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Simple Summary: We propose the use of two universal morphometric indices whose synergetic
potency leads to the classification of a cancerous tissue of a few nanometers in size as metastatic
or non-metastatic. The method is label-free, operates on conventional histological cross-sections,
recording surface height–height roughness by AFM, and detects nanoscale changes associated with
the progress of carcinogenesis which are the output of combined statistical approaches, namely
multifractal analysis and the generalized moments method. The benefit of this approach is at least
two-fold. On the one hand, its application in the context of early diagnosis can increase the life
expectancy of patients, and on the other hand, differentiation between metastatic and non-metastatic
tissues at the singular cell level can lead to new methodologies to treat cancer biology and therapies.

Abstract: The characterization of cancer histological sections as metastatic, M, or not-metastatic,
NM, at the cellular size level is important for early diagnosis and treatment. We present timely
warning markers of metastasis, not identified by existing protocols and used methods. Digitized
atomic force microscopy images of human histological cross-sections of M and NM colorectal cancer
cells were analyzed by multifractal detrended fluctuation analysis and the generalized moments
method analysis. Findings emphasize the multifractal character of all samples and accentuate room
for the differentiation of M from NM cross-sections. Two universal markers emphatically achieve this
goal performing very well: (a) the ratio of the singularity parameters (left/right), which are defined
relative to weak/strong fluctuations in the multifractal spectrum, is always greater than 0.8 for
NM tissues; and (b) the index of multifractality, used to classify universal multifractals, points to
log-normal distribution for NM and to log-Cauchy for M tissues. An immediate large-scale screening
of cancerous sections is doable based on these findings.

Keywords: atomic force microscopy imaging; metastatic cancer; multifractal analysis

1. Introduction

Metastasis is the spread of cancer cells from the primary point of appearance to sur-
rounding tissues and to distant organs. It is a complex process and involves alterations
in the shape of cancer cells as well in their attachment to surrounding normal cells and
the extracellular matrix (ECM) [1–6]. It is responsible for approximately 90% of cancer
deaths, and its early prediction is fundamental for the patient survival rate, as well for the
understanding of cancer biology [7,8]. Moreover, early prediction contributes to reduc-
ing the metastatic expansion of cancerous cells through targeting strategies [9]. Tissues’
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morphological factors and biomechanical properties have been used to identify metastatic
cancers, and to some extent, they achieve their goal [9,10]. Histological, cytological, and
biomarker-based analysis provide an assessment of the cancer stage, as well of the clinical
variables which are used for prognostic insights, whose stratification risk value, however,
is insufficient for predicting survival outcomes and metastatic prognostic value [11].

Cancer tissues are characterized by irregular growth and the features of their geomet-
rical changes are far from being attributed by Euclidean measures (length, surface, volume),
which deliver gross differences for geometrical objects and losing details of their structure.
Instead, fractal geometry is able to decode fine differences among structures. Fractals are
ubiquitous in nature, and are consequences of self-affinity resulting in scale-independent
processes [12–14]. Fractal analysis is already used to study cancer [15,16], and it can lead
to the improvement of the diagnostic validity of both cyto-histopathological and medical
imaging findings [17]. For instance, fractal analysis has been used to elucidate various types
of tumors: colorectal cancer (CRC) [18]; rectal cancer [19]; and breast cancer [20–22], to
name a few. The fractal or Hausdorff dimension (FD) [23] is the index that has been used the
most in cancer analysis. In addition to FD, the texture properties (lacunarity) of tissues have
also been investigated. FD and lacunarity assess the degree of complexity in patterns [24],
are based on structural (shape, distribution of gaps) complexity and statistical properties of
geometrical objects. FD and lacunarity are good descriptors in discriminating cancerous
tissues from normal ones; for instance, the multifractal analysis of digitized mammograms
showed monofractal behavior for normal tissues and the multifractal character of clustered
microcalcifications, and breast cancer imprints [25,26]. Additionally, the FD of atomic force
microscopy (AFM) images can differentiate premalignant from malignant human cervical
epithelial cells [27].

Various mathematical models deliver the FD [28], and can potentially lead to a range
of estimates for its value [29]. FD quantifies the roughness or smoothness of time series
and spatial data in the limit of infinitesimally fine observation scale, and thus the estimates
of FD depend on the availability of observations at sufficient fine temporal or spatial
resolution [30]. However, for a broad range of potentially anisotropic, non-stationary, as
well some non-Gaussian processes, FD can be considered as second-order statistics [31,32].
Second-order statistics—in the same class as which measures such as lacunarity, auto/cross-
correlation, and power spectrum fall—well describe monofractal processes and their ability
to discriminate tiny differences between multifractal processes are questionable since their
estimates are rough because of describing a multifractal around its mean value [33].

Fractal analysis showed that cancer tissues are better described by multifractals [18,24,34].
However, cancer cells are heterogeneous both phenotypic and functional within the same
tumor as a consequence of either genetic changes, or reversible changes in the ECM, or envi-
ronmental differences [35]. It is thus expected metastatic (M) and non-metastatic (NM) tissues
will exhibit multifractal behavior likely accompanied by anisotropy in scaling (multiaffinity)
along the Cartesian axes used to describe the sample tissue. Multiaffine surfaces are better de-
scribed by markers such as the multifractal spectrum, the singularity strength, the generalized
Hurst exponent, whose ability of description is not limited to a single value but they rather
provide a spectrum of values [36]. For example, longitudinal whole-body PET-CT scans of
F-18-fluorodeoxyglucose in patients suffering from metastatic melanoma have been analyzed
by multifractal analysis and its multifractal spectrum delivers info on the distribution of the
test molecule around metastatic centers and its value decreases with disease progression [17].

A reliable and label-free approach to identify and quantify M and NM tissues on
conventional histological cross-sections, and thus to detect nanoscale changes associated
with the progress of carcinogenesis in tissue for early diagnosis and effective treatment
is challenging [37]. To reduce the size of the histological cross-sections to be analyzed,
AFM is a powerful technique because of performing direct three-dimensional imaging
of cells and tissues going far beyond the resolution limits of optical microscopes. The
main abilities of AFM, force spectroscopy (nanoindentation) and topography imaging,
have been exploited in cancer research. For example, the connection between the motility
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and mechanics of human glioblastoma (GBM) cells was analyzed using AFM imaging
in a live cell [38], and single cell live imaging was also used to quantify biomechanical
and migratory properties in low- and high-metastasis-associated in colon cancer 1 marker
(MACC1)-expressing CRC cells [39]. AFM force experiments have also been carried out
to estimate cell stiffness in MDA-MB-231 breast cancer cells [40], as well to investigate
the combined influence of a glioma isocitrate dehydrogenase (IDH) mutation status on
both tumor and peritumoral white matter fresh tissue elasticity [41]. The use of AFM in
cancer research potentially reveals structural changes in tissues, which can be associated
with the early cancer progression at the nanoscale [42], as can also be seen in two recent
reviews [43,44].

Up to now, few studies have focused on the analysis of formalin-fixed paraffin-
embedded (FFPE) cancer tissues using AFM [45], and in particular, to use the extracted
information to improve diagnosis and prognosis reports [46]. In the present work, M and
NM histological cross-sections of CRC tissues were prepared, and their assessment (FFPE
sections) was performed by optical microscope. The morphological features of a small part
of them, with a surface size up to few cancer cells, were scanned by AFM operating at
tapping mode, and the histological cross-section height–height roughness was recorded.
Multifractal detrended fluctuation analysis (MF-DFA) and fluctuation analysis by means of
the generalized moments method (GMM) in two dimensions were used. We found that
the differences between M and NM primary tissues are minute; however, our combined
methodology can discriminate M from NM tissues based on the information extracted by
processing AFM images. Indeed, our results shown that it is possible to classify tumors as
M or NM by just analyzing the primary tumor tissues, in this case, colon sections, without
any further information about regional lymph nodes or the analysis of other organs. Our
method provides insights into tumors’ metastatic potential by answering the malignancy
of suspicious cells (typically a few) not identified with the optical examination when signs
of early disease are subtle.

2. Materials and Methods
2.1. Histological Tissue Preparation

CRC tissues were obtained from the University Hospital “Federico II” in Naples, Italy.
All information regarding human material was managed using anonymous numerical codes
and all samples were handled in compliance with the Declaration of Helsinki protocol and
approved by the Institutional Review Board (or Ethics Committee) of Universita’ Federico
II, Napoli, Italy, on 13 June 2018. For each patient, the site of the primary tumor (right
colon, transverse, left colon, rectosigmoid), the pathological classification according to the
Union for International Cancer Control (UICC) 2017 (T, N, M), the presence of vascular
hematic invasion (V), vascular, lymphatic invasion (L), and perineural invasion (Pn), and
surgical resection margins (R) status were reported. Moreover, the neoplastic cellular
percentage, the presence of necrosis, desmoplasia, and tumor-infiltrating lymphocytes
(TILs) was evaluated by microscopic visual inspection by dedicated pathologists. The
acellular mucinous component was categorized as absent (<1%) or present (≤50% or
>50%) after the microscopic revision performed by two expert gastrointestinal pathologists.
The TNM classifications of tumor samples used in the study is as follows; m1: pT3NXM1;
m2: pT4ApN1ApM1; m3: pT3N2bM1b; nm1: pT4aN0; nm2 pT3N0.

FFPE blocks have been prepared by the following routine protocol. Freshly dissected
tissues were fixed with 10% neutral formalin for 24 hours at room temperature. Tissues
were rinsed with running tap water for 1 hour, dehydrated through 70%, 80%, and 95%
alcohol, 10 min each, followed by three changes of 100% alcohol, 10 min each. Subsequently,
tissues were cleared through two changes of xylene, 10 min each; and two changes in liquid
paraffin, 10 min each. Finally, the tissues were embedded in a paraffin block. All blocks
were stored at room temperature in the hospital pathological tissue archive. The tumor
sections in FFPE blocks, collected on glass slides, were dewaxed according to the following
procedure: warmed at 60 ◦C until paraffin completely melted down; then, three series of
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xylene washes were performed, leaving 5 min the glass slides completely submerged and
changing xylene at each step; then, xylene traces were removed by three series of wash in
100% ethanol for 5 min each time and changing ethanol solution at each step; then, slides
were further washed once in 95% ethanol for 5 min and once in distilled water for 5 min.
After deparaffinization was completed, slides were stained using hematoxylin solution
(indicated brand and city) dried in the air for approximately 10 min at room temperature.
Before AFM analysis, each glass slide was cut to include the tumor area on a glass portion
of 1 cm × 1 cm.

Before AFM imaging, the stained paraffin sections of the same tissue block were
examined under the transmitted light illumination of the optical microscope (Primovert
microscope) with a magnification of 40× to optically identify the M or NM tumor areas by
inspection. Then, the AFM probe was positioned in relation to the section as identified by
the optical image. The AFM imaging was performed in the air at ambient temperature.

2.2. AFM Image Analysis

The fixed histological tissues were imaged by Innova AFM (www.bruker.com) op-
erating in tapping mode with phosphorus (n)-doped silicon cantilever (RTESPA, Bruker,
Madison, 120 WI, USA) with a nominal tip diameter of 8–10 nm, and nominal spring
constant of 40 N/m at 300 kHz resonance frequency. Surface image quality was optimized
by lowering the scan rate at 0.2 Hz. All images were acquired with 50 × 50 µm2 scan sizes,
512 × 512 data point resolution, and with a pixel size of 97.65 nm. Each scanned sample
contains a few CRCs since 11 µm is their median size [47]. The AFM was installed on a
vibration isolation table (minus k technology BM-10) to compensate for regular environmen-
tal vibrations and placed inside an acoustic enclosure (Ambios technologies Isochamber)
for isolation from thermal and building vibrations and 30 dB acoustic drift. The AFM
imaging was performed in air at ambient temperature. In addition to height, the amplitude
and phase images were also recorded.

2.3. AFM Image Mathematical Analysis

The AFM tip is moving along the x axis (scanning or fast axis). Each pixel has a surface
of about 9600 nm2, which is much larger than the surface of the tip, and at each pixel the
surface height–height roughness (z value) is recorded. The position of each pixel onto the
surface is given by two indices i and j, where i = 1, 2, 3, . . . , Nx and j = 1, 2, 3, . . . , Ny, with
Nx and Ny are the maximum number of pixels in each direction. The available data for
analysis are of the form f (x, y) = z or in discrete form f (xi, yj) = zij. These data are first
analyzed with MF-DFA [48,49] and then with GMM [50–54]. For the details of MF-DFA
and GMM, see Appendices A and B respectively. Of note, any systematic error introduced
by sample preparation, e.g., cut, does not affect either MF-DFA or GMM analysis; these
are doing detrending, so any constant additive value is canceled out, as can also be seen in
reference [54] and the supporting information therein.

3. Results

Optical images (4×, 40×) of the CRC tumor histological cross-sections stained by
hematoxylin/eosin reveal M differentiation, as shown in Figure 1a,b. Of note, they have a
different morphology with respect to the NM tissues illustrated in Figure 1c,d. The size
of the tumor surface is 0.17 × 1.73 mm2 already large and probably critical for patient
survival, as shown in Figure 1a. A small portion, 50 × 50 µm2 of the tissues displayed in
Figure 1b,d, were used for the AFM images, Figure 1e,h. Visual inspection underlines a
large number of nano-islands for the NM compared to the M ones.

www.bruker.com
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Figure 1. (a) Optical image of a M tissue in 4x lens. (b) the same as (a) for 40x magnification. (c) the
same as (a) for NM tissue. (d) the same as (b) for NM tissue. (e) AFM image of a tiny part (50x50
µm2) of M tissue displayed in (a). (f) the same as (e) for the M tissue shown in (b). (g) the same as (e)
for the NM tissue displayed in (c). (h) the same as (g) for the NM tissue shown in (d). (i) histogram of
AFM tip elevation (z-heights) illustrated in (e). (j), (k) and (l) the same as (i) for (f), (g) and (h). Of
note, magnification 4x provides an analysis of 1920 x 1200 pixels (an area of 3.2 x 2 mm2), and 40x
magnification provides the same analysis for an area of 320 x 200 µm2. Of note the visual similarity of
the AFM images (e) and (f), M sample, which however lead to different histogram distributions.
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Figure 1. (a) Optical image of an M tissue in 4× lens; (b) the same as (a) for 40× magnification;
(c) the same as (a) for NM tissue; (d) the same as (b) for the NM tissue; (e,f) AFM images of tiny parts
(50 × 50 µm2) of the M tissue displayed in (a,b). (g,h) AFM images of tiny parts (50 × 50 µm2) of the
NM tissue displayed in (c,d); (i) histogram of AFM tip elevation (z heights) illustrated in (e); and (j–l)
the same as (i) for (f–h). Notice that, magnification 4× provides an analysis of 1920 × 1200 pixels (an
area of 3.2× 2 mm2), and 40×magnification provides the same analysis for an area of 320 × 200 µm2.
Of note, the visual similarity of the AFM images (e,f), the M sample, which, however, lead to different
histogram distributions.

Additionally, a sequence of high-to-low height value (yellow-to-dark blue) is repeated
all over the surface for NM sections, while the M ones follow a smoother distribution
of heights. These criteria are subjective and cannot lead to discrimination between the
two classes, as can be seen, in the similarity of the corresponding histograms shown in
Figure 1i–l. Fifteen AFM images were analyzed; six of them correspond to NM and the
rest to M cancerous samples. All samples are cross-sections of CRC tissues which were
taken from five different patients, and more than one sample can belong to the same patient
or/and to the same tissue.

AFM images, some of which are depicted in Figure 1e–h, were first analyzed by
2D-MFDFA, extracting the multifractal scaling exponent τ(q), and then reanalyzed by
2D-GMM, which provides the scaling exponent of the structure function, z(q). τ(q) and
z(q), as can be seen in Equations (A5) and (A9) in Appendices A and B, respectively, contain
all the necessary info for decoding multifractal processes. Through τ(q), ref. [55] two other
metrics can be constructed: the singularity strength, α(q), and the multifractal spectrum,
f (α), see Equation (A6) in Appendix A.

The analysis by both MF-DFA and GMM in two dimensions showed that all AFM im-
ages (M and NM) pose a multifractal character whose origin emanates from the long-range
correlations of weak and strong fluctuations, as can be seen in Figure A1 in Appendix C,
where the behavior of the shuffling data is illustrated as well the discussion there. Further-
more, the histological cross-sections are not homogeneous, as revealed by GMM analysis
in separate axes, and as can be seen in Figures A4 and A5 and the discussion thereof in
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Appendix C. The obtained multifractal scaling exponents, τ(q), present minute differ-
ences for M and NM histological cross-sections. The multifractal spectrum or spectrum
from now on, f (α), is mostly skewed to the right (q < 0) than to the left (q > 0), as
can be seen in Figure 2a, whereas the width of the spectrum, ∆α, is not enlightening in
addressing the differences between M and NM histological sections, as can be seen in
Figure A2a,d) and the discussion in Appendix C. Of note, ∆α, has been successfully tested
and was constituted the first response-predictive marker in stage II–III colon cancer [18].
The following measures were defined in quantifying the asymmetry properties of f (α). (i)
∆α = αmax − αmin returns the width of the spectrum. (ii) ∆αle f t = αmax − α(q = 0), where
f (α(q = 0)) = 2, returns the width of the spectrum to the left (q < 0, weak fluctuations).
(iii) ∆αright = α(q = 0) − αmin the same as (ii) but to the right and accounts for strong
fluctuations (q > 0), and note ∆α(q) = ∆αle f t + ∆αright. (iv) ∆ fle f t = 2− fle f t returns the
singularity parameter of the spectrum to the left. (v) ∆ fright = 2− fright the same as (iv)
but to the right. Note that fle f t = f (αmax) and fright = f (αmin). All these measures are
illustrated schematically in Figure 2a. In the same figure, the spectrum of a randomly
chosen sample (m2.1) is depicted. A vertical dashed solid black line indicates the value of a
for which f (α) takes its maximum value. This value, which is equal to 2, is the same for all
samples and determines the fractal dimension of the support (D f ). Note that the maximum
of f (α(q)) is achieved for q = 0.
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Figure 2. (a) Definition/visualization of the measures, ∆α, ∆αi, ∆ fi (i=left/right), used to investigate
multifractal spectrum asymmetry as well singularity parameter asymmetry. The multifractal spectrum
of the sample m2.1 has been used for the definitions. Multifractal spectrum of NM samples is
illustrated in Figure C(1d). (b) width of multifractal spectrum to the left, ∆ fle f t. (c) singularity
parameter to the left, ∆αle f t. (d) ratio of singularity parameters to the left/right, ∆ fle f t/∆ fright. In
all graphs, Q stands for the maximum moment. Calculations have been carried out for q in the
range [-Q-1,Q+1]. The numbering of the samples is determined by an alphanumeric sequence whose
first letter determines the assessment of the histopathologists by optical microscope, m/nm for
metastatic/non-metastatic. The first number identifies the patient and the number after the dot the
sample number e.g. m1.2 means that the second sample of the first patient is metastatic.
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Figure 2. (a) Definition/visualization of the measures ∆α, ∆αi, ∆ fi (i = le f t/right) used to investigate
multifractal spectrum asymmetry as well the singularity parameter asymmetry. The multifractal
spectrum of the sample m2.1 was used for the definitions. The multifractal spectrum of NM samples
is illustrated in Figure A1d; (b) width of multifractal spectrum to the left, ∆ fle f t; (c) singularity
parameter to the left, ∆αle f t; and (d) ratio of singularity parameters to the left/right, ∆ fle f t/∆ fright.
In all graphs, Q stands for the maximum moment. Calculations were carried out for q in the range
[−Q − 1, Q + 1]. The numbering of the samples is determined by an alphanumeric sequence whose
first letter determines the assessment of the histopathologists by optical microscope, m/nm for
metastatic/non-metastatic. The first number identifies the patient and the number after the dot the
sample number, e.g., m1.2, means that the second sample of the first patient is metastatic.

The singularity parameters ∆ fi, i = le f t/right characterize the broadness of the
spectrum and their ratio, ∆ fle f t/∆ fright is a direct measure of the depth of the spectrum tail.
If ∆ fle f t/∆ fright > 1, the left-hand side is deeper (for q > 0) and implies strong singularities,
while for ∆ fle f t/∆ fright < 1, the tail for q < 0 is deeper, implying weak singularities. If the
spectrum was symmetric on both axes, then ∆αle f t = ∆αright and ∆ fle f t = ∆ fright would
hold true. For ∆αle f t > ∆αright and ∆ fle f t > ∆ fright, the spectrum is skewed to the left, and



Cancers 2022, 14, 3728 7 of 19

it is skewed to the right otherwise. Figure 2b–d show three measures that, in principle, can
differentiate M from NM histological cross-sections. Every single point depicted in these
figures corresponds to a full-2D-MF-DFA analysis for q in the range [−Q− 1, Q + 1], thus
proving that the results have no dependence on the order of the moment q. In the present
study, Qmin = 6, and Qmax = 9. Figure 2a shows the marker ∆ fle f t(strong fluctuations) for
M and NM histological sections, a horizontal black-dashed line shows the threshold value
1.5, for which ∆ fle f t < 1.5 for all M samples and the opposite for NM, thus indicating a
stronger left singularity parameter for NM samples. Figure 2c shows that the marker ∆αle f t.
A dashed black line was set at the value of 0.5 with ∆αle f t < 0.5 for all M histological
sections and the opposite for NM ones. The width of the spectrum to the left is constantly
smaller for M sections and, by combining this with the behavior of the singularity parameter
to the left, we draw our first argument which says that weak fluctuations likely govern M
samples. Given that a proper measure should answer on the kind of cancer histological
section without the possibility of comparison between M and NM ones, an index that
compares contribution from weak and strong fluctuations and differentiates M from NM
in a single run analysis is needed. ∆ fle f t/∆ fright is such a marker, as shown in Figure 2d,
and it shows a clear differentiation among M and NM histological sections. The threshold
value is 0.8 and all values higher than 0.8 indicate NM samples, and M otherwise. This
marker is one of the main contributions of this work because of acting as a universal one in
tackling the question of whether a histological colorectal cancer section is metastatic or not.
We should notice that the measures ∆αright, ∆ fright and ∆αle f t/∆αright are not conclusive.
They are depicted in Figure A2b–d in Appendix C, where the relative discussion can also
be seen.

Ensuring forecasting, an additional marker obtained by another method focusing on
different properties, is required. If this measure exists, and a histological cross-section
satisfies both markers simultaneously, then it will secure the success of the present concept
for discriminating M from NM cancerous sections. 2D-GMM delivers the new desirable
marker, which is actually identified as the multifractality index, αL. As mentioned above,
2D-GMM returns the scaling exponent of the structure function, z(q), whose form is then
fitted by Equation (A10) of Appendix B, and the values of the generalized Hurst exponent,
H, the co-dimension parameter, C, and the multifractality index are obtained. GMM was
used for the analysis of surface raw data as well for raw data along each axis, and the
obtained values are listed in Table A1 and z(q) is depicted in Figure A4, see Appendix C. The
parameters H and C are not conclusive; see Figure A5 and the discussion in Appendix C.

A sound difference between M and NM samples is provided by the values of the
multifractality index, αL, Figure 3. For NM sections, the value of αL is equal to 2 (log-
normal distribution), the exception being the sample nm1.3. The same is true for analysis
along the x axis, where again, the exception of sample nm1.3 gives value 1.62, which
is, however, larger than that for surface analysis. However, the sample nm1.3 satisfies
the general trend for NM samples with respect to the parameters H, C and aL, which
define the structure function of a sample, as it holds true that Hy ≥ Hx ≥ Hsur f ace, and
Cy ≥ Cx ≥ Csur f ace, exception the nm1.1 sample. Of note, the value of αL for analysis along
the y axis is constantly equal to 1 (log-Cauchy distribution) without any exception, which it
also holds true for M cells with the exception of sample 3.4. On the contrary, for M tissues,
the values of αL for surface or along x axis are either equal to 1 for 5 out of 9 samples or
smaller than 1.5, with the surface multifractality index being higher than the corresponding
index in the x axis. Thus, values of the multifractality index close or equal to 2 for analysis
along the scanning axis (x axis) and 1 for analysis along the y axis underline the existence
of a NM histological section. This is the second main contribution of the present work.
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Figure 3. The multifractality index αL obtained by the best fitting of z(q) by means of equation (B.4)
or special cases of it, for the surface, as well for separate analysis in x- and y- axes. Symbols: blue
circles for height-height surface roughness, red squares for surface roughness along x-axis which is
identified to the scanning one, and green star for y-axis.
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Figure 3. The multifractality index αL obtained by the best fitting of z(q) by means of Equation (A10)
or special cases of it, for the surface, as well for separate analysis in x and y axes. Symbols: blue
circles for height–height surface roughness, red squares for surface roughness along x axis which is
identified to the scanning one, and a green star for y axis.

4. Discussion

MF-DFA and GMM showed that AFM tip response over a histological cross-section
(height–height surface roughness) for both M and NM samples presents a multifractal
character, whose origin emanates from long-range correlations. The sections are inhomo-
geneous because of the surface roughness which displays asymmetric scaling along the
x and y axes. The multifractal spectrum is not symmetric but mostly skewed to the right.
Based on spectrum asymmetry, a first discrimination between M and NM tissues may be
made by comparing the width of the spectrum to the left and right, as well the singularity
parameter to the left and right. The MF-DFA provides a universal marker, which quantifies
contributions from weak and strong fluctuations and, according to its value, we can classify
a histological cancer section as metastatic, or not. The width of the spectrum is mainly
larger for NM sections, larger variability and thus more multifractal nature. NM prefers to
be skewed to the right, however, the tail of their spectrum goes deeper to the left—implying
stronger fluctuations, which in turn declare the existence of irregular areas and of some
rare events of high values. On the contrary, M sections are right-skewed and the tail of the
spectrum goes deeper to the right, implying weak fluctuations, which are associated with
valleys (mostly flat areas).

Histological cross-sections are intrinsically built up by protrusions and valleys of
different geometries and of different size orders. At cellular size level of some microns, this
diverse geometry is revealed through its interaction with the AFM tip and returns for M
tissues a roughly smooth section frequent distributed by valleys. The anaglyph remains
the same for NM tissues; however, it is interrupted by some protrusions contributing to
the high elevation of the AFM tip. Frequency histograms for NM cross-sections, as shown
in Figure 1k,l, clearly illustrate the existence of some events, larger than 4 µm, contrary
to what happens for the corresponding histograms for M cross-sections, Figure 1i,j. This
finding is also compatible with the estimated value of the multifractality index, αL = 2, for
almost all samples whose higher values underline the existence of a small number of pixels,
however, with stronger upward values.

The analysis also returned the value of αL = 1 for all M and NM tissues, except
one, along the y axis. Mathematically, αL = 1 corresponds to z(q) = Hq− Cqlog(q) as
the function describing the scaling exponent of the structure function, and underlines
that fluctuations of surface roughness along the y axis can be considered as a collection
of random variables whose logarithm follows Cauchy distribution, with fatter tails with
respect to the Boltzmann one. Along the x axis, for almost all NM, αL = 2 and accordingly
z(q) = Hq− C(q2 − q) indicate surface roughness fluctuations as a collection of random
variables whose logarithm follows the log-normal distribution. Both log-Cauchy and
log-normal distributions point to the multiplicative effects of different origins, and the
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latter reflects on the mechanisms that govern the growth of metastatic and non-metastatic
cancerous tissues.

5. Conclusions

In summary, height–height surface roughness fluctuations of cancerous cross-sections
of M and NM CRC tissues obtained by AFM measurements were analyzed by two powerful
statistical approaches, namely MF-DFA and GMM. Analysis showed that cross-sections
are multiaffine surfaces, and in general, the differences between M and NM are minute.
However, the values of two cardinal metrics can serve as markers for distinguishing M from
NM; (a) the ratio of the singularity parameters (left/right), which are defined relative to
(weak/strong) fluctuations in the multifractal spectrum, is always greater than 0.8 for NM
tissues; and (b) the index of multifractality describing the fluctuations across the scanning
axis is equal to 2 for NM sections. This pair of values never occurs for M sections. The
analysis of histological cancerous cross-sections can therefore safely identify the metastatic
or non-metastatic nature of the tissue when both markers appear. These findings, and their
understanding, will enhance our arsenal in the war against cancer.

Author Contributions: F.P., U.M., G.T. and A.F. obtained and prepared the samples (colorectal cancer
cross-sections) in FFPE blocks. A.F. made the assessment of the samples by optical microscope,
and further treated the samples for AFM use. V.G., E.S., Z.K. and A.-C.C. carried out the AFM
experiments. E.S., A.-C.C., F.Z. and E.B. contributed to the design and implementation of the research.
E.B. performed the mathematical analysis. E.B. wrote the paper with input from all authors. All
authors provided critical feedback and helped shape the research, analysis and manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of Universita’
Federico II, Napoli, Italy, on 13 June 2018, and by the Ethics Committee of National Hellenic Research
Foundation on 13 April 2022.

Informed Consent Statement: Written informed consent was obtained from all patients and docu-
mented in accordance with the general authorization to process personal data for scientific research
purposes from “The Italian Data Protection Authority” (https://www.garanteprivacy.it/web/guest/
home/docweb/-/docwebdisplay/export/2485392, accessed on 14 March 2021). All information
regarding human material was managed using anonymous numerical codes, and all samples were han-
dled in compliance with the Helsinki Declaration (http://www.wma.net/fr/news-post/enmatiere-de-
transfert-des-taches-la-securite-des-patients-et-la-qualite-des-soins-devraient-etre-prim-ordiales/, ac-
cessed on 22 November 2021).

Data Availability Statement: The availability of height–height surface roughness data and software:
all data that support the findings of this study are available from the corresponding author upon
reasonable request, and in addition, the software (code) is available from the corresponding author in
the flow chart upon reasonable request.

Conflicts of Interest: A.F., V.G., Z.K., A.-C.C., E.S., F.P., F.Z. and E.B., have nothing to disclose. U.M.
has received personal fees (as a consultant and/or speaker bureau) from Boehringer Ingelheim,
Roche, MSD, Amgen, Thermo Fisher Scientifics, Eli Lilly, Diaceutics, Diatech, GSK, Janssen, Merck
and AstraZeneca, unrelated to the current work. G.T. reports personal fees (as a speaker bureau or
advisor) from Roche, MSD, Pfizer, Boehringer Ingelheim, Eli Lilly, BMS, GSK, Menarini, AstraZeneca,
Amgen and Bayer, unrelated to the current work.

https://www.garanteprivacy.it/web/guest/ home/docweb/-/docwebdisplay/export/2485392
https://www.garanteprivacy.it/web/guest/ home/docweb/-/docwebdisplay/export/2485392
http://www.wma.net/fr/news-post/enmatiere-de-transfert-des-tac hes-la-securite-des-patients-et-la-qualite-des-soins-devraient- etre-prim-ordiales/
http://www.wma.net/fr/news-post/enmatiere-de-transfert-des-tac hes-la-securite-des-patients-et-la-qualite-des-soins-devraient- etre-prim-ordiales/


Cancers 2022, 14, 3728 10 of 19

Abbreviations
The following abbreviations are used in this manuscript:

FD Fractal dimension
M Metastatic cross-sections
NM Non-metastatic cross-sections
2D MF-DFA Two-dimensional multifractal detrended fluctuation analysis
2D GMM Two-dimensional generalized moments method

Appendix A. Multifractal Detrended Fluctuation Analysis in Two
Dimensions (2D-MFDFA)

Let us assume that the data, (xi, yj), describe a self-affine surface. For the application
of 2D-MFDFA, the following steps are taken, as in ref. [49]: (i) The surface is partitioned
into Msx × Msy dis-joint surfaces, where sx = Nx

Msx
and sy =

Ny
Msy

are the scales along

the x and y axes respectively, and Nx, Ny provide the maximum number of data along
x and y axes. The coordinates of each sub-surface are given by (x(kx−1)sx+i, y(ky−1)sx+j),
with 1 ≤ i ≤ sx, 1 ≤ j ≤ sy and kx and ky are indices determining the position of each
sub-surface and take values in the range, kx = 1, 2, . . . , Msx and ky = 1, 2, . . . , Msy . If
Nx = Ny, the square surface, then sx = sy = s is the scale, and Msx = Msy = Ms provides
the number of dis-joint squares after the partitioning of the whole surface by the scale s, and
the coordinates of each sub-square are (x(kx−1)s+i, y(ky−1)s+j). Given that data correspond
to square surfaces, in the rest of the paper, we keep the notations for square surfaces; and
(ii) for each sub-square, we define the cumulative sum as follows

ukx ,ky(xn, ym) =
n

∑
i=1

m

∑
j=1

(x(kx−1)sx+i, y(ky−1)sy+j) (A1)

with 1 ≤ n, m ≤ s. ukx ,ky(xn, ym) is again a surface, whose trend can be removed by a
bivariate polynomial. (iii) detrending step: Various forms of functions for detrending a
surface have been proposed [49]. We use a simple plane, ukx ,ky(xn, ym) = ax + by + c. The
parameters a, b, c can be easily obtained by linear regression. We define the residual matrix
as εkx ,ky(xn, ym) = ukx ,ky(xn, ym)− ukx ,ky(xn, ym). The detrended fluctuation function of the
sub-square is provided as the variance of the residual matrix [56].

F(kx, ky, sx, sy) =

√√√√ 1
s2

s

∑
i=1

s

∑
j=1

ε2
kx ,ky

(x(kx−1)sx+i, y(ky−1)sy+j) (A2)

(iv) the last step considers the estimate of the qth order of the detrended fluctuation function,
which reads

Fq(sx, sy) =


(

1
Mx My

∑Mx
kx=1 ∑

My
ky=1 Fq(kx, ky, sx, sy)

) 1
q , q 6= 0

1
Mx My

∑Mx
kx=1 ∑

My
ky=1 ln(F(kx, ky, sx, sy)), q = 0

(A3)

The power law relation between Fq(sx, sy) and the scale
(

s2
x + s2

y

) 1
2 , reads

Fq(sx, sy) ∼
√

s2
x + s2

y
h(q) sx=sy=s∼

(√
2s
)h(q)

(A4)

The multifractal scaling exponent or mass function, τ(q), is the key function in 2D-
MFDFA, and reads

τ(q) = qh(q)− D f (A5)
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where D f is the fractal dimension of the substrate support, equal to 2 for surfaces, h(q) is
given by Equation (A4), and q stands for the order of the moment taking values in the range
[−10, 10]. Negative values of q ascribe the contribution of weak fluctuation and positive
values those of strong fluctuations. If τ(q) is a linear function of q, the process is monofractal.
Convex shape of τ(q) versus q signals to a multifractal process. Linearity by portions, e.g.,
a bilinear form of τ(q) versus q does not necessarily point to a multifractal process [57].
The singularity strength, α(q), and the multifractal spectrum, f (α), are connected to τ(q)
via the Legendre transform [55]

α(q) = dτ(q)
dq

f (α) = qα− τ(q)
(A6)

For monofractal processes, the multifractal spectrum is just a single point. Instead,
multifractal processes are characterized by a concave spectrum and the broader the shape
of the curve, the more multifractal the process is. Additionally, the spectrum being skewed
to the left or to the right and/or differences in the broadness of the spectrum to the left
with respect to the right or vice versa can differentiate complex processes.

Appendix B. Generalized Moments Method in Two Dimensions (2D-GMM)

Fluctuation analysis in two dimensions, with the generalized moments method (2D-
GMM), can be seen as an extension of the height–height correlation function [58] because
it takes into account various moments also including fractional ones. The method has
accurately described the kinematics of molecules on surfaces [51], it has shed light on
cells’ behavior in complex environments [50,52,53,59] and it has unveiled the biomemory
effects caused by AFM tip penetration into spore cells’ surface [54]. The 2D-GMM is used
to classify the multiaffine properties of surface height–height roughness, and takes as
input a finite set of spatial data of typically regular locations (2D-lattice). zi,j is the surface
roughness with i, j being the x and y coordinates of the corresponding pixel, respectively.
Fluctuation analysis considers the absolute value of the difference of the surface roughness

between pixels spaced apart by
√

s2
x + s2

y.

µ(sx, sy) =
(
(zsx+i,sy+j − zi,j)

2
)1/2

(A7)

with i = 1, 2, . . . , Nx − sx, j = 1, 2, . . . , Ny − sy, and for sx = 2, 3, . . . , Nx/10, sy =
2, 3, . . . , Ny/10 in order for the ensemble average to be statistical reliable. Note that Nx, Ny
provide the maximum number of data along the x and y axes. Equation (A7) can be seen as
an unweighted probability measure of surface roughness. We define the structure function
as the ensemble average of µ(sx, sy)q, which for discrete datasets, reads as time average

Sq

(
(s2

x + s2
y)

1/2
)
=

∑Nx−sx
i=1 ∑

Ny−sy
i=1 (µ(sx, sy))q

(Nx − sx)(Ny − sy)
(A8)

The structure function defined in Equation (A8) follows a power-law dependence

Sq

(
(s2

x + s2
y)

1/2
)
∼
(
(s2

x + s2
y)

1/2
)z(q) sx=sy=s

=
(√

2s
)z(q)

(A9)

where z(q) is the scaling exponent and its shape dependence on q classifies a process
either as monofractal (linear) or as multifractal (convex shape). The small order moments,
0 < q < 2, are responsible for the core of the probability density function (pdf) and
higher moments contribute to tails of a pdf [60], and notice that q > 0 in GMM. Among
multifractals, universal multifractals are ubiquitous [61],

z(q) = qH − C
αL − 1

(qαL − q) (A10)
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The scaling exponent contains a linear term in q (monofractal) and a multifractal
correction to it (non-linear term), which leads the departure from linearity. For the linear
dependence of z(q) on q, H = z(q = 1) is called the Hurst exponent in honor of Edwin
Hurst [62], and in general, for multifractals, it is called the generalized Hurst or Hölder
exponent. For z(q) = Hq, the fluctuations describe a quasi-Gaussian field. For a log-Levy
model, as described by Equation (A10), 0 < H < 1, the value of H shows the degree of
fractional integration (persistent for H > 0.5, antipersistent for H < 0.5). H = 0 describes
a conservative filed, scale invariant. The term C is defined as C = dz(q)

dq |q=1 − H, is called
co-dimension information and measures the mean intermittency; for C = 0, the field
is homogeneous, and only one scale exists. From a lower C to higher C, the degree of

intermittency increases, and some extreme outliers will occur. αL = − 1
C

d2z(q)
dq2 |q=1 is the

Levy index or index of multifractality; it takes values in the range 0 ≤ αL ≤ 2, and for
αL = 0, returns Normal distribution. For αL = 2, z(q) = Hq− C(q2 − q) and the logarithm
of the field is normally distributed [63]. For αL = 1, z(q) = Hq− Cqlog(q) and the field is
distributed according to log-Cauchy. For all the other values of αL in the range [0,2], the field
is distributed according to log-Levy. Notice that Equation (A10) describes a monofractal
field, that is, a homogeneous field with a unique scaling, only if C = 0 or αL = 0. The
multifractality index αL is used to characterize the multifractal intensity, which reflects the
hierarchical structure of a process. For a surface roughness field, lower values of αL reflect
a surface having more pixels with high values, and higher values of αL mirror fewer pixels
but with stronger upward values.

Of note, the relation between z(q), Equation (A10), and h(q), Equation (A4), respec-
tively, is as follows:

h(q) = D f + z(q)/q, q > 0 (A11)

Appendix C. Analysis of Raw Data

MF-DFA and GMM investigate the scaling properties in a window of size sx, sy, whose
dimensions increase up to a certain length, not larger than N/10 with N being the maximum
number of data along a given direction, in order to have statistical reliable results [48]. In
the Cartesian coordinates used to define AFM tip motion, the x axis is the scanning one,
the second one of the surface is the y axis, and the response of the tip is made along the
z axis. Furthermore, we restrict the shape of the scaling window to be always a square
one, sx = sy = s, where 4 ≤ s ≤ N/10 with N = 512. The side of the minimum square
lag or scale used here is equal to 390.6 nm (4 × 97.65), where 97.65 nm is the size of the
pixel, and sx = sy = 4, see Equation (A4). The multifractal scaling exponent, τ(q), and
scaling exponent of the structure function, z(q), Equations (A5) and (A10), respectively,
contain all the necessary info for decoding multifractal processes. Through τ(q) [55], two
other useful metrics can be constructed: the singularity strength, α(q), and the multifractal
spectrum, f (α), as can be seen in Equation (A6). All measures are functions of the order of
the moment, q, which for multifractal detrended fluctuation analysis, takes values in the
range of [−Q− 1, Q + 1] with Qmin = 6 and Qmax = 9 in the current analysis. For GMM
(fluctuation analysis), q ∈ (0, 5] also takes non-integer values.

Figure A1a shows for each moment q, q ∈ [−10, 10] the slope of log(Fq(sx, sy)) versus
log(s), which determines the value of h(q), as shown in (Equation (A4)). h(q) follows a
decreasing trend as we pass from negative to positive moments, as shown in Figure A1b.
The non-constant dependence of h(q) on q is a sign of multifractality. By making use of
Equation (A5), we estimate the multifractal scaling exponent, τ(q), for the whole range
of the moments used in the analysis. Figure A1c shows the form of τ(q) for m2.1 and
nm2.1 histological cross-sections, and the rest of the samples follow similar behavior
and figures are not shown. Its form either for M or for NM has a convex shape and
both are pretty close to each another. The departure from linearity (monofractal surface)
confirms multifractality, as the latter was already indicated by the form of h(q), as shown
in Figure A1b. The multifractal spectrum, f (α) versus α, with the use of Equation (A6),



Cancers 2022, 14, 3728 13 of 19

as shown in Figure A1d, substantially differs from a single point, which is the identity of
a monofractal surface. Additionally, the multifractal spectrum is skewed to the left or to
the right and mainly shows a preference of curves skewed to the right (q < 0) for both M
and NM histological cross-sections. The broad probability distribution of the values of the
discrete datasets and/or the long-range correlations of small and large fluctuations are the
causes behind the onset of multifractality [48].
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Figure C1. (a) log(Fq(sx, sy)) versus log(s) for a randomly chosen sample, see equation (A.4). (b) The
scaling exponent, h(q), of Fq(sx, sy), equation (A.4), versus the order of the moment q is depicted. (c)
The multifractal scaling exponent τ(q) as it is obtained via eq.(A.5) versus the order of the moment, q,
is illustrated. (d) The multifractal spectrum, f (α) versus α, as it is predicted via eq.(A.6), is displayed.
Figures (b-d), for clarity reasons, show the results for only two samples, namely, m2.1 and nm2.1.
The rest of the samples present similar behavior. At the same figures and for the same samples the
behavior of the shuffled data is depicted. The alphanumeric sequence of the shuffled data reads
sm2.1 and snm2.1.

Figure A1. (a) log(Fq(sx, sy)) versus log(s) for a randomly chosen sample, as can be seen in
Equation (A4). (b) The scaling exponent, h(q), of Fq(sx, sy), Equation (A4), versus the order of the
moment q is depicted. (c) The multifractal scaling exponent τ(q) as it is obtained via Equation (A5)
versus the order of the moment, q, is illustrated. (d) The multifractal spectrum, f (α) versus α, as it is
predicted via Equation (A6), is displayed. Figures (b–d), for clarity reasons, show the results for only
two samples, namely m2.1 and nm2.1. The rest of the samples present similar behavior. At the same
figures and for the same samples, the behavior of the shuffled data is depicted. The alphanumeric
sequence of the shuffled data reads sm2.1 and snm2.1.

The trick of shuffled sequences is used to discriminate the origin of multifractality.
We created shuffled sequences of the recorded height–height surface roughness data by
randomly redistributing the elements of the original sequences and thus destroying all
correlations. If for the shuffled data, hshu f (q) = const (const = 1, for surfaces), then long-
range correlations are responsible for the multifractal character. On the other hand, if
hshu f (q) ∼ h(q), then multifractality originates from broad probability distribution because
the latter is not affected by random redistributions. If both types of multifractality are
present, then the shuffled data exhibit a weaker multifractality than the original one. The
value of h(q = 2) gives information about the degree of correlation. For uncorrelated
or short-range correlated data, h(q = 2) ∼ 1.0. For h(q = 2) < 1.0, the data are anti-
correlated and for h(q = 2) > 1.0, data are correlated and this correlation becomes stronger
the higher the value of h(q = 2) is. Of note, uncorrelated data are characterized by
h(q = 2) = 0.5D f [53]. For all histological cross-sections, M and NM, h(q = 2) > 2 thus
indicating a strong correlation. The values of this measure cannot discriminate M from the
NM ones, as can be seen below in the discussion of the scaling exponent of the structure
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function z(q) whose values are listed in Table A1. In Figure A1b, the values of hshu f (q)
for two samples are shown, and for all samples, this value is equal to 1. The multifractal
scaling exponent for shuffling data, τshu f (q), is a linear function of q, and is depicted in
Figure A1c, where the best fit on it has also been drawn—a black dashed line—and it has
the form τshu f (q) = −k + q, k is a constant and equal to D f , as can be seen in Equation (A5).
The multifractal spectrum of m2.1 and nm2.1 samples is shown in Figure A1d, where the
corresponding spectrum of the shuffled data is also displayed, that is, small peaks close to
the value of α = 1. The rest of the samples follow the same behavior and are not shown.
Summarizing the behavior of shuffling data; for all histological cross-sections, we have
hshu f (q) = 1, τshu f (q) = −2 + q, and fshu f (α) ∼ 2, which confirm the lack of multifractality
for the shuffling data, and point to long-ranged correlations as a source of multifractality.

Table A1. The generalized Hurst exponent H, the co-dimension information C and the multifractality
index αL of the structure function scaling exponent, z(q). Note that αL is not associated with an
error when the best fit either obtained by z(q) = Hq − C(q2 − q) log-normal for αL = 2, or by
z(q) = Hq− Cqlog(q) log-Cauchy for αL = 2.

2D-GMM GMM (x-Axis) GMM (y-Axis)

Sample H C αL H C αL H C αL

m1.1 0.435± 0.003 0.096± 0.002 1 0.554± 0.002 0.102± 0.002 1 0.512± 0.003 0.079± 0.002 1

m2.1 0.500± 0.0003 0.052± 0.0005 1.502± 0.008 0.557± 0.0006 0.058± 0.0009 1.416± 0.014 0.602± 0.002 0.071± 0.001 1

m2.2 0.536± 0.003 0.059± 0.0007 1.481± 0.009 0.589± 0.001 0.063± 0.001 1.492± 0.021 0.599± 0.002 0.075± 0.002 1

m3.1 0.397± 0.002 0.076± 0.003 1.546± 0.038 0.472± 0.004 0.092± 0.005 1.379± 0.055 0.482± 0.003 0.095± 0.002 1

m3.2 0.565± 0.006 0.159± 0.004 1 0.599± 0.005 0.152± 0.002 1 0.609± 0.004 0.142± 0.003 1

m3.3 0.566± 0.006 0.152± 0.004 1 0.596± 0.004 0.151± 0.003 1 0.619± 0.005 0.141± 0.004 1

m3.4 0.489± 0.001 0.067± 0.002 1.366± 0.030 0.526± 0.002 0.082± 0.003 1.404± 0.035 0.526± 0.001 0.056± 0.002 1.573± 0.035

m3.5 0.562± 0.004 0.128± 0.003 1 0.648± 0.004 0.149± 0.003 1 0.593± 0.002 0.088± 0.002 1

m3.6 0.457± 0.004 0.117± 0.003 1 0.529± 0.005 0.124± 0.003 1 0.538± 0.003 0.101± 0.002 1

nm1.1 0.526± 0.001 0.054± 0.0003 2 0.632± 0.001 0.077± 0.0005 2 0.642± 0.003 0.064± 0.002 1

nm1.2 0.523± 0.003 0.065± 0.001 2 0.631± 0.002 0.083± 0.0008 2 0.640± 0.004 0.085± 0.003 1

nm1.3 0.535± 0.0007 0.092± 0.001 1.440± 0.010 0.631± 0.0003 0.090± 0.0004 1.620± 0.004 0.649± 0.004 0.085± 0.003 1

nm2.1 0.368± 0.0008 0.025± 0.0003 2 0.476± 0.0006 0.034± 0.0002 2 0.541± 0.001 0.083± 0.001 1

nm2.2 0.406± 0.001 0.030± 0.0004 2 0.511± 0.002 0.042± 0.0006 2 0.572± 0.0008 0.069± 0.0006 1

nm2.3 0.389± 0.0004 0.022± 0.0001 2 0.487± 0.0004 0.033± 0.0001 2 0.567± 0.001 0.064± 0.0008 1

Figure A2 shows all measures defined to quantify the asymmetry and the broadness of
the multifractal spectrum and is not conclusive in distinguishing M from NM histological
cross-sections. In Figure A2a, the width of the multifractal strength, ∆α, is presented.
The higher the value of ∆α, the more multifracatal the cross-section is. For NM sections,
∆α > 1.5, while the opposite is true for M sections. However, it cannot be used as a
classification marker because of the exception of m1.1, which presents the higher value
for this index among all samples. Given that ∆α successfully predicted the prognosis and
treatment response in stage II-III CRC [18], its ability to classify histological cross-sections
according to their metastatic or non-metastatic nature, will be re-evaluated in future works.
Note that every single point presented in these figures corresponds to MF-DFA analysis
for q in the range [−Q− 1, Q + 1] and the associated measures do not have dependency
on the order of the moment. Figure A2b presents the right singularity parameter. There
is an overlapping of the results for M and NM histological cross-sections and by itself, it
cannot stand as a discrimination index. The width of the multifractal spectrum for positive
moments is illustrated in Figure A2c, where again it is a marker that cannot differentiate M
from NM sections. The asymmetry parameter, A=∆αle f t/∆αright, is presented in Figure A2d.
All M samples are skewed to the right, with the exception of the m3.3 histological cross-
section. The majority of NM samples are also skewed to the right, exceptions being nm1.1
and nm1.3 which belong to the same histological section of the same patient. Of note, nm1.2
also belongs to the same histological cross-section and is coming from the same patient
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but shows an almost symmetric spectrum with a small tendency to the right. All measures
presented in Figure A2 indicate the rather high similarity between M and NM histological
sections, which can serve as descriptors for some properties of the multifractal spectrum
but cannot serve as discrimination markers.
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Figure C1(a) shows for each moment q, q ∈ [−10, 10] the slope of log(Fq(sx, sy)) 448

versus log(s), which determines the value of h(q), equation (equation A.4). h(q) follows 449

a decreasing trend as we pass from negative to positive moments, Figure C1(b). The non 450

constant dependence of h(q) on q is sign of multifractality. By making use of eq.(A.5), 451

we estimate the multifractal scaling exponent, τ(q), for the whole range of the moments 452

used in the analysis. Figure C1(c) shows the form of τ(q) for m2.1 and nm2.1 histological 453

cross-sections, the rest of the samples follow similar behavior and figures are not shown. Its 454

form either for M or for NM has a convex shape and are pretty much close to each another. 455

The departure from linearity (monofractal surface) confirms multifractality, as the latter 456

already has been indicated by the form of h(q), Figure C1(b). The multifractal spectrum, 457

f (α) versus α, use of eq.(A.6), Figure C1(d), differs substantially from a single point, which 458

is the identity of monofractal surface. Additionally, multifractal spectrum is skewed to left 459

or to right and it mainly shows a preference of right skewed curves (q < 0) for both M and 460

NM histological cross sections. Broad probability distribution of the values of the discrete 461

data sets, and/or long-range correlations of small and large fluctuations are the causes 462

behind the onset of multifractality. [48] 463

Figure C2. (a) ∆α = αmax − αmin width of multifractal spectrum. Notice that, αmax = α(−Q) and
αmin = α(Q), (b) ∆ fright, right singularity parameter characterizing the broadness of the tail to the
right of multifractal spectrum. (c) ∆αright = α(q = 0)− a(q), q < 0, width of multifractal spectrum
to the right. (d) A = ∆αle f t/∆αright, informative descriptor of skewed left or right of multifractal
spectrum. A > 1 left skewed spectrum, A < 1 right skewed spectrum, and symmetric for A = 1.

The trick of shuffled sequences is used to discriminate the origin of multifractality. 464

We created shuffled sequences of the recorded height-height surface roughness data by 465

redistributing randomly the elements of the original sequences and thus destroying all 466

correlations. If for the shuffled data, hshu f (q) = const (const = 1, for surfaces), then long- 467

range correlations are responsible for the multifractal character. On the other hand, if 468

hshu f (q) ∼ h(q) then multifractality originates from broad probability distribution because 469

of the latter is not affected by random redistributions. If both types of multifractality are 470

present then the shuffled data exhibit a weaker multifractality than the original one. The 471

Figure A2. (a) ∆α = αmax − αmin width of multifractal spectrum. Notice that, αmax = α(−Q) and
αmin = α(Q); (b) ∆ fright, right singularity parameter characterizing the broadness of the tail to the
right of multifractal spectrum; (c) ∆αright = α(q = 0)− a(q), q < 0, width of multifractal spectrum to
the right; (d) A = ∆αle f t/∆αright, informative descriptor of skewing the multifractal spectrum to the
left or to the right. A > 1 is a spectrum skewed to the right, and A < 1 is a spectrum skewed to the
right and symmetric for A = 1.

We further investigated the role of multifractality by using 2D GMM in analyzing the
raw data. Figure A3 shows the dependence of the structure function S(q) on the scale, s,
2 ≤ s ≤ N/10, in log–log scale. The scale s is converted to µm by being multiplied by the
side of the pixel, 97.65 nm. The two samples are illustrated, that is, m2.1 (upper panel) and
nm2.1 (bottom panel). For different q′s, the slope provides the value of the scaling exponent
of the structure function, z(q), which is depicted in the graph on the right for each one of
the samples presented here. z(q) departures from linearity and its convex shape underlines
a multifractal surface in line with the findings of 2D MF-DFA.

Independently of the type of neoplasm and independent if we analyze the surface
roughness or roughness across a specific direction, all corresponding to z(q), 12 of which
are illustrated in Figure A4 have convex shape, which confirms their multifractal character.
For each sample, we obtained the scaling of height–height roughness for the surface as well
as for the x and y axes investigating the isotropy/anisotropy of the surface in parallel. The
scaling exponent, z(q), was fitted with Equation (A10) (Log-Levy, general case), as well
with equations Hq− C(q2 − q) (Log-Normal) and Hq− Cqlog(q) (Log-Cauchy), which are
specific cases of Equation (A10) for αL = 2 and αL = 1, respectively. The best fits are also
presented in Figure A4, gray-dashed lines, and their values are listed in Table A1. Surface
anisotropy because of the different z(q) along the x and y axes is even visible at the naked
eye for NM histological cross-sections, while for M cross-sections, we conclude the same in
the light of the analytical form of z(q), Figure A4.



Cancers 2022, 14, 3728 16 of 19

Version July 26, 2022 submitted to Cancers 14 of 20

value of h(q = 2) gives information about the degree of correlation. For uncorrelated 472

or short-range correlated data h(q = 2) ∼ 1.0. For h(q = 2) < 1.0 the data are anti- 473

correlated and for h(q = 2) > 1.0 data are correlated and this correlation becomes stronger 474

the higher the value of h(q = 2) is. Of note, uncorrelated data are characterised by 475

h(q = 2) = 0.5D f .[54] For all histological cross sections, M and NM, h(q = 2) > 2 476

indicating thus strong correlation. The values of this measure cannot discriminate M from 477

the NM ones, see below discussion for the scaling exponent of the structure function z(q) 478

whose values are listed in Table C1. In Figure C1(b), the values of hshu f (q) for two samples 479

are shown, and for all samples this value is equal to 1. The multifractal scaling exponent for 480

shuffling data, τshu f (q) is a linear function of q, and is depicted in Figure C1(c), where also 481

the best fit on it has been drawn - black dashed line - and it has the form τshu f (q) = −k + q, 482

k is a constant and equal to D f , see equation (A.5). The multifractal spectrum of m2.1 483

and nm2.1 samples is shown in Figure C1(d), where also the corresponding spectrum 484

of the shuffled data is displayed - small peaks close to the value of α = 1. The rest of 485

the samples follow the same behavior and are not shown. Summarizing the behavior of 486

shuffling data; for all histological cross sections, we have hshu f (q) = 1, τshu f (q) = −2 + q, 487

and fshu f (α) ∼ 2, which confirm the lack of multifractality for the shuffling data, and point 488

to long-ranged correlations as source of multifractality. 489

Figure C3. Linear regression of log(S(q)) versus log(s). For clarity reasons order of moments in
the range [0.5, 5] with a step of 0.5 are displayed. The actual calculations have been carried out for
moments in the range [0.25,5] with a step of 0.25. The slope of each line corresponds to the value of
the scaling exponent of the structure function, z(q). Two cases (m2.1 and nm2.1) are provided. The
title (LL) for m2.1 means Log Levy, and (LN) for nm2.1 means Log Normal, see discussion below.

Figure C2 shows all measures defined to quantify the asymmetry and the broadness of 490

the multifractal spectrum and are not conclusive in distinguishing M from NM histological 491

cross sections. In Figure C2(a), the width of the multifractal strength, ∆α, is presented. The 492

higher the value of ∆α the more multifracatal the cross-section is. For NM sections ∆α > 1.5, 493

while the opposite is true for M sections. However, it cannot be used as classification marker 494

because of the exception of m1.1, which presents the higher value for this index among all 495

Figure A3. Linear regression of log(S(q)) versus log(s). For clarity reasons, the order of moments
in the range [0.5, 5] with a step of 0.5 are displayed. The actual calculations were carried out for
moments in the range [0.25, 5] with a step of 0.25. The slope of each line corresponds to the value of
the scaling exponent of the structure function, z(q). Two cases (m2.1 and nm2.1) are provided. The
title (LL) for m2.1 means Log Levy, and (LN) for nm2.1 means Log Normal, as can be seen in the
discussion below.

Version July 26, 2022 submitted to Cancers 16 of 20

Figure C4. The scaling exponent of the structure functions for six M and six NM histological cross-
sections, as it has been obtained analysing surface roughness, as well roughness anisotropy in the x-
and y-axes.

Independent of the type of the neoplasm and independent if we analyse surface 521

roughness or roughness across a specific direction, all corresponding z(q), 12 of them are 522

illustrated in Figure C4, have convex shape, which confirms their multifractal character. 523

For each sample, we obtained the scaling of height-height roughness for the surface as 524

well for the x- and y-axes investigating parallel the isotropy/anisotropy of the surface. The 525

scaling exponent, z(q), has been fitted with equation (B.4) (Log-Levy, general case), as well 526

with equations Hq − C(q2 − q) (Log-Normal) and Hq − Cqlog(q) (Log-Cauchy), which are 527

specific cases of equation (B.4) for αL = 2 and αL = 1 respectively. The best fits are also 528

presented in Figure C4, grey dashed lines, and their values are listed in Table C1. Surface 529

anisotropy because of different z(q) along the x- and y-axes is even visible by naked eye for 530

NM histological cross-sections, while for M cross-sections, we conclude the same in the 531

light of the analytical form of z(q), Figure C4. 532

Figure A4. The scaling exponent of the structure functions for six M and six NM histological cross-
sections, as was obtained by analyzing the surface roughness, as well as roughness anisotropy in the
x and y axes.
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The values of H and C are shown in Figure A5. For the surface, the generalized Hurst
exponent is constantly smaller than the corresponding values for histological cross-sections’
roughness in the x and y axes. Furthermore, for NM cross-sections, the value of H along
the y axis is always greater or equal than the corresponding value in the x axis. The same is
true for most of the M samples, exceptions being samples m1.1 and m3.5. The co-dimension
information, C, presents a differentiation between M and NM cells. For NM cells, C is
constantly smaller for the surface than the corresponding values for scaling in x and y axes.
On the other hand, for M cells, the values of C for both surface analysis and for individual
analysis on the x and y axes do not show any systematic trend.
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Figure C5. The obtained generalised Hurst exponent, H, and the co-dimension parameter, C, for
two dimensional analysis as well for analysis in separate x- and y- axes for M and NM histological
cross-sections. Color code: blue for surface analysis, red for analysis in x-axis, and green for analysis
in y-axis.

The values of H and C are shown in Figure C5. For surface, the generalised Hurst 533

exponent is constantly smaller than the corresponding values for histological cross-sections 534

roughness in the x- and y-axes. Furthermore, for NM cross sections, the value of H along 535
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same is true for most of the M samples, exceptions are the samples m1.1 and m3.5. The 537

co-dimension information, C, presents a differentiation between M and NM cells. For NM 538

cells, C is constantly smaller for the surface than the corresponding values for scaling in x- 539

and y-axes. On the other hand, for M cells, the values of C for both surface analysis and for 540

individual analysis on the x- and y- axes, do not show any systematic trend. 541
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