446 0.16 0.12–0.17 0.14 0.12–0.16

RCN1D6AngScMom 0.129 0.1446 0.01 0.009–0.04 0.02 0.01–0.04
RCV1D6AngScMom 0.129 0.1574 0.01 0.01–0.04 0.02 0.01–0.04
RCZ1D6AngScMom 0.1284 0.1477 0.01 0.009–0.04 0.02 0.01–0.04
RCV2D6AngScMom 0.126 0.1477 0.01 0.006–0.02 0.01 0.008–0.029
RCN2D6AngScMom 0.1246 0.1509 0.01 0.006–0.02 0.01 0.008–0.02
RCH2D6AngScMom 0.1244 0.1856 0.02 0.01–0.04 0.03 0.01–0.04
RCH3D6AngScMom 0.1244 0.1675 0.01 0.008–0.03 0.02 0.01–0.03
RCV3D6AngScMom 0.1242 0.1509 0.01 0.005–0.02 0.01 0.007–0.02

HER2 Negative vs. HER2 Positive

Texture Parameters F p-Value
HER2 Negative HER2 Positive

Median IQR Median IQR

RWavEnLH_s-6 0.7015 0.0037 40.78 26.56–56.72 22.20 8.96–36.05
RWavEnHH_s-4 0.6693 0.0111 9.83 6.51–13.32 6.30 2.98–8.67

RRZD6ShrtREmp 0.5754 0.0457 0.79 0.73–0.82 0.72 0.68–0.80
RRHD6ShrtREmp 0.5677 0.0729 0.67 0.59–0.70 0.61 0.52–0.66
RRND6ShrtREmp 0.5622 0.0524 0.79 0.73–0.82 0.72 0.68–0.80
RRVD6ShrtREmp 0.5377 0.0706 0.77 0.72–0.80 0.70 0.65–0.78
RRHD6Fraction 0.5063 0.0357 0.49 0.41–0.54 0.40 0.34–0.48

RCH1D6InvDfMom 0.4597 0.0426 0.72 0.68–0.77 0.77 0.71–0.81
RCH2D6InvDfMom 0.4571 0.037 0.56 0.51–0.64 0.63 0.57–0.69
RCH3D6InvDfMom 0.4474 0.0332 0.47 0.42–0.55 0.55 0.48–0.61

IQR, interquartile range.

The multivariate analysis involving the HER2 status showed a coefficient of de-
termination of 0.2, an R2-adjusted of 0.12, MCC of 0.45 and a residual standard devi-
ation of 0.36. One parameter (WavEnHH_s_4) was independently associated with the
HER2+ status (Table 4).
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Table 4. Multivariate analysis of the parameters independently associated with the HER2+ status.

Independent Variables Coefficient Std. Error t p rpartial rsemipartial VIF

RCH1D6InvDfMom 12.71 19.76 0.64 0.522 0.08 0.07 813.42

RCH2D6InvDfMom −43.60 38.37 −1.13 0.260 −0.14 0.12 6252.58

RCH3D6InvDfMom 10.69 20.28 0.52 0.599 0.06 0.05 2153.36

RRHD6Fraction −19.03 9.60 −1.98 0.052 −0.24 0.22 499

RRZD6ShrtREmp −1.61 2 −0.8 0.424 −0.1 0.08 10.73

RWavEnHH_s_4 −0.02 0.01 −2.05 0.044 −0.24 0.22 2.33

RWavEnLH_s_6 −0.002 0.001 −1.09 0.279 −0.13 0.12 1.46

t-value; p-value; VIF, variance inflation factor.

The ROC analysis of the WavEnHH_s_4 parameter showed a statistical significance
level of 0.003, an AUC of 0.726 (CI, 0.608–0.825) and a Youden index of 0.4133. For a cut-
off value of ≤8.124, the WavEnHH_s_4 parameter could differentiate between the HER2
entities with 76.92% Se (CI, 46.2–95%), and 64.41% Sp (CI, 50.9–76.4%). For the same scope,
the ROC analysis of the HER2 prediction model showed a statistical significance level of
<0.0001, and an AUC of 0.836 (CI, 0.73–0.913) and a Youden index of 0.6167. For a cut-off
value of >0.2840, the prediction model could differentiate between the HER2 entities with
76.92% Se (CI, 46.2–95%) and 84.75% Sp (CI, 73.0–92.8%) (Figure 3).

Figure 3. ROC curves of the WavEnHH_s_4 parameter that was independently associated with the
HER+ status and the HER prediction model.

Table 5 shows the diagnostic values of the parameters that were included in the
prediction model but were not independently associated with the HER2 status.

The multivariate analysis involving the PR status showed a coefficient of determination
of 0.97, R2-adjusted of 0.5, MCC of 0.31 and a residual standard deviation of 0.48. Neither
of the three included parameters were independent predictors for the PR+ status (Table 6).
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Table 5. Parameters not independently associated with the HER2 status. Between the brackets are
the values corresponding to the 95% confidence interval.

Parameter p-Value AUC J Cut-Off Se (%) Sp (%)

RWavEnLH_s_6 0.0002 0.759
(0.644–0.852) 0.3977 ≤42.41 92.31

(64.0–99.8)
47.46

(34.3–60.9)

RRZD6ShrtREmp 0.0344 0.678
(0.557–0.783) 0.3690 ≤0.72 53.85

(25.1–80.8)
83.05

(71.0–91.6)

RRHD6Fraction 0.0212 0.687
(0.567–0.791) 0.3716 ≤0.48 84.62

(54.6–98.1)
52.54

(39.1–65.7)

RCH1D6InvDfMom 0.0249 0.681
(0.560–0.786) 0.3977 >0.706 92.31

(64.0–99.8)
47.46

(34.3–60.9)

RCH2D6InvDfMom 0.0211 0.686
(0.566–0.790) 0.3977 >0.549 92.31

(64.0–99.8)
47.46

(34.3–60.9)

RCH3D6InvDfMom 0.0174 0.690
(0.570–0.794) 0.3716 >0.478 84.62

(54.6–98.1)
52.54

(39.1–65.7)

AUC—area under the curve; Se—sensitivity; Sp—specificity

Table 6. Multivariate analysis of the parameters independently associated with the PR+ status.

Independent Variables Coefficient Std. Error t p rpartial rsemipartial VIF

RPerc01 −0.01 0.02 −0.62 0.5329 −0.07 0.07 5.8

RPerc10 −0.001 0.01 −0.08 0.9296 −0.01 0.01 6.33

RWavEnLH_s_4 −0.004 0.003 −1.17 0.2445 −0.14 0.13 1.44

Std.—standard; t-value; p-value; VIF, variance inflation factor.

The ROC analysis of the prediction model that incorporated all three parameters that
showed statistically significant results at the univariate analysis (RPerc01, RPerc10 and
RWavEnLH_s_4) showed a significance level of 0.0048, and an AUC of 0.678 (CI, 0.554–0.802)
and a Youden index of 0.3297. For a cut-off value of >0.617, the prediction model could dif-
ferentiate between the PR status with 44.74% Se (CI, 28.6–61.7%) and 88.24% Sp
(CI, 62.1–91.3%) (Figure 4).

Figure 4. ROC curves of the parameters that showed statistically significant results in the comparison
of PR+ and the PR− patients (RPerc01, RPerc10 and RWavEnLH_s_4) and of the prediction model
that incorporated the three parameters.
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No texture parameter showed statistically significant results at the univariate analysis
when comparing the Nottingham grade and the Ki-67 status.

Another wavelet transformation parameter (RWavEnLH_s-4) was the only one that
showed statistically significant results when comparing the ER+ and ER− patients
(p = 0.0181). The ROC analysis for this parameter in the diagnosis of ER+ patients showed
a significance level of 0.0015, and an AUC of 0.711 (CI, 0.592–0.811) and a Youden index
of 0.4. For a cut-off value of ≤32.81, the RWavEnLH_s-4 parameter was able to iden-
tify ER+ tumors with 55.93% (CI, 42.4–68.8%) sensitivity and 84.62% (CI, 54.6–98.1%)
specificity (Figure 5).

Figure 5. ROC curve of the RWavEnLH_s-4 in the diagnosis of ER+ tumors.

4. Discussion

In this study, we investigated the diagnostic performance of radiomic features derived
from hybrid images obtained at CEUS for the assessment of breast cancer receptor status,
HER2 and Ki-67 status and histological grade. We hypothesized that the spatial hetero-
geneity of tissue enhancement differs depending on histological characteristics and could
be quantified by a radiomic analysis. Our results demonstrate that hybrid CEUS radiomic
features allow the discrimination between breast cancers of different receptor and HER2
statuses with high specificity.

To the best of our knowledge, no study has been conducted to investigate the use-
fulness of a radiomic analysis of hybrid CEUS images in order to predict the hormone
receptor status, HER2 status, tumor grade and Ki-67 in patients with primary breast can-
cer. Currently, the way to determine these prognostic factors is through invasive tissue
sampling; however, it may not be representative of tumor biology in its entirety, with the
process depending on site selection or sampling bias. Therefore, there is a strong argument
for the development of alternatives to the formal biopsy analysis that could provide the
information which reflects the tumor in its entirety; thus, the performance of radiomics
analysis is worth being investigated.

Wavelet transformation is a multiresolution technique for transforming images into
representations that include both spatial and frequency information [19]. This transforma-
tion allows for the quantification of an image’s frequency content, which is proportional to
the image’s gray level variations. To begin, images are scaled five times in both vertical and
horizontal directions. In addition, to separate the image data, two types of filters (high and
low pass) are applied [20]. Finally, different subbands are extracted from an image divided
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into four parts, each of which corresponds to a different frequency component. The result
is a five-scaled image with four frequency bands on every scale. Each subband’s energy
feature is calculated. The distribution of this energy along the frequency axis over scale and
orientation is quantified through the wavelet energy parameter, which reflects the local uni-
formity of an image. When an image’s grey levels are distributed in a consistent or periodic
pattern, energy levels become high [19]. We obtained higher values of the WavEnHH_s_4
parameter for the HER2− than for the HER2+ patients, meaning that HER2+ tumors have
an inhomogeneous distribution of gray levels within the pixels. This aspect was consistent
with the literature, according to which HER2+ tumors have a higher proliferation rate,
areas of necrosis and fibrosis leading to an inhomogeneous appearance on DCE MRI and
CEUS [21,22]. Furthermore, La Forgia et al. [23] concluded that a radiomics analysis of
CESM images can distinguish HER2 positive and triple-negative breast cancers. It would
be interesting to conduct a study in order to investigate if this parameter could predict the
HER2+ status in benign lesions, thus producing false positive results.

Wu et al. [11] conducted a study using a radiomics analysis on grayscale ultrasound
images that managed to predict the HER2 and hormone receptor status of DCIS with good
accuracy. In our study, the multivariate analysis showed that no parameters were indepen-
dent predictors for the PR+ status. Again, a wavelet energy parameter (RWavEnLH_s_4)
showed statistically significant results at the univariate analysis and held higher values for
the PR− than for PR+ breast tumors. In addition, two percentile parameters also showed
statistically significant results when comparing the PR+ and PR− patients. The percentile
value (n) is the point at which n% of the pixel values that form the histogram are found to
the left [24]. In other words, a percentile gives the highest gray-level value under which
a given percentage of the pixels in the image is contained [20]. This signifies that 1% and
10% of the pixels within images were distributed under higher values for PR− than for
PR+ patients.

When comparing ER+ and ER− patients, a single wavelet transformation parameter
(RWavEnLH_s-4) showed statistically significant results. This parameter held higher values
for ER− than for ER+ patients. Our results were contrary to prior studies, or what we
expected, because breast cancers with positive estrogen receptors have a lower rate of
cell proliferation, so less necrotic tissue, and a homogeneous appearance at CEUS. On
the other hand, breast cancers with negative ER present areas of central necrosis and
fibrosis, and therefore an inhomogeneous appearance at CEUS [21,25–28]. However, in
these articles, the lesion enhancement pattern was assessed subjectively, compared to the
objective evaluation performed through a radiomic analysis. Furthermore, in the study, we
did not take into account the entire tumor biology (tumor cellularity, areas of hyaline stroma,
tumor-infiltrating mononuclear lymphoid cells, areas of necrosis and microcalcifications)
that might influence this parameter.

Our study showed no texture parameter with statistically significant results at the
univariate analysis when comparing the Ki-67 status and the Nottingham grade. Ki-67
expression indicates a guiding role in evaluating the efficacy of neoadjuvant chemotherapy
for breast cancer, being closely related to the patient’s prognosis [29]. Demircioglu et al. [30]
constructed radiomics models for predicting Ki67 expression in invasive breast cancer
based on eight features extracted from MRI images, with an AUC of 0.81.

Marino et al. [31] investigated the potential of a radiomic analysis of both DCE-MRI
and CESM of the breast for predicting tumor invasiveness, hormone receptor status (HR)
and tumor grade in patients with primary breast cancer. They included 48 female patients
with 49 biopsy-proven breast cancers. An MRI radiomic analysis yielded classification
accuracies of up to 90% for invasive vs. noninvasive breast cancers, 82.6% for HR+ vs. HR−
breast cancers and 77.8% for G1 + G2 vs. G3 cancers. A CESM radiomic analysis yielded
classification accuracies of up to 92% for invasive vs. noninvasive breast cancers, 95.6% for
HR+ vs. HR− breast cancers and 77.8% for G1 + G2 vs. G3 invasive cancers. Furthermore,
in a radiomic analysis, Bhooshan et al. [32] also found that DCE-MRI was promising for
distinguishing breast tumors of different grades.
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CEUS is an imaging technique comparable in terms of cost and performance time to
CESM, but it involves less time and lower costs compared to DCE-MRI. This new approach,
which involves the radiomic analysis of hybrid CEUS images, has as additional costs to
CEUS, the costs related to the MaZda program. Furthermore, it would be interesting to
conduct a study in order to explore the learning curve of this method, although we predict
that it is similar to the ones involving other imaging techniques.

Despite some significant findings, the work presented has limitations. First, it is
a single institution prospective study, and the sample size is small, limiting accurate
analysis. It would be interesting to evaluate a larger database, with examinations performed
in several institutions, even if slightly different CEUS imaging protocols were used, to
compare the results and evaluate the reproducibility of the method. Second, some molecular
subtypes (HER2+ and triple-negative) are too poorly represented. Third, the relatively low
sensitivity compared to conventional existing tests is a major limitation of our method.
However, this method could still be used as an additional criterion to increase diagnostic
confidence, especially since the technique required for the extraction of the TA parameters
is relatively straightforward. Furthermore, all CEUS examinations were performed by
a single radiologist, which eliminated inter-operator variability, but we used the same
parameters for every examination, and thus by following the protocol the method could be
reproducible. Finally, it would be of interest to perform an intra-tumoral analysis based on
other imaging modalities, such as DCE-MRI, to validate and extend this work. Therefore,
additional work is needed before these methods can be utilized to facilitate the noninvasive
assessment of breast cancer histopathological characteristics in clinical practice.

5. Conclusions

Our preliminary data indicate a potential that hybrid CEUS radiomic features al-
low the discrimination between breast cancers of different receptor and HER2 statuses
with high specificity. Although hybrid CEUS radiomic features are unlikely to replace
formal tissue biopsy and analysis, they might have the potential to provide a noninva-
sive, easily accessible and contrast-agent-safe method to assess tumor biology before and
during treatment.
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