cancers

Systematic Review

Recent Application of Artificial Intelligence in
Non-Gynecological Cancer Cytopathology: A
Systematic Review

Nishant Thakur

check for
updates

Citation: Thakur, N.; Alam, M.R.;
Abdul-Ghafar, J.; Chong, Y. Recent
Application of Artificial Intelligence
in Non-Gynecological Cancer
Cytopathology: A Systematic Review.
Cancers 2022, 14, 3529. https://
doi.org/10.3390/ cancers14143529

Academic Editor: Ewan Millar

Received: 24 May 2022
Accepted: 15 July 2022
Published: 20 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Mohammad Rizwan Alam, Jamshid Abdul-Ghafar

and Yosep Chong *

Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
nishantbiotech2014@gmail.com (N.T.); rizwan@catholic.ac.kr (M.R.A.); jamshid@catholic.ac.kr (J.A.-G.)
* Correspondence: ychong@catholic.ac.kr

Simple Summary: Artificial intelligence (AI) has attracted significant interest in the healthcare sector
due to its promising results. Cytological examination is a critical step in the initial diagnosis of cancer.
Here, we conducted a systematic review with quantitative analysis to understand the current status
of Al applications in non-gynecological (non-GYN) cancer cytology. In our analysis, we found that
most of the studies focused on classification and segmentation tasks. Overall, Al showed promising
results for non-GYN cancer cytopathology analysis. However, the lack of well-annotated, large-scale
datasets with Z-stacking and external cross-validation was the major limitation across all studies.

Abstract: State-of-the-art artificial intelligence (AI) has recently gained considerable interest in the
healthcare sector and has provided solutions to problems through automated diagnosis. Cytological
examination is a crucial step in the initial diagnosis of cancer, although it shows limited diagnostic
efficacy. Recently, Al applications in the processing of cytopathological images have shown promising
results despite the elementary level of the technology. Here, we performed a systematic review with
a quantitative analysis of recent Al applications in non-gynecological (non-GYN) cancer cytology
to understand the current technical status. We searched the major online databases, including
MEDLINE, Cochrane Library, and EMBASE, for relevant English articles published from January

a7

2010 to January 2021. The searched query terms were: “artificial intelligence”, “image processing”,

]

“deep learning”, “cytopathology”, and “fine-needle aspiration cytology.” Out of 17,000 studies, only
26 studies (26 models) were included in the full-text review, whereas 13 studies were included for
quantitative analysis. There were eight classes of AI models treated of according to target organs:
thyroid (n = 11, 39%), urinary bladder (n = 6, 21%), lung (n = 4, 14%), breast (n = 2, 7%), pleural
effusion (n = 2, 7%), ovary (n =1, 4%), pancreas (n = 1, 4%), and prostate (n = 1, 4). Most of the studies
focused on classification and segmentation tasks. Although most of the studies showed impressive
results, the sizes of the training and validation datasets were limited. Overall, Al is also promising
for non-GYN cancer cytopathology analysis, such as pathology or gynecological cytology. However,
the lack of well-annotated, large-scale datasets with Z-stacking and external cross-validation was
the major limitation found across all studies. Future studies with larger datasets with high-quality

annotations and external validation are required.

Keywords: artificial intelligence; cytopathology; cancer; deep learning; systematic review

1. Introduction

Recently, artificial intelligence (AI) has attracted considerable interest in the health-
care sector by providing solutions to problems through automated diagnosis [1-8]. Al
approaches, including machine learning (ML) and deep learning (DL), have been used
in radiological diagnosis [9], bioinformatics [10], genome sequencing [11], drug develop-
ment [12], and histopathological image analysis [5,13-15]. In histopathological diagnosis, it
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has been revealed that the accuracy of Al models is similar to or higher than that of expert
pathologists in terms of tumor detection and classification [16]. In the CAMELYON Grand
Challenge 2016, Liu et al. used a convolutional neural network (CNN) model and detected
tumor metastasis with a higher sensitivity than expert pathologists (92.4% vs. 73.2%) [17].
However, the application of AI models in pathology has mainly focused on histopathology
rather than cytopathology so far.

Cytological examination is an old but still very popular technique for initial screening
diagnosis of cancer, although it shows limited diagnostic efficacy. The examination is rapid,
minimally invasive, easy to use, cheap, and easily repeatable [18,19], making it the most
suitable test method for the screening of cancer. However, it is less accurate, as well as
labor-intensive and time-consuming, compared to histopathological examination. Sampling
inadequacy (low cellularity or bloody smear), cellular degeneration and artifacts, inter-
examiner variation in sampling and preparation procedures, and inter-observer variation
in interpretation are the major reasons for the suboptimal sensitivity and specificity [18,19].
In addition, contrary to histopathology, cellular materials that are critical for the diagnosis
are often dispersed in the smearing field, requiring more time and labor to examine whole
slides [18]. Therefore, there is a need for the application of new techniques, such as Al
image analysis, to increase the accuracy of the test and reduce labor and time costs.

The application of AI models has been exploited in the field of cytology, firstly, in
the examination of gynecological (GYN) samples, with promising results, and is now
gradually being expanded to non-GYN samples [20]. A recent multicenter study conducted
on 2145 referral women reported a higher specificity of the supervised DL model compared
to experienced cytologists [21]. Recently, its application has expanded to non-GYN samples.
In 2020, Range et al. developed an ML-based model using 908 whole-slide images (WSIs)
of fine-needle aspiration cytology (FNAC) of the thyroid. Their model could predict
the risk of malignancy in the thyroid of patients with comparable sensitivity, specificity,
and areas under the curve (AUCs) to those of cytopathologists [22]. In 2017, Japanese
researchers developed a DL-based model in liquid-based cytology (LBC) of respiratory
tract fluids to differentiate three subtypes of lung cancer, including squamous cell carcinoma
(5qCC), adenocarcinoma (AdC), and small cell carcinoma (SCLC), directly from the liquid-
based cytology (LBC). The accuracy of the initial model by this group was 71.1%, and the
consequent models in the following years showed even better performances [23].

However, each study seemed to have several limitations, such as lack of Z-stacking;
limited numbers of training, validation, and test datasets for generalization; lack of external
validation datasets; and flawed study design and inappropriate levels of evidence—this
despite the number of publications increasing every year. Moreover, no relevant review
has been published to date. Thus, we designed a systematic review of state-of-the-art Al
applications in non-GYN cancer cytology to understand the current technical status and
performed a qualitative analysis to set out the basic requirements for future study designs.

2. Materials and Methods

The present systematic review and meta-analysis follows the guidelines set out in
the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) state-
ment [19]. The guidelines for this systematic review were registered in the PROSPERO
database (CRD42021281330).

2.1. Literature Search

This study was approved by the Institutional Review Board of the Catholic University
of Korea, College of Medicine (UC21ZISI0053). We searched the three major electronic
databases, MEDLINE, Cochrane, and EMBASE, for articles published between January
2010 and January 2021 written in the English language. The query terms used in the search
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were: “deep learning”, “cytopathology”, “non-gynecological cancers”, “image processing”,
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“cell biology”, “lung cancer”, “deep learning”, “image processing”, “computer-assisted”,

"o

“machine learning”, “lung cytopathological deep learning”, “urine cytology deep learning”,
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and “thyroid cytological machine learning”. Further, we also obtained articles by cross-
referencing the keywords. Subsequently, we removed the articles without full texts available
and then retrieved and managed the remaining articles with EndNote X20 (Bld 10136,
Thomson Reuters, New York, NY, USA).

2.2. Study Selection, Reviewing, and Data Retrieval

Figure 1 explains the criteria used for selecting and reviewing the articles. After
the initial search, duplicate studies were excluded from the results after the preliminary
search. Next, the titles and abstracts of the studies were screened (N.T.). If any discordance
occurred, a second reviewer stepped in and a consensus was reached (Y.C.). Case reports,
conference proceedings, letters, reviews, and posters were removed. Only original studies
with full texts on Al in non-gynecological cancer cytological image analysis were included.
In addition, the references cited in the individual study were manually searched and
reviewed to identify any supplementary studies.

Identification of studies via databases and registers

T
Records identified through
5 MEDLINE (1 = 9236)
= g - -
é EMiAS (n = ?O;; ) Records after duplicates
'.E acuemringe>= &) > removed (1 = 9000)
5}
= Additional records identified
through other sources (1 = 10)
. J
Records screened by : Records excludedpby
reference type (1 = 8310) reference type (1 = 7439)
£
i= Records screened by title _— Records excluded by
2  or : title (1 = 791)
e (n=871)
v
w
Records screened by abstract Records excluded by
(n = 80) abstract (n = 52)
. J
——\ l
Records screened by full-text Records screened by full-text
review (n =28) review (1 =13)
=
=1
E l
o
=
—
Records screened by
quantitative analysis (1 =15)
N J

Figure 1. PRISMA flow chart showing the study selection process.
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3. Results
3.1. Study Selection and Characteristics

The article selection process for this systematic review is shown in Figure 1. In the
present study, 17,310 articles were identified in the primary search, including 3815 from
MEDLINE (PubMed), 4953 from EMBASE, 202 from Cochrane library, and 10 from cross-
referencing. After excluding 9000 duplicate articles, a total of 8310 articles remained. After
excluding 7439 articles based on reference types, 871 articles were screened. A total of
791 articles were removed based on the title, and 80 articles were screened by abstract.
Next, 52 articles were removed, and 28 studies were eligible for full-text review analysis.
After removing 13 articles, only 15 articles fulfilled the criteria for quantitative analysis.

3.2. Applications of Al in Non-Gynecological Cancer Cytology Image Analysis

The characteristics of the Al models in non-GYN cancer cytology are summarized
in Table 1. All 26 studies were published from March 2010 to March 2021 and conducted
universally, including nine models in India, seven models in the USA, four models in Japan,
three models each in China, two models in Greece, and one model in the UK, as shown in
Figure 2 [22-49]. Further, we classified the algorithmic features of the models with respect
to eight target organs: thyroid (n = 11, 39%); urinary bladder (n = 6, 21%); lung (n = 4,
14%); breast (n = 2, 7%); pleural effusion (n = 2, 7%); ovary (n = 1, 4%); pancreas (n =1,
4%); and prostate (n = 1, 4%) (Figure 3A). The number of published articles is increasing
every year, especially those on the thyroid, urinary bladder, and lung (Figure 3B). This
section is divided by subheadings. It should provide a concise and precise description of
the experimental results, their interpretation, as well as the experimental conclusions that
can be drawn.
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Table 1. Characteristics of the Al models according to organ types using cytological image analysis.

Staining and

N . . Z-Stacking External Pathologist
No. Organ Author Year Country Task Pr;});l}"a‘:l‘;m Dataset Pixel Level Sampling Images Cross-Validation Base Model Performance Number
PP . Sens: 93.80%
1 Varlatzidou [45] 2011 Greece Classification Pap 335 patients 1024 x 768 FNAC ND ND ANN Spec: 94.11% NA
Benign/Malignant (32,887 nuclei) (LVQ) Acc: 94.05%
. Nuclear segmentation/ Sens: 95%
2 Gopinath (1) 2013 India Classification Pap 110 patches 256 x 256 FNAC ND ND SVM/ Spec: 100% ATLAS
[34] 3 . k-NN, o committee
Benign/Malignant Acc: 96.7%
. Nuclear segmentation/ SVM/ Sens: 90%
3 G°P‘[’;§]‘h @ 2013 India Classification Pap 110 patches 256 x 256 FNAC ND ND ENN/ Spec: 100% LS
. Benign/Malignant k-NN Acc: 93.3%
. SVM/
. Nuclear segmentation/ Sens: 100%
4 G"p‘[’;(f]‘h ® 2015 India Classification Pap 110 patches 256 x 256 FNAC ND ND EEII\\II// Spec: 90% . (ﬁ‘r;ﬁtsee
. Benign/Malignant Acc: 96.6%
DT
AP May
Savala . Classification 57 cases Acc: 100%
5 o 1371 2017 India EA/FC Py (57palches) NA FNAC ND ND ANN AUC: 1.00% 2
yroi S
. - Sens: 95%
6 Gopinath (4) 2018 India Classification Pap 110 patches 256 x 256 FNAC ND ND ANN/ Spec: 100% ATLAS
[49] Benign/Malignant ENN )/ committee
Acc: 96.7%
Sanyal Classification Sens: 90.48%
7 [,7§/] 2018 India PT(i}non-PTC Pap 370 patches 512 x 512 FNAC ND ND CNN Spec: 83.33% NA
! Acc: 85.1%
Dov Classification 908 WSIs 150,000 x CNN Sens: 92%
8 1391 2019 usa Benign/Malignant Pap (5461 patches) 100,000 FNAC ND ND (VGG-11) Spec: 90.5% 5
e 279 WSI Sens 100%
9 Guan 2019 China Classification LBC H&E (887 patch 224 x 224 FNAC ND ND VGG-16/ Spec 94.91% 1
[40] Benign/PTC images) Inception-V3 Acc: 97.6°
S : 97.6%
RPN 659 patients . . Sens: 92.0%
10 R[az“z?e 2020 USA Bes‘;‘:j‘{ﬁg‘g":ant Pap (908 WSs) NA FNAC Yes ND M“Zﬂ‘zﬁ%‘;‘“g Spec: 90.5% 1
‘ (4494 patches) AUC: 0.93%
Frago-poulos Classification . 447 WSI Sens: 95.0%,
11 [41] 2020 Greece Benign/Malignant LBC Pap-stained (41,324 nuclei) 1024 x 768 FNAC ND ND ANN (RBF) Spec: 95.5% NA
(1) All benign and
[42] ndia emf? hf’w gra © ap (115 patches) rine sample (2) One of the low-grade
igh-grade cases was diagnosed as
high-grade
. - Sens: 79.5%
Sanghvi Classification 2405 WSIs ) !
13 [43] 2019 USA AU/HGUC/LGUN/SHGUC NA (26 million cells) 150 x 150 Urine sample Yes ND CNN Spec: 4.50/0 4
AUC: 0.88%
Segmentation
. 217 WSls
X Vaickus (Nucleus/Cytoplasm) 7 . CNN . o,
14 Urinary bladder [44] 2018 USA Classification NA ri‘liilllii:cle(l)ls) 40,000 x 40,000 Urine sample ND ND (AlexNet/ResNet) Acc: >95% 2
AU/BU/Sqc/Cry/Ery/Leu/BI/Deb
Classification i
15 me;g 2020 China UC/SqC/DC/ Pap 4‘;9;:;;5 NA Urine sample ND ND CNN [dentified abnormal 1
IC/AU/SHGUC
Segmentation,
Awan Detection 398 WSIs 256 x 256 . . AUC
16 2021 UK PP LBC Pap 500 x 500 Urine sample ND ND RetinaNet Atypical: 0.81 NA
[45] Classification (9096 patches) ii .
Be/IC/AU/SqC/SHGUC 5000 x 5000 Malignant: 0.83
Nojima Classification 232 cases 256 x 256 AUC: 0.(9)89,01:1 score:
i i i p. . .
17 [47] 2021 India B.enlgn./Mahgnant ) LBC Pap 466 WSIs 128 x 128 Urine sample ND ND VGG16 AUC: 0.86, F1 score: 0.82 NA
Stromal invasion nuclear grading (61,512 patches)

AUC: 0.86, F1 score: 0.82
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Table 1. Cont.

Staining and

. . . Z-Stacking External Pathologist
No. Organ Author Year Country Task Pr;});l}"a‘:ldon Dataset Pixel Level Sampling Images Cross-Validation Base Model Performance Number
Teramoto (1) Classification 76 cases FNAC . o
18 126] 2017 Japan AdCC/S5qCC/SCLC Pap (298 patches) 256 256 /Bronchoscopy ND ND CNN Ace: 711% NA
I Sens: 89.3%
Teramoto (2) Classification 46 cases ENAC CNN o o
19 3 2019 Japan Benign/Malignant Pap (621 patches) 24 x 224 /Bronchoscopy ND ND (VGG-16) ?::_';;";,/ ° NA
:79.2%
i L CNN/ Sens: 85.4%
20 Teramoto (3) 2020 Japan C_lasslﬁcaflon Pap 60 cases 256 x 256 FNAC ND ND DCGAN/ NA
Benign/Malignant (793 patches) /Bronchoscopy PGGAN
For Diff-Quik Model
Lungs Sens: 1.00%, Spec:
87.5%, AUC: 1.00%
For the Pap-stained
Model
21 Gonzalez 2020 USA Classification Diff-Quik/ (14104c€\§215 ) 299 % 299 FNAC ND ND I tion V3 Scns:of.go%, NA
[28] SCLC/LCNEC Pap/H&E S /Bronchoscopy neeption Spec: 85.7%, AUC:
(464,378 patches) 1.00%
00%
For the H&E model
Sens: 1.00%
Spec: 87.5%
AUC: 87.5%
ANN classified all the
Dey . Classification 64 cases FA and ILC cases and
2 124] 20m India FAd/IDC/ILC H&E (64 patches) NA ENAC ND ND ANN six out of seven IDC 2
Breast cases
Subbaiah . Classification 112 cases Sens: 100%
23 125] 2013 India FAd/IDC H&E (112 patches) NA FNAC ND ND ANN Spec: 100% 2
Barwad Classification Giemsa/ 114 cases
24 arwa 2011 India (Benign/Metastatic lemsa " cases NA Pleural fluid ND ND ANN Acc: 100% 2
[31] ) Pap (114 images)
. Carcinoma)
Pleural effusions .
Tosun Nuclear segmentation/ 34 cases OTBL/
25 - 2015 USA Classification Diff-Quik o NA Pleural fluid ND ND Acc: 100% 1
[32] N . (1080 nuclei) k-nearest
Benign/Malignant
Wu . Classification 85 WSIs CNN o
26 Ovary 1291 2018 China SC/MC/EC/CCC H&E (7392 patches) 227 x 227 FNAC ND ND (AlexNet) Acc: 78.20% 2
Acc: 100%
Nuclear segmentation/ (Benign or malignant)
Boroujeni Classification/ 75 cases K-means Acc: 77%
2 Pancreas [30] 2017 UsA Survival Pap (277 images) NA FNAC ND ND clustering/MNN (Atypical cases NA
(Benign/Malignant/ Atypical) classified as benign or
malignant)
Nuclear segmentation/ Training
Nguyen oo 4000 x 7000 o
28 Prostate [33] 2012 USA Classification H&E 17 WSIs Testing NA ND ND SVM/RBF kernel Sens: 78% NA

Benign/Malignant

5000 x 23,000

Abbreviations: FNAC: Fine-needle aspiration cytology, ND: Not done, ANNSs: Artificial neural networks, LVQ:

Learning vector quantizer, Sens: Sensitivity, Spec: Specificity, Acc:

Accuracy, PTC: Papillary thyroid carcinoma, FA: Follicular adenoma, NA: Not available, FC: Follicular carcinoma, GAN: Generative adversarial network, SVM: Support vector
machines, ENN: Elman neural network, k-NN: k-nearest neighbor, DT: Decision tree, LBC: Liquid-based cytology, RBF: Radial basis function, AU: Atypical urothelial cells, HGUC:
High-grade urothelial carcinoma, LGUN: Low-grade urothelial neoplasm, SHGUC: Suspicious for high-grade urothelial carcinoma, BU: Benign urothelial cells, SqC: Squamous cells,
Cry: Crystals, Ery: Erythrocytes, Leu: Leukocytes, BI: Blurry images, Deb: Debris, DC: Degenerated cells; UC: Urothelial cells, IC: Inflammatory cells, WSI: Whole-slide images, AUC:
Area under the curve, H&E: Hematoxylin and eosin, OTBL: Optimal transport-based linear, CART: Classification and regression tree, SCLC: Small cell lung carcinoma, LCNEC: Large
cell neuroendocrine carcinoma; AdC: Adenocarcinoma, SqQCC: Squamous cell carcinoma, MNN: Multilayer perceptron neural network, FAd: Fibroadenomas, IDC; Infiltrating ductal
carcinomas, ILC: Infiltrating lobular carcinoma, CNN: Convolutional neural network, SC: Serous carcinoma, MC: Mucinous carcinoma, EC: Endometrioid, CCC: Clear cell carcinoma.
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Figure 2. Number of publications of AI models on cytopathological image analysis by country.

Number of Publications

2011-2012 2013-2014 2015-2016 2017-2018 2019-2020
Years

A B

® Thyroid ® Urinary bladder ® Lungs = Breast m Pleural effusions ® Ovary ® Prostate ® Pancreas

Figure 3. Classification of artificial intelligence models for cytopathological image analysis according
to target organ from 2010 to 2020 (A) along with yearly trends (B).

3.2.1. Classification for Thyroid FNAC

In the classification category of the thyroid, nine studies were included and classi-
fied as papillary thyroid carcinoma (PTCA), benign thyroid nodules (BTNs), follicular
adenoma (FA), and follicular carcinoma (FC). The size of the datasets ranged from 279
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Thyroid FNAC
Senstivity vs. Specificity

Gopi (1) etal
< Savala
/ Gopi (4) et al
Gopi (2) et al
Fragopoulos* et al
\. Guan et al
) Gopi (1)
Gopi (3) et al

Varlatzidou* et al \-\‘

- Etal/\.
Dov et al @ 110 patches

Sanyal et a—@
‘ 5461 patches
Sanyal

to 908 WSIs [31-38,45]. Most of the studies did not provide detailed information on the
participating pathologists. By comparing the sensitivity, specificity, and accuracy of the
models, the models by Gopinath (3) [36] and Guan et al. [40] showed the best sensitivity,
the first, second, and fourth models by Gopinath et al. [34,35,49] showed the best specificity
(Figure 4A), and the model by Savala et al. showed the best accuracy (100%, Figure 4B) [37].

Thyroid FNAC
(Accuracy)

Guan

Gopi (3)

Gopi (4)

Models Name

@ 370 patches

. 867 patches Varlatzidou*

. 4494 patches
Gopi(2)

. 370 Patches
- 110 Patches

= 57 Patches

80

85

A

90 95 100
Senstivity (%)

80 85 90 95 100
Accuracy (%)

B

Figure 4. Comparison of sensitivity, specificity (A), and accuracy (B) of Al classification models in
thyroid fine-needle aspiration cytology. The models by Gopinath (3) [36], and Guan et al. [40] showed
higher sensitivity; the model by Gopinath (1) [34], Gopinath (2) [35], and Gopinath (4) [49] et al.
showed higher specificity; and the model by Savala et al. [37] showed higher accuracy. * Indicates
that the dataset was in nuclei form instead of patches.

3.2.2. Classification for Urinary Tract Cytology

Six studies were included in the cytology classification of urine, and the dataset used
ranged from 49 image patches to 2405 WSIs [42-47]. The Al models were trained to classify
the urine samples of patients into three to four histological types, such as benign, low-
grade, and high-grade urothelial carcinomas, or to classify the cell clusters into specific cell
types, such as benign, atypical, and malignant urothelial cells, squamous cells, crystals,
erythrocytes, leukocytes, blurry images, debris, degenerated cells, and inflammatory cells
(Table 1). Most studies in this group used the DL model and focused on classification
tasks. None of the studies used an external validation dataset to check the robustness of
the models. Although the dataset was limited in each study, the performance of the models
was very high, with AUCs reaching up to 0.989, F1 scores reaching up to 0.900, sensitivity
scores up to 79.5%, specificity scores up to 84.5%, and accuracy scores up to 99.1% (Table 1).
Direct comparison of the models was impossible because each study had an individual
focus and used different performance metrics.

3.2.3. Classification for Lung FNAC or Bronchoscopic (Respiratory Tract) Aspirates

In the lung cancer category, four studies using DL-based models were included. To
construct the model for the classification of lung cancers into two to five histological
subtypes, such as benign, ADC, SqCC, SCLC, and large cell neuroendocrine carcinoma
(LCNEC), 117 to 298 WSIs (621-46,4378 patch images) were used [23,26,27]. In all studies,
sampling of the specimen was performed using either computed tomography (CT)-guided
FNAC or bronchoscopy. None of the studies disclosed information regarding the annotation
process and involvement of the pathologists during sample selection. Although the dataset
used in each study was different, the model by Gonzalez et al. [28] performed the best in
terms of sensitivity and specificity, while the third model by Teramoto et al. [23] performed
the best in terms of accuracy (Figure 5).
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Specificity (%)

100 -

95

90

85

80

Lung FNAC Lung FNAC
(Senstivity vs. Specificity) (Accuracy)
@ 295 Patches
Y Teramoto(3) 85.3
® | -
@
g
=
Z
Teramoto (3) et al \ Gonzalez et ‘ﬂ\ E - 298 Patches
Teramoto(2) et al \\_. Teramoto(1) _ 711
60 70 80 90 100 60 70 80 90 100
Senstivity (%) Accuracy (%)
A B

Figure 5. Comparison of sensitivity, specificity (A), and accuracy of models (B) with respect to lung
cytology samples. The model by Gonzalez et al. [28] showed the best sensitivity and specificity, while
the models by Teramoto et al. [23] showed the best accuracy.

3.2.4. Classification for Breast FNAC

Only two models were identified in the FNAC classification category for the breast.
In 2011, Dey et al. developed an artificial neural network (ANN) model using 64 image
patches and successfully differentiated all benign and invasive lobular cancer (ILC) cases
and six out of seven invasive ductal carcinoma (IDC) cases [24]. In 2013, Subbaiah et al.
developed an ANN model using 112 image patches and classified fibroadenoma and IDC
based on nuclear morphometric and densitometric features with 100% sensitivity and
specificity [25].

3.2.5. Classification for Pleural Fluids

In 2011, Barwad et al., constructed an ANN model using 114 image patches of pleural
fluids for the classification of benign and metastatic cancer based on cytological features, im-
age morphometric data, densitometric data, and chromatin textural data, and successfully
differentiated cancer cases with an AUC of 1.00 [28]. In 2015, Tosun et al. used 1080 nuclei
from 34 pleural fluid cases to develop a DL model to differentiate mesothelioma from
normal mesothelial cells and achieved 100% sensitivity and specificity for segmentation
and classification [28].

3.2.6. Classification for Ovary FNAC

In 2018, Wu et al., trained an AlexNet model on 85 WSIs of FNAC of the ovary and
augmented these images into 20,328 patch images for the classification of ovarian cancer
into histological subtypes, such as serous carcinoma, mucinous carcinoma, endometrioid
carcinoma, and clear cell carcinoma, with an accuracy of 78.20% [29]. An overview of the
study design is shown in Figure 6.
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Figure 6. Example of cytological classification for ovarian cancer. The architecture and illustration
of CNN for ovarian cancer image classification. (Source: Figure 4 in Wu et al. [29]. Reprinted with
permission from the authors. Copyright (2019), Bioscience Reports, Portland Press [29].).

3.2.7. FNAC Classification for the Pancreas

Only one model by Boroujeni et al. used a k-means clustering algorithm for the
segmentation of cell clusters into individual spots. Then, a multilayer perceptron neural
network (MNN) was trained on 277 images of FNAC of the pancreas for the classification
of benign, atypical, and malignant cases. The model achieved 100% accuracy for benign
and malignant cases but only 77% accuracy for atypical cases. Moreover, they found that
their model predicted better survival outcomes in benign cases [30].

3.2.8. FNAC Classification for the Prostate

For FNAC classification of the prostate, Nguyen et al., developed a support vector
machine (SVM) with a radial basis function (RBF) kernel on a 17 WSI dataset (6 for training
and 11 for the test) for the segmentation and classification of benign and cancer cases based
on cytological features and texture features with 78% sensitivity [33]

4. Discussion

In this systematic review, we found that Al-based models showed impressive accuracy
in segmentation and classification tasks in non-GYN cancer cytopathology. However,
there are still several challenges that need to be addressed for the implementation of Al in
cytological diagnosis, the enumeration of which might be helpful to AI computer scientists
who are planning to design a study on this topic.
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4.1. Challenges in Cytological Diagnosis

Cytology/cytopathology is the area of pathology that seeks to diagnose disease
through the examination of individual or clustered cell characteristics and the histological
features of the nuclei and cytoplasm of cells (Figure 7). It was first introduced in the
18th century and rapidly progressed through the invention of the Pap smear or Pap test
by Dr. George Papanicolaou in the mid-20th century [19,50]. Thereafter, it gained much
attention from various scientific communities and underwent various modifications to
be transformed into a standardized protocol. Cytology can be divided into two groups
according to the mode of sampling: exfoliative and aspiration. Exfoliative cytology in-
cludes bronchial washing, brushing, sputum, bronchoalveolar lavage (BAL), urine and
bladder washing, and body cavity fluids, such as pleural, peritoneal, and pericardial flu-
ids [19,50]. Aspiration cytology, also called FNAC /biopsy, can be frequently performed
on solid organ tumors, such as tumors of the thyroid, salivary glands, pancreas, breast,
and ovary [19,50]. These methods are now widely used for initial cancer screening. In
South Korea, over 10 million tests are now being performed nationwide [51]. Since the
cytology started from GYN samples, the non-GYN samples accounted for about 24% of all
cytological samples [51]. However, the number and proportion of non-GYN samples have
been increasing recently [52]. Owing to the widespread use of the Pap smear test, the rate
of cervical cancer mortality has significantly decreased in developed countries. There are
several advantages to and challenges associated with cytological examinations that need to
be discussed in detail.

Figure 7. Examples of cytological images. (A) Conventional smear from uterine cervix of a 30-year-old
female showing high-grade squamous intraepithelial lesion (HSIL) (Pap stain, x20). (B) Conventional
smear from a salivary gland mass of a 30-year-old female patient, showing intraductal carcinoma
(H&E stain, x20). (C) High-power view of a conventional smear from a 64-year-old male patient with
a submandibular gland nodule, showing adenoid cystic carcinoma (Diff-Quik stain, x40). (D) Ascitic
fluid liquid-based preparation from a 79-year-old female patient with a history of colon carcinoma
showing metastatic colon carcinoma (Pap stain, x20).
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4.2. Challenges of Cytological Exams

Although the advantages of the cytological exam are obvious, such as the rapidity,
simplicity, and cost-effectiveness, and make it the most suitable screening method, the
limited diagnostic accuracy due to impaired sampling adequacy, the time-consuming and
labor-intensive interpretation process, the variability in sampling, the slide-producing
process, and inter- and intra-cytopathological interpretation are currently the biggest
obstacles to overcome and might be considered good reasons for introducing Al technology
in this field.

4.2.1. Sampling Adequacy

Sampling adequacy is an important part of cytological sampling and a common reason
for false negative results, often because of the small size of the specimens, the bloody or
cystic nature of the targeted lesions (especially in thyroid FNAC), and the differences in
sampling techniques and experience between examiners and cytotechnicians. For example,
drying artefacts and hypercellular or bloody obscuration have been some of the common
problems with the Pap smear procedure which can be caused by smearing technique.
To overcome these sampling errors, LBC, often represented by centrifuge smears using
membrane filters or monolayer liquid-based cytology (i.e., ThinPrep and SurePath), was
developed and is now being widely used in GYN sampling [18,53,54].

4.2.2. Time-Consuming and Labor-Intensive Tasks

Screening and interpreting cytological slides are highly time-consuming and labor-
intensive activities because the screening area is much larger than the histological samples
and the screening should be carried out under higher magnification at “cell level”. Some-
times, cancer cells can be very scarce, making the screening process like searching for
a needle in a haystack. Cancer cells may be missed behind benign cells or obscured by
background elements. For these reasons, it may take up to 30—40 min to interpret one
slide [50,53]. Therefore, cytology is considered to be more suitable as a screening test.

4.2.3. Intra-Examiner Variation in Sampling Procedures

Sampling procedures may vary from person to person and according to their knowl-
edge. When a target tissue is small, deep-seated, and next to a muscle, the person who
is performing the sampling procedure should be well-experienced and able to evaluate
whether a sample is from within a lesion or outside a lesion [18,53,55].

4.2.4. Inter- and Intra-Observer Interpretational Variation among Cytologists

As cytological diagnosis is a more qualitative or subjective mode of interpretation
than it is a quantitative analysis, there is a possibility of inter- and intra-observer variation
among cytologists’ interpretations [50,56]. For example, even though the Paris system (TPS)
was established to standardize the cytological interpretation of urine samples, there are
still many conflicting opinions about the criteria for some categories. The development
of certain diagnostic systems was delayed because it was not an easy to reach agreement
among experts [57,58]. For example, in 2012, Reid et al. reported very poor agreement
among three pathologists on urine cytology diagnoses, with a coefficient kappa of less than
40% and accumulated grading accuracy of only 77% [59].

4.3. Challenges Related to the Application of Al in Cytology
4.3.1. The Larger Size of the Image

A cytological specimen consists of broadly and randomly dispersed cell clusters over
whole glass slides [60]. Scanning requires more time due to higher magnification (e.g., x<40)
and larger scanning area, resulting in bigger file sizes (2-20 times that of normal histological
WH6Is) and the need for more computational resources [60,61].
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4.3.2. Difficulty in Annotation

Unlike histological images, cell/cluster-level classification or nuclear segmentation
is possible in cytological samples. However, this requires cell/cluster level annotation
that can be very tedious and time-consuming. What makes this worse is that sometimes
it is very hard to set up a ground truth for each cell or cluster. In nuclear segmentation,
overlapping cells are hard to differentiate; sometimes pieces of denser tissue and red blood
cell contamination hide cancerous cells, or they are obscured by normal cells, making it
difficult for cytotechnicians to reach final decisions and requiring the expenditure of more
time and resources, with more personnel being needed to annotate larger datasets [60,62].

4.3.3. Limited Z-Stacked Images

Z-axis scanning is obtained through several scans of the same slide captured at various
focal planes being assembled into a final combined image. It is always advantageous
to access the morphological structures of individual cell clusters through different cell
layers for the precise interpretation of cytological cases [63]. However, when scanning is
performed with the single Z-plane, the procedure is limited to the achievement of two-
dimensional virtual images. Z-axis scanning or three-dimensional (3D) scanning is always
necessary to obtain 3D cluster images [63]. A cytological specimen consists of both single
cells and 3D cell clusters; most often WSIs are obtained on the single Z-plane, where it is
very difficult to concentrate only one depth of field, while with the Z-stacking of images the
3D structure of cells can be obtained and the focus of cells in digital images can be enhanced,
which may also improve the performance of algorithms [63]. Several other negative factors,
such as overlapping inflammatory cells and blood obscuration, which affect model efficacy,
can also be addressed by Z-stacking. However, it is not easy to capture these images and
doing so takes more than 30 min, while file sizes may reach up to 11 GB and the storage of
such large datasets requires larger servers [63].

4.3.4. Lack of Well-Annotated Larger Datasets

Generally, an Al algorithm relies on a large set of good-quality labelled images. These
images are manually annotated by expert cytotechnicians or cytopathologists [62]. The
detailed annotation of these images is not only a time-consuming and monotonous task
but may also be challenging due to working at low resolutions and with slow networks.

In such settings, annotation requires large amounts of computational resources and large
numbers of WSIs [62].

4.3.5. Limited Publicly Available Datasets and Grand Challenges

In contrast to cytopathology, the application of Al-based models has been explored
more in histopathology because many publicly available sites, such as The Cancer Genome
Atlas (TCGA) and GTEXx, provide histopathological images and associated annotations [16].
Moreover, many grand challenges, such as the Gland Segmentation in Colon Histology
Images (GlaS) challenge, the CAMELYON (Cancer Metastases in Lymph Nodes) grand
challenge, etc., provide basic platforms for the researcher along with datasets with which
to showcase robust Al models [16,64]. However, almost no grand challenges or large sets
of cytology images for non-GYN cancer are publicly available.

4.3.6. Variation in the Annotation of Datasets and Image Quality

For the segmentation of biological structures, the performance of an Al model is
dependent on the fidelity of the annotations made by the expert cytotechnician in the
learning set. If there is any variation in the annotation dataset, then the model will not
perform well and can show errors in the clinical setting during diagnosis [65,66]. Apart
from this, Al-based models are significantly dependent upon the quality of images and the
datasets used in training should be clean and artefact-free. If images are scanned at low
resolution, then the model will be unable to differentiate the detailed information required
to evaluate tissues [66].
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4.4. Evolving Trends of AI Models in Cytology
4.4.1. GYN Cytology

Automating examination of the Papanicolaou smear test has a long history, the primary
aim of automatic detection being to reduce the workload of cytopathologists and improve
the accuracy of testing. PAPNET was the first commercially available automation-assisted
system, designed by Neuromedical Systems, Inc. (NSI), in 1992, for the detection of
cervix atypical cells in Pap tests that were missed by manual observation as carried out
by cytopathologists [67-69]. PAPNET consisted of image-processing and neural network
processing units. Firstly, an image-processing algorithm based on morphometry would
be run to recognize individual cells and cell clusters through local contrast and grayscale
intensity features and then object images would be sent to the neural network for the
counting of abnormal cells in the original training set. Thereafter, the 128 atypical color
images would be recorded onto digital tape and then sent to the cytopathologist for
reviewing of the slides [68,69]. Next, if there were any abnormalities discovered in the
slides, then the cytopathologist would perform a further examination under a conventional
microscope. After PAPNET, the next automated examination system to appear was the
ThinPrep Imaging System, which was FDA-approved in 2004 and promptly embraced by
the big laboratories [68,69]. The system was trained on a proprietary algorithm to examine
single and clustered cells, which identify the most pertinent fields of view (FOVs) and
then data was stored in the computer. Thereafter, a cytopathologist would examine all
22 FOVs using a robotic microscope. If any of the fields were considered to be abnormal,
then the entire slide was screened under a conventional microscope [68,69]. However, the
slide could be classified as negative if all the FOVs were deemed normal. Next, another
automated system was the FocalPoint GS imaging system, primarily known as AutoPap,
which was trained on an image analysis algorithm to examine the aggregated risk of
abnormality in whole slides. The screening system used a 25% cutoff value, which means
that abnormal cell counts less than 25% were classified as negative without validated by
the cytopathologists [68,69]. In 2001, it was approved by the FDA for the use of SurePath
liquid-based cytology. Later this system underwent some modification and was renamed
as a guided screening (GS) system with a self-regulating microscope and was known as the
FocalPoint GS Imaging System. This system displayed the 10 most likely abnormal FOVs
along with one FOV containing glandular cells [68,69]. Any abnormality that appeared in
the FOV during the cytopathological reviewing process required manual screening of the
whole slide. Moreover, another screening test came onto the market to enhance the accuracy
of testing without human involvement and provide an automated liquid-based Pap test
preparation (BestPrep®) and digital slide imaging system (BestCyte ® cell sorter), known
as Best Cyte, from Cell Solutions (Greensboro, NC, USA) [68,69]. BestPrep incorporated
positive sample spotting and barcoding. Staining and coverslipping were performed
autonomously by the laboratory and the BestCyte cell sorter, as a very fast-moving scanner
and imaging software system, was used to classify and exhibit digital images on a screen
with high resolution [68,69]. The system would save the images of whole-cell settling areas
and then select, classify, and display selected cells and cell clusters in galleries based on
predetermined cytological classifications [68,69]. Moreover, one study showed that the
BestCyte cell sorter imaging system and BestPrep liquid-based thin-layer Papanicolaou
test performed similarly to ThinPrep with respect to manual assessment [68,69]. Over the
last decade, researchers have been trying to apply machine learning and deep learning
algorithms to make more accurate software that can increase diagnostic efficacy without
human involvement; for instance, a Chinese researcher used Pap smear and liquid-based
cytology-based datasets to train a CNN model that differentiated benign and malignant
cervical cancer cells with an accuracy of 98.3% and an AUC of 0.99 without performance of
a prior segmentation task [70].
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4.4.2. Application of Al in Non-GYN Cancer Cytology

In the present study, we found that India is the country leading in the exploitation of
cytology. Next, we found that thyroid cancer is being most intensely explored, followed
by urinary bladder, lung, breast, pleural effusion, ovary, prostate, and pancreatic cancers.
Most of the studies validated their models using internal validation. None of the models
used external validation datasets or was approved by the FDA (Figure 8).

Classification

o) e Validation
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FDA approval

® Thyroid
04 ® Urinary bladder
@ B ® Lungs
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® Pancreas
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Figure 8. The application of Al models using cytological images applied for tumor classification,
prognosis prediction, and nuclear segmentation. Published studies are denoted by serial numbers in
Table 1. The studies are stratified according to the level of supporting evidence (outer circle, internally
validated; middle circle, externally validated; inner circle, FDA-approved). * Indicates the dataset
was in nuclei form instead of patches.

For thyroid cancer, only nine studies were included; most of the studies focused on
the classification task, while a few studies focused on segmentation, with promising results.
In our quantitative analysis, the Gopinath (3), and Guan et al. models showed higher
sensitivity; Gopinath (1), Gopinath (2), and Gopinath (4) et al. models showed higher
specificity; and the Savala et al. model showed higher accuracy. Gopinath et al. conducted
a series of experiments for the classification of thyroid cancer [34,35,49]. In all four studies,
the support vector machine (SVM) and similarly sized datasets (110 patch images) were
used. In Gopinath (1), the Gabor filter bank was used for the segmentation task and then
the SVM algorithm was used to predict malignancy of thyroid nodules with an accuracy
of 96.7% and a specificity of 100% [34]. In Gopinath (2) et al., k-nearest neighbors (k-NN),
an Elman neural network (ENN), and the support vector machine (SVM) were exploited.
Next, discrete wavelet transform (DWT), Gray level co-occurrence matrix (GLCM), and
Gabor filters were used to remove background noise during the segmentation task and then
these images were separately classified by each algorithm. In contrast to other algorithms,
the ENN classifier achieved the highest diagnostic accuracy [35]. In Gopinath (3), k-NN,
decision tree (DT), ENN, and SVM classifiers were individually used to differentiate cancers.
Then, multiple classifier fusion with majority voting rule and linear combination rules
were exploited to increase the accuracy of the model, achieving an overall accuracy of
96.66%, which was higher than single classifiers [36]. In Gopinath (4), the researchers used
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an Elman neural network and an auto-associative neural network and achieved higher
accuracy (96.66%) and specificity scores (100%) [49].

Moreover, in routine cytopathological diagnosis, it is very hard to differentiate FA
and FC because of their similar microscopic structures. It is not feasible to differentiate
only on the basis of cytological features; other parameters, such as extrathyroidal tumor
extension, vascular invasion, capsule invasion, and lymph node metastases, etc., should
also be considered [71]. Consistent with this, we found that the Savala et al. model was
the best model because they trained the ANN model on various cytological features, such
as cellularity, number of follicles, nucleoli, nuclear pleomorphism, nuclear margin, and
morphometric analysis, which allowed the differentiation of FA and FC with 100% accuracy
based only on cytological features [37]. However, a smaller dataset was a limitation [37];
future studies with larger datasets are required

There are many limitations to all the studies. Most of the studies did not disclose
detailed information about pathologist involvement during the annotation process or about
how cases of discrepancies during annotation were resolved, both of which affect the
quality of datasets. Apart from these issues, most of the models were trained on cropped
images rather than WSIs. It is always recommended to use WSIs because they consist of all
biological information present in the cell, which can be missed out with the cropping of
sections and models cannot be read exactly, leading to errors in diagnosis during clinical
practice. In addition, external validation is always recommended to validate model efficacy,
especially in the classification of cancer, and this was lacking in all of the studies.

For urinary bladder cancer, there were only six studies included and a direct compar-
ison of the models would be meaningless because of the differences in study design as
well as in the datasets. In term of accuracy, only study by Murlidhharan et al. [42] showed
higher accuracy (99.13%) for the classification. Another study by Nojima et al. presented a
unique approach using the VGG model [47]. First, they classified malignant and benign
cancer and then they classified stromal invasion and nuclear grading directly through the
cytological images that corresponded to histological specimens with higher AUCs and F1
scores (Figure 9). Interestingly, their model classified malignant and benign cancer with a
higher AUC as compared to existing models in this category [47]. However, in our opinion,
a study from the USA was best because it used a larger dataset (2405 WSIs); the author
developed a CNN-based model exploiting cell-level features as well as slide features to
classify liquid-based urine cytology samples into five types, such as atypical, high-grade,
low-grade, negative for high-grade, and suspicious for high-grade urothelial cancer, with
an AUC of 0.88, sensitivity of 79.5%, and specificity of 84.5% [43].

For lung cancer, only four studies were applicable. Teramoto et al. performed a
series of experiments with a different dataset. In 2017, the author constructed a CNN
model for histological classification into three subtypes, SCLC, ADC, and SqC, with an
accuracy of 71% [26]. Thereafter, in 2019, they extended their work for the classification
of benign and malignant types with 79% accuracy [23]. In the next year, they found that
by using a progressive growing generative adversarial network (PGGAN) the accuracy
of the model was improved by 4% as compared to ImageNet software for classification
in the same task [27], which was found to be the best model in terms of accuracy as per
our analysis. Moreover, Gonzalez et al.’s was the best study in term of sensitivity and
specificity according to our analysis; in this study, the author used Diff-Quik, Papanicolaou
stains, and H&E images to train three algorithms that differentiated SCLC and LCNEC
with higher sensitivity and specificity; however, the dataset used for the construction of the
algorithm was very small (117 slides), which was not sufficient to conclude the algorithm’s
robustness, such that further studies with a larger dataset and an external validation dataset
are required [18]. The overview of their study design is shown in Figure 10.

Although the results for pleural effusion, ovary, prostate, and pancreatic cancer models
were very promising for the classification task, the datasets were very limited, and the
number of publications was very small. Therefore, it is impossible to compare model
efficacy. Therefore, future studies with more standardized datasets are required.
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Figure 9. Example of stromal and nuclear grading using cytological images. Gradient-weighted class
activation mapping (Grad-CAM) is illustrated. (A) Representative cytology images were observed
using Grad-CAM and corresponding hematoxylin and eosin (H&E) histology images of invasive or
noninvasive urothelial carcinoma (UC). Cytology images with a true-positive diagnosis contained
cells with shrunken nuclei, nuclei with color irregularities, or neutrophil infiltration. (B) Represen-
tative cytology images were observed using Grad-CAM and corresponding H&E histology images
of high-grade or low-grade UC. Cytology images with a true-positive diagnosis contained nuclei
with coarse chromatin or an obvious nucleolus. (C) Pie charts indicate the proportions of findings
associated with a true-positive diagnosis of stromal invasion or nuclear grading in the corresponding
histology image. (Source: Figure 4 in Nojima et al. Reprinted with permission from the authors.
Copyright (2021), Cancer Cytopathology, ACS journal [47].)
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Figure 10. Example of cytological classification of lung cancer. (Top panel) Diagram showing
the workflow for annotating and exporting image tiles using QuPath for subsequent input into
the convolutional neural network. (Bottom panel) Schematic of the convolutional neural network
architecture based on Google Inception V3 (adapted from https:/ /github.com/tensorflow/models/
tree/masterr/research/inception). (Source: Figure 2 in Gonzalez et al. Reprinted with permission
from the authors. Copyright (2019), Cytopathology published by Wiley [28].)

4.5. Future Direction

Due to the digitization of tissue glass slides, the pathologist can differentiate the
quantitative characterization of disease in precision medicine. In the histopathology field,
the researcher’s focus has shifted from tumor classification to prognosis prediction and
precision medicine based on direct use of histological images. For instance, Kather et al.
constructed a deep learning model to predict microsatellite instability (MSI) using colon
cancer histological images. They also found an association of MSIness with PDL-1 expres-
sion and interferon y [47]. A similar kind of strategy has also been performed with respect
to pancreatic cancer; atypical cases that were diagnosed as benign were associated with
better survival than malignant cases (p = 0.46) [30]. A direct linking of cytological images
with prognosis prediction outcomes remains largely unexplored in non-GYN. A future
study using a similar kind of strategy is required.

4.6. Recent Advancements in Digital Slide Repositories

To resolve the issue of the lack of publicly available datasets, many countries have
taken a forward step. In Europe, the “BIGPICTURE” project has been launched this year
(Figure 11A) and will continue for the next five years (with funding of EUR 70 M); the
aim is to construct a library to store nearly 3 million digital images of human as well as
laboratory animals and then use these data for the development of Al models for research
purposes. The project involves various European hospitals, research centers, and major
pharma industries. Similarly, in the United Kingdom, the “PathLAKE” project (with
funding of EUR 50 M) involves the NHS, major industries, and university hospitals and
will construct the world’s biggest library of annotated digital WSIs (Figure 11B). The main
aim of this project is to develop robust Al models in the field of cellular pathology. In
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Japan, the “JP-AID” project launched in June 2018 aims to achieve four major objectives:
(1) the establishment of Al medical image intelligence by merging image information from
medical departments; (2) the standardization of pathological diagnosis reports; (3) the
development of databases that can be used for diagnostic research; and (4) the establishment
of a double-check system that exploits AI models (Figure 11C) In South Korea, the “NIA
Data dam” project was launched this year with funding of USD 3.1 billion. It consists of
74 sub-projects and includes big industries, university hospitals, and computer labs. The
STANDBAI sub-project (generation of STANdardized Digital pathology database of Biopsy
and cytology for Al development) aims at the development of a cytological as well as a
pathological dataset (Figure 11D). The purpose of this project is to establish public data
for Al learning labelled by professionals and with verification to allow the possibility of
developing an Al model for diagnostic assistance using constructed Al data.
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Figure 11. Representative figures of digital slides from repository projects: (A) BIG PICTURE, (B) Path
LAKE, (C) JP-AID, and (D) NIA Data Dam.

Overall, the main objective of all these projects is to provide a dataset for the global
researcher that can be used develop a robust artificial intelligence model that can diagnose
disease precisely without human interference.

5. Conclusions

Overall, we have found that cytological examination is a crucial step in the initial
diagnosis of cancer, although it shows limited diagnostic efficacy. Al models are still in
the primary stage of development, even though the models show higher performance
in terms of non-GYN cancer diagnosis using in-house data. Moreover, the lack of large,
well-annotated datasets and Z-stacked images, along with the limited scale of datasets,
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were found to be major limitations in all the studies on the development of Al models
examined. So far, none of the models has proved sufficient for the independent diagnosis
of non-GYN cancer in the clinical setting. Future studies with large, multicenter datasets
with high-quality annotations and external validation are required.
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