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Simple Summary: The role of autophagy in lung cancers is still controversial, mainly because the
visualization of autophagy levels in patients remains challenging. One interesting approach consists of
studying autophagy at the transcriptomic level. In this line, many transcriptomics analyses performed
on autophagy genes focused on the discovery of new biomarkers to predict the efficiency of antitumor
therapies. However, the majority of these studies were based on global transcriptomic analysis of
the whole tumor microenvironment, and few investigations have been performed on malignant
cells themselves. The goal of this study was not to determine another new predictive signature
based on autophagy-related genes. Instead, we investigated the expression of autophagy genes to
understand the involvement of this process in lung cancer homeostasis. Specifically, we discovered a
new autophagy signature that correlates with the metabolic and immunogenic status of malignant
cells, supporting the relationship between autophagy and tumor growth in lung cancer patients.

Abstract: Autophagy is a self-degradative mechanism involved in many biological processes, includ-
ing cell death, survival, proliferation or migration. In tumors, autophagy plays an important role
in tumorigenesis as well as cancer progression and resistance to therapies. Usually, a high level of
autophagy in malignant cells has been associated with tumor progression and poor prognostic for pa-
tients. However, the investigation of autophagy levels in patients remains difficult, especially because
quantification of autophagy proteins is challenging in the tumor microenvironment. In this study, we
analyzed the expression of autophagy genes in non-small cell lung (NSCLC) cancer patients using
public datasets and revealed an autophagy gene signature for proliferative and immune-checkpoint-
expressed malignant cells in lung adenocarcinoma (LUAD). Analysis of autophagy-related gene
expression profiles in tumor and adjacent tissues revealed differential signatures, namely signature A
(23 genes) and signature B (12 genes). Signature B correlated with a bad prognosis and poor overall
and disease-specific survival. Univariate and multivariate analyses revealed that this signature was
an independent factor for prognosis. Moreover, patients with high expression of signature B exhibited
more genes related to proliferation and fewer genes related to immune cells or immune response. The
analysis of datasets from sorted fresh tumor cells or single cells revealed that signature B is predomi-
nantly represented in malignant cells, with poor expression in pan-immune population or in fibroblast
or endothelial cells. Interestingly, autophagy was increased in malignant cells exhibiting high levels
of signature B, which correlated with an elevated expression of genes involved in cell proliferation
and immune checkpoint signaling. Taken together, our analysis reveals a novel autophagy-based
signature to define the metabolic and immunogenic status of malignant cells in LUAD.
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1. Introduction

Lung tumors are among the most common in the world and are one of the leading
causes of cancer deaths worldwide [1]. Among them, NSCLC accounts for 85% of all
lung tumor cases and it is mainly composed of lung squamous cell carcinoma (LUSC)
and adenocarcinoma (LUAD) [1]. Although the available therapeutic arsenal, including
surgical procedures, chemotherapy, targeted molecules and immunotherapy, have allowed
undeniable progress in lung cancer treatment, the 5-year survival rate of NSCLC patients
remains unsatisfactory. This relative inefficiency is mainly due to the lack of information
about the tumor microenvironment during treatment decision. For this reason, many
investigations have focused on the discovery of a new prognostic assessment method to
help individualized treatment of NSLCL patients [2].

Autophagy is a cellular process associated with the prevalence and progression of
lung cancer [3,4]. Autophagy is a conserved catabolism pathway that plays a key role in
the maintenance of cellular homeostasis. It is a multistep mechanism, consisting of the
formation of the phagophore that elongates and engulfs targeted proteins or organelles in
a double-membrane vesicle called the autophagosome, and finally fuses with late endo-
somes and/or lysosomes [5]. This process is orchestrated by a large variety of proteins,
including the autophagic proteins (Atg), organized in complexes. Autophagy induction
is modulated by two protein complexes, the ULK1/2 (unc51-like autophagy activating
kinase) and the Beclin-1/PI3KC3 (class III phosphatidylinositol 3-kinase) complexes. Once
activated, these complexes recruit other proteins involved in the elongation and formation
of autophagosomes, including the two conjugated systems Atg12-Atg5-Atg16L and LC3.
After completion, the mature autophagosome fuses with lysosomes to form autolysosomes,
wherein the sequestered materials and organelles are degraded by lysosomal enzymes [6].
Then, the degradation products are recycled for cell synthesis biological processes. Au-
tophagy is one of the most important survival mechanisms under stress conditions and is
involved in cellular homeostasis and proliferation [5]. Several studies have demonstrated
links between autophagy and carcinogenesis, highlighting a dual role for autophagy in
cancer. Depending on the tumor model and/or tumor state, autophagy may have pro-
or anti-tumor effects. In the initial stage of cancer, autophagy protects normal cells from
tumorigenesis by preventing DNA damages and mutations [3]. In established solid tumors,
autophagy has been shown to favor tumor development by enhancing tumor growth,
cell survival, resistance to platinum-based chemotherapy and metastasis formation [7].
Autophagy may also interfere with immunotherapy, since some studies showed a link
between autophagy and immune checkpoint activity and/or expression, including CTLA-
4, IDO and PD1/PD-L1 [8,9]. Autophagy also has a critical function in tumor immune
cells and tumor immune response, promoting the immunogenic cell death of tumor cells
and favoring immune cell activation and proliferation [10]. Meanwhile, autophagy in
cancer-associated fibroblasts (CAFs) promotes tumorigenesis by providing nutrients to the
cancerous cells and by favoring epithelial to mesenchymal transition, angiogenesis and
stemness [11].

Many transcriptomic analyses performed on autophagy genes have focused on the
discovery of new biomarkers to predict the efficiency of anti-tumor therapies and to guide
individualized treatment in NSCLC patients [12–16]. However, the majority of these studies
are based on global transcriptomic analysis of the whole tumor microenvironment, and
few investigations have been carried out on malignant cells themselves. Regarding the
global effect of autophagy on cells infiltrating the tumor microenvironment, it is important
to determine a signature to identify the functional status of each cell type. In this study,
we explore the relationship between 232 autophagy-related genes and biological pathways
related to tumor progression in multiple LUAD datasets. Comparing tumors with adjacent
tissue, we identified two signatures composed of twenty-three (signature A) and twelve
(signature B) genes, and these signatures were correlated with survival, tumor metabolic
status and immunology factors in LUAD patients. RNA sequence profiling of flow-sorted
malignant cells, endothelial cells, immune cells and fibroblasts from freshly resected pri-
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mary human NSCLC reveals that signature B was mainly expressed by malignant cells.
The predominant expression of signature B in malignant cells was validated in the single
cell sequencing data analysis. Deeper investigations supported the correlation between
autophagy with tumor cell proliferation and immune checkpoint expression in malignant
cells, highlighting the impact of autophagy in tumor cell progression and its potential role
in immunotherapy. Therefore, our study provides a new autophagy-related signature that
predicts the biological status of malignant cells in LUAD patients.

2. Materials and Methods
2.1. Dataset Source, Pre-Processing and Workflow

The workflow of our bioinformatic analysis is summarized in Figure 1. LUNG and
LUAD gene expression datasets and associated clinical information were obtained from
The Cancer Genome Atlas (TCGA) and Gene-Expression Omnibus (GEO) databases. The
download gene expression profiles from TCGA met the following conditions: (1) the pri-
mary site was “bronchus and lung”; (2) the program was “TCGA”; (3) the disease type
was “adenomas and adenocarcinomas” and/or “squamous cell neoplasms”; (4) the data
category was “transcriptome profiling”; (5) the data type was “Gene Expression Quantifica-
tion”; and (6) the workflow type was “HTSeq-FPKM”. TCGA-LUNG samples used for this
analysis included 110 normal samples and 1019 tumor samples and TCGA-LUAD included
59 normal samples and 517 tumor samples. In addition, we downloaded series matrix
files and platform files of four datasets, including one for global TME (GSE31210), one for
RNA sequence profiling of flow-sorted malignant cells, endothelial cells, immune cells and
fibroblasts from resected primary human NSCLC (GSE111907), one for single-cell analysis
(GSE123904) and one for A549 cells invalidated by siRNA for atg5 and ulk1 genes involved
in the autophagy process (GSE73158). The basic information regarding all databases is
provided in Table 1.

The fragments per kilobase million (FPKM) values were converted into the transcripts
per million (TPM) data using the R package “limma”. R (version 4.0.3, R core team,
https://www.r-project.org, accessed on 5 June 2022) was used to process data. Processing
for GSE datasets will be explained in the appropriate section.

2.2. Autophagy Signature and Clustering Analysis

We used the human autophagy database (HADd) to analyze the differential expression
of autophagy-related genes (n = 232) between normal and tumor tissue. Differentially
expressed genes were based on logFC > 1 or <−1 and adjusted p-value < 0.05 using “limma”
package in R. LUNG or LUAD samples were grouped into clusters according to their
expression of autophagy signature genes (genes differentially expressed between adjacent
and tumor samples). Kaplan–Meier survival curves were applied to each cluster and
log-rank tests were performed to compare the overall survival (OS) and disease-specific
survival (DSS) between clusters. Univariate and multivariate Cox analysis was performed
to analyze the hazard ratio of clusters. Similar analysis was performed for individual genes
of autophagy signature.

2.3. Functional Annotation Enrichment

To determine the variation of biological pathways between clusters, the differential
expression analysis of whole genome between two clusters was performed. Differentially
expressed genes were based on logFC > 1 or <−1 and adjusted p-value < 0.05 using
“limma” package in R. Based on DEG analyses, gene set enrichment analysis (GSEA) and
Gene Ontology (GO) enrichment analysis were performed using the “Enrichr” website
(https://maayanlab.cloud/Enrichr/, accessed on 5 June 2022) and the results were plotted
using the “GOplot” R package. We selected the function and pathways with a strict
p-value < 0.05. For “circle plot”, we selected important pathways or functions involved in
anabolism or catabolism.

https://www.r-project.org
https://maayanlab.cloud/Enrichr/
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Figure 1. Workflow of bioinformatics analysis. Datasets were obtained from TCGA and GSO
databases. Differential expression analysis was performed for 232 autophagy genes (human au-
tophagy database) between tumor and adjacent tissue, and clusters of patients were examined
in terms of survival and other clinical features. Correlations between autophagy clustering and
metabolism or immunologic pathways were studied. The autophagy signature was studied in flow-
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sorted malignant, endothelial, immune and fibroblast cells from freshly resected primary human
NSCLC and in single-cell sequencing data, showing a predominant expression of signature B in
the malignant cell population. The correlation between autophagy clustering and metabolic or
immunological status was confirmed for malignant cells.

Table 1. Main information regarding our four datasets. NA means that we do not have the data. TME
signifies tumor microenvironment.

Datasets
Source Platform Samples Types Subtype Stage Number of Samples

TCGA: Illumina All TME LUAD + LUSC I/II: 879 1129
LUNG RNAseq III/IV: 250

TCGA: Illumina All TME LUAD I/II: 879 576
LUAD RNAseq III/IV: 438

GEO: GPL17553 All TME LUAD I/II: 138 226
GSE31210 Illumina Hiseq 2000

GEO: GPL17553 Sorted LUAD NA 21–23
GSE111907 Illumina Hiseq 2000 Cells

GEO: GPL16791 Single LUAD NA 8 patients (18,124 cells)
GSE123904 Illumina HiSeq 2500 Cells

GEO: GPL10558
A549

LUAD cells
line NA 12

GSE73158 Illumina HumanHT-12 V4.0
expression beadchip

2.4. Immune Cell Infiltration, Stromal Cell Population and Exhaustion Marker
Expression Analysis

For immune cell infiltration and the stromal cell population, we applied the microen-
vironment cell population-counter (MCP-count) method [17]. A total of 10 cell signatures
were calculated to determine T cells, cytotoxic T cells, CD4+ T cells, B cell lineage, NK cells,
monocyte lineage, myeloid dendritic cells, neutrophils, endothelial cells and fibroblasts. To
determine the expression of exhaustion markers in T cells, we calculated the expression
of CTLA-4, HAVCR2, LAG3, PDCD1 and TIGIT genes according to the median of T-cell
expression in TCGA.

2.5. Autophagy Signature Expression in Sorted-Cell Fresh Tumor Samples Datasets and Single
Cell Analysis

RNA sequence profiling of flow-sorted malignant cells (EPCAM+ CD45− CD31−), en-
dothelial cells (CD31+ CD45− EPCAM−), immune cells (CD45+ EPCAM−) and fibroblasts
(CD10+ CD45− EPCAM− CD31− CD10+) from freshly resected primary human NSCLC
(GSE111907 dataset) were used to calculated expression levels of autophagy signature A
and B on different cell populations. For these analyses, we only selected adenocarcinoma
subtypes. We analyzed 21 malignant samples, 22 pan-immune samples, 23 endothelial
samples and 22 fibroblasts samples. Samples were clustered according to their expression
of autophagy signature gene and data were visualized by “pheatmap” R package. For
single-cell analysis, we utilized GSE123904 datasets. We used only primary tumor samples
for this analysis (LX653, LX661, LX675, LX676, LX678, LX680, LX682 and LX684). A total of
18,124 cells were analyzed. Single cell clustering and dimension reduction were performed
by R package “Seurat”. The principal component analysis (PCA), “FindNeighbors” and
“FindClusters” packages were employed to construct the cell culturing. The “UMAP”
package was used to visualize data, and we utilized the “FeaturePlot” function form “Seu-
rat” to visualize the expression of the autophagy signatures. Cell clusters were annotated



Cancers 2022, 14, 3462 6 of 18

according to the gene expression in each cluster revealed by the “FindAllMarkers” function
of “Seurat” package.

2.6. Autophagy Clustering Analysis in Malignant Tumor Cells

We selected 22 malignant samples (adenocarcinoma) from the GSE111907 dataset and
samples were clustered according to their expression of the autophagy signature B. Gene
Set Enrichment Analysis (GSEA) was performed as previously described.

2.7. Gene Set Enrichment Analysis in A549 Deficient for Autophagy

To examine the impact of autophagy genes in global biological processes, we used
GSE73158 datasets. We selected three lung adenocarcinoma cell lines, A549 treated with
siRNA against ATG5, A549 treated with siRNA against ULK1, and their respective siRNA
control. We performed differential expression analysis for siRNA-treated cells accord-
ing to their respective control and selected upregulated (logFC > 1) or down-regulated
(logFC < −1) genes. To perform functional annotation enrichment analyses, we chose genes
which were significantly modified in both siATG5- and siULK1-treated cells.

2.8. Cell Culture, Proliferation Analysis and Confocal Microscopy

The human lung adenocarcinoma A549 cell line and the murine adenocarcinoma
LLC and carcinoma KP cell lines were cultured in DMEM F-12 medium (Gibco, Waltham,
MA, USA) supplemented with 10% FBS (Eurobio Scientific, Ulis, France), 1% non-essential
amino acid (Gibco), 1% herpes (Gibco), 1% glutamate (Gibco) and 1% Na+/pyruvate (Gibco)
in a standard 5% CO2 incubation atmosphere at 37 ◦C. The human lung squamous cell car-
cinoma SK-MES cell line was cultured in EMEM F-12 medium (Gibco) supplemented with
10% FBS (Eurobio Scientific), 1% non-essential amino acid (Gibco), 1% 1% herpes (Gibco),
1% glutamate (Gibco) and 1% Na+/pyruvate (Gibco) in a standard 5% CO2 incubation
atmosphere at 37 ◦C.

For in vitro proliferation assays, 150,000 cells were stained with CFSE (1/500, Ther-
moFischer, Waltham, MA, USA) for 30 min at 37 ◦C in PBS and plated in the 6-well plate
for 24 h. Cells were cultured for 24, 48, 72 and 96 h in the presence or not of 10 mM of
3-methyladenin (Sigma, Saint-Louis, MO, USA), 100 nM of wortmannin (Sigma), 10 µM
of SAR405 (MedChemExpress, Monmouth Junction, NJ, USA), or 100 nM of bafilomycin
(Sigma), and stained with live/dead kit (1/100, near-IR, ThermoFisher). Analysis of CSFE
staining was performed using the BD LSR Fortessa Cell analyzer. Flow cytometry data
were analyzed by FlowJo software.

For in vitro analysis of the autophagy level, 35,000 A549 cells expressing the GFP-LC3
protein were plated in a 24-well plate containing coverslips for 24 h. Cells were then
cultured for 24 h in the presence or not of 10 mM of 3-methyladenin (Sigma), 100 nM of
wortmannin (Sigma), 10 µM of SAR405 (MedChemExpress), or 100 nM of bafilomycin
(Sigma), and were mounted on the slides using glycergel (Dako, Santa Clara, CA, USA).
The autophagosomes were observed by confocal microscopy (LSM 710) and enumerated
by a personal R script.

2.9. Statistical Analysis

R software (v4.0.3) was used for all bioinformatic statistical analyses, and PRISM
software was employed for in vitro experiments. The Wilcoxon test was used to compare
the differences between the two groups. The Kruskal–Wallis test was utilized to compare
the differences between three groups and above. The survival time of the patient was
evaluated by Kaplan–Meier survival analysis, and the different groups were compared by
utilizing a log-rank test. Univariate and multivariate Cox regression analysis was used to
investigate the independent prognostic factor, employing the “survival” R package. The
Benjamin–Hochberg method was used to calculate p_value for FRDs conversation and
DEG analyses. Single-cell analysis was performed using R package “Seurat”. Survival
curves were performed utilizing R package “survminer”. All heatmaps were generated
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by R package “pheatmap”. We employed “GOplot” R package to visualize the functional
annotation enrichment analyses. Data visualization was performed using R package
“ggplot2”. The R packages utilized in this study could be obtained from “bioconduction”.

3. Results
3.1. Autophagy Gene Expression Was Distinct, According to the Subtype of Lung Tumors

To investigate the impact of autophagy genes in lung tumors, we analyzed the dif-
ferential expression of autophagy genes (from the human autophagy database) in tumors
(n = 1019) versus adjacent (n = 110) tissues using TCGA-LUNG public cohorts. Among
the autophagy-related genes tested (n = 232), 23 genes were down-regulated and 16 were
upregulated in tumors as compared to the adjacent tissue (Figure S1A). Further analysis
revealed a clear separation of patients into two groups, with 86% of adenocarcinoma in one
group and 96% of squamous-cell carcinoma in the other group, suggesting that patients
with different histology subtypes expressed very distinct autophagy genes (Figure S1B,C).
No differences were observed according to gender, stage of cancer or TNM classification in
the two groups of patients (Figure S1B). Given that the autophagy signature is very differ-
ent according to the tumor subtype, it is important to separately analyze adenocarcinoma
and squamous cell carcinoma in this context. In this study, we focused our research on
adenocarcinoma subtypes.

3.2. Autophagy-Related Gene Signature in Lung Adenocarcinoma Correlates with an Increase in
Anabolic and a Decrease in Catabolic Pathways

Using the TCGA-LUAD cohort, we performed a similar experiment to that previously
described by comparing the autophagy gene expressions between tumor (n = 517) and
adjacent tissue (n = 59). Twenty-three genes were down-regulated and 12 were up-regulated
in tumor samples as compared with the adjacent tissues (Figure 2A). Two clusters of patients
differentially expressed autophagy genes (Figure 2B). Patients in cluster 1 comprised
the most distinct cluster for autophagy gene expression as compared with the adjacent
tissue (Figure 2C). Moreover, cluster 1 expressed significantly more up-regulated genes
(called signature B) and fewer down-regulated genes (called signature A) as compared
to cluster 2 (Figure 2D). Univariable analysis for the hazard ratio revealed that some
genes involved in signature A (NLRC4, CX3CL1, MAP1LC3C, DRAM1, DAPK2, DLC1,
DAPK1 and HSPB8) were associated with a good prognosis (Figure 2E). In contrast, some
genes in signature B (ERO1L, ATIC, EIF4EBP1, BIRC5 and GAPDH) were associated with
a bad prognosis. Interestingly, cluster-related autophagy genes were an independent
factor significantly associated with a bad prognosis (Figure 2G). These observations were
supported by the analysis of the overall survival (OS) and disease-specific-survival (DSS),
showing that patients in cluster 1 have a lower survival rate as compared to those in
cluster 2 (Figure 2G). Of note, while no distinction has been found according to gender,
stage or TNM classification, patients in advanced stages (stage III/IV or T3/4 or N2/3)
were more represented in cluster 1 than cluster 2 (Figure 2H).

To further investigate the implication of autophagy gene signatures in lung adenocar-
cinoma, we performed an analysis of the differential expression of all the genes between
cluster 1 and cluster 2 and observed that 743 genes were down-regulated and 223 were
up-regulated in cluster 1 as compared to cluster 2 (Figure 3A). KEGG and GO analyses
showed that many biological pathways were significantly impacted by the differential
gene expression profiles between the two clusters (Figure 3B). Among these pathways,
several genes implicated in anabolism pathways were increased in cluster 1 as compared
to cluster 2, including genes involved in cell proliferation (e.g., “Cell cycle” or pathways
related to chromosome or microtubule activity) (Figure 3B–D). On the contrary, genes
implicated in catabolic processes were globally decreased in cluster 1, including genes
involved in “drug metabolism”, “cAMP signaling pathways” or “Protein digestion and
absorption” (Figure 3D). These results suggest that in cluster 1, cellular metabolic processes
are more activated than in cluster 2, with potentially a higher rate of cellular proliferation.
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Figure 2. Autophagy genes screening and cluster analysis in lung adenocarcinoma. (A) Differential
expression analysis for the human autophagy database (n = 232 genes) of TCGA-LUAD patients
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between tumor (n = 517) and adjacent tissue (n = 59). (B,C) Thirty-five differentially expressed
genes of autophagy in TCGA-LUAD datasets. (D) Expression of signature A and B in clusters 1
and 2 in TCGA-LUAD datasets. (E,F) Autophagy signature gene expression, clustering of patients,
clinicopathological and OS of univariate and multivariate Cox regression analysis in the TCGA-
LUAD datasets. (G) Kaplan–Meier OS and DSS curve in the TCGA-LUAD dataset. (H) Distribution
analysis of clusters according to stages, gender and TNM classification in the TCGA-LUAD datasets.
*, p-value < 0.05.
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Figure 3. Differential gene expression and enrichment analysis for clusters. (A) Volcano plot for
differential expression analysis in all genomes (cluster 1 versus cluster 2) in the TCGA-LUAD datasets.
(B) Differential gene GO and KEGG enrichment analysis, BP stands for biological processes, CC
stands for cellular components, and MF stands for molecular function. (C) Significant expression
of genes involved in cell cycle pathways. (D) Representation for gene expression in GO and KEGG
enrichment analysis for anabolism (left) and catabolism (right) pathways.
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3.3. Autophagy-Related Gene Signature Highlighted a Decrease in Immunity-Related Pathways
and an Increase in Exhaustion Genes

Besides metabolic pathways, some genes involved in immunity were also differentially
expressed between cluster 1 and cluster 2 (Figure 3B). Indeed, a decreased expression of genes
involved in the complement cascade, hematopoietic cell lineage and cytokine/chemokine
pathways was observed in cluster 1 as compared to cluster 2 (Figure 4A–C), suggesting that
patients in cluster 1 exhibited a poorly infiltrated tumor microenvironment. To support
this result, we evaluated immune cell infiltration in each cluster using the MCP counter
method [17]. We observed a significant decrease in genes related to T and B lymphocytes
and myeloid dendritic cells, neutrophils and endothelial cells in cluster 1 as compared
to cluster 2 (Figure 4D). Further analysis revealed that patients in cluster 1 expressed
more genes involved in T-cell exhaustion (CTLA-4, HAVCR2, LAG3, PDCD1 and TIGIT)
(Figure 4D. Taken together, our results show that patients with high signature B and low
signature A expression (cluster 1) exhibited active cell proliferation but a reduction in
immune response, which is consistent with the poor survival rate observed for patients in
clusters 1.

To investigate whether the correlation between autophagy signature and metabolic sta-
tus or immune cell infiltration could be influenced by the stage of the cancer, we performed
similar analyses in LUAD-TCGA datasets stratified by tumor stages (stages I/II or stages
III/IV). We observed a very similar clustering for patients in both early and advanced
stages (with around 90% of similarity for differential expressed genes in the early stages
and 85% in the advanced stages) (Figures S2A and S3A). Patients in cluster 1 comprised the
most distinct cluster for autophagy gene expression as compared to adjacent tissue. The
overall survival (OS) and disease-specific survival (DSS) analyses revealed that patients in
cluster 1 have a lower survival rate as compared to those in cluster 2 in the early stages
of the tumor (Figure S2B). In more advanced cancers, patients in cluster 1 have a lower
DSS, but no significant difference was observed for OS (Figure S3B). For both groups of
tumor stages, the KEGG and GO analyses showed that patients in cluster 1 expressed
more genes involved in cell proliferation and fewer genes implicated in catabolic processes
(Figures S2C and S3C). Patients in cluster 1 were also less infiltrated by immune cells and
expressed more genes involved in T-cell exhaustion as compared to patients in cluster 2
(Figures S2D and S3D). These data showed that our autophagy gene signatures correlate
with metabolic status and immune infiltration independently of the tumor stages.

Interestingly, we confirmed a correlation between autophagy-related gene signatures
and metabolic and immunologic status using another cohort of adenocarcinoma. Applying
autophagy signatures in 226 LUAD patients (GSE31210 datasets), we defined two clusters
of patients. According to our previous observation, the cluster with a low expression of
signature A and high expression of signature B exhibited the worst prognostic value, the
most active metabolic status and lowest immune cell infiltration (Figure S4A–D).

3.4. The Autophagy Signature B Was Enriched in Malignant Cells and Revealed Metabolic and
Immunogenic Status of Tumor Cells

Using a cohort of adenocarcinoma from GSE (GSE111907), we compared the expression
of autophagy gene signatures between tumor-infiltrating cell subsets. In this cohort, RNA-
seq profiling of flow-sorted malignant cells, endothelial cells, immune cells and fibroblasts
from resected primary human NSCLC was performed. While the global autophagy gene
expression was not different between cell subtypes (Figure S5A, Table S1), analyses of our
autophagy-related signature revealed that signature B was significantly more expressed
in malignant cells as compared to immune, fibroblast or endothelial cells (Figure 5A,B).
Signature A was preferentially expressed in fibroblasts and endothelial cells, with a low
expression in malignant cells (Figure 5B and Table S2). One gene in signature A (DRAM1)
and five genes in signature B (ERO1L, ATIC, BIRC5, BNIP3 and PTK6) were significantly
more expressed in malignant cells as compared to other cell subtypes (Figure 5C and
Table S3). These results were supported using the single-cell transcriptional landscape



Cancers 2022, 14, 3462 11 of 18

of primary lung adenocarcinoma (GSE123904) (Figure 5D and Figure S5B and Table S4).
Cells were clustered using weighted nearest neighbor analysis (Seurat) and clusters were
annotated according to gene expression (as explained in the Materials and Methods). We
then analyzed the expression of autophagy signatures in each cell and observed that
tumor cells poorly express genes in signature A and highly express genes in signature B as
compared to other cell types (Figure 5E and Table S5).
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Figure 4. Enrichment analysis related to immune pathways. (A) Representation for gene expression
in GO and KEGG enrichment analysis related to immunity. (B,C) Significant expression of genes
involved in cytokine-cytokine receptor interaction and complement cascade, respectively. (D) The
expression of genes related to immune cells according to MCP counter database in the TCGA-LUAD
datasets. *, p-value < 0.05.

Clustering patients (from GSE111907 dataset) for the expression of autophagy signa-
ture B in malignant cells also revealed two clusters, with patients in cluster 1 exhibiting
more genes in signature B than patients in cluster 2 (Figure 6A). As previously observed for
the analysis of the global tumor microenvironment (TCGA dataset), differential gene expres-
sion analysis focusing on malignant cells revealed that patients in cluster 1 exhibited more
genes involved in cell proliferation and/or anabolism as compared to patients in cluster 2
(Figure 6B). Comparing immune cell infiltration between clusters revealed that patients
in cluster 1 were less infiltrated by T and B cells and expressed fewer chemokine-related
genes in malignant cells as compared to cluster 2 (Figure 6C,D). Moreover, malignant cells
of cluster 1 expressed more CD274 (PD-L1) and LGALS9 (galectin 9) genes (Figure 6E).
Together, these data suggest that malignant cells expressing high levels of signature B were
more prone to proliferating and inducing immune suppression. Interestingly, expression
analysis of autophagy genes (from the human autophagy database) showed that cluster
1 exhibited a higher autophagy level as compared to cluster 2 (Figure 6F), underlining
a close relationship between the metabolic and immunogenic status of malignant cells
and autophagy.
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Figure 5. Expression of autophagy-related signatures in different subtypes of TME. (A) Unsupervised
clustering of cell types using autophagy gene signatures in the GSE111907 datasets. (B,C) Expression
of autophagy gene signatures according to cell types in the GSE111907 datasets. (D,E) Single-cell
analysis of autophagy gene signature expression in the GSE123904 datasets. *, p-value < 0.05.
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Figure 6. Metabolic and immunologic status of malignant cells according to signature B. (A) Unsu-
pervised clustering of patients using autophagy signature B in malignant cells samples using the
GSE111907 datasets. (B) KEGG enrichment analysis between cluster 1 and cluster 2. (C–E) Analyses
of immune cell infiltration (C), expression of chemokine-related genes (D) and expression of genes
involved in immune checkpoint (E) in clusters. (F) Expression of global (human autophagy database)
and autophagy genes in the GSE111907 datasets. *, p-value < 0.05.

3.5. Autophagy Is Required for the Proliferation of Tumor Cells

To demonstrate the impact of autophagy in lung tumor cell expansion, we first com-
pared gene expression in A549 adenocarcinoma cell lines in which autophagy genes (ATG5
or ULK1) had been deleted or not (GSE73158 dataset) (Figure 7A). The deletion of ATG5 or
ULK1 induced a decreased expression of genes involved in the cell cycle and/or replication,
supporting the suggestion that autophagy is required for tumor cell expansion. To confirm
this result, we performed in vitro analysis assay for tumor cells proliferation. The inhibition
of the autophagy machinery significantly impaired the autophagy level as expected, de-
creasing the autophagosome number when the initiation of autophagy was inhibited (cells
treated with 3-Methyladenin or SAR405) and increasing the accumulation of the autophagy
vacuoles when the maturation step was blocked (cells treated with bafilomycin) (Figure 7B).
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The cell proliferation of several lung tumor cell lines was drastically decreased when au-
tophagy was inhibited for both the initiation and maturation steps (Figure 7C,D). Taken
together, these results demonstrate a strong involvement of autophagy in malignant cell
proliferation and metabolism, and support the relevance of using transcriptomic analysis
for autophagy genes to analyze the metabolic status of malignant cells.

Cancers 2022, 14, 3462 14 of 18 
 

 

tophagy was inhibited (cells treated with 3- Methyladenin or SAR405) and increasing the 

accumulation of the autophagy vacuoles when the maturation step was blocked (cells 

treated with bafilomycin) (Figure 7B). The cell proliferation of several lung tumor cell 

lines was drastically decreased when autophagy was inhibited for both the initiation and 

maturation steps (Figure 7C,D). Taken together, these results demonstrate a strong in-

volvement of autophagy in malignant cell proliferation and metabolism, and support the 

relevance of using transcriptomic analysis for autophagy genes to analyze the metabolic 

status of malignant cells. 

 

Figure 7. 

A.

B.

C.

NT
3-
MA

SA
R
40
5
BA
F

0

5

10

15

20

25

L
C

3
-G

F
P

 d
o
t 
p
e
r 

c
e
ll

NT 3-MA 

SAR405

BAF

FSC-H FSC-H FSC-H FSC-H

SS
C

-H

CFSE CFSE CFSE CFSE

SS
C

-H

NT (Day 3) 3-MA (Day 3) SAR405 (Day 3) BAF (Day 3)

D.

Day 0 Day 1 Day 2 Day 3

SK-MES

Day 0 Day 1 Day 2 Day 3 Day 4

50

100

150

C
e
lls

 p
ro

lif
e
ra

ti
o
n
 

(C
F

S
E

 m
e
d
ia

n
 r

a
ti
o
 v

e
rs

u
s
 J

0
)

A549

NT

3-MA

SAR405

BAF

Day 0 Day 1 Day 2 Day 3

LLC

Day 0 Day 1 Day 2 Day 3

KP
A549 SK-M ES LLC KP

*

*

*

*

*

*

*

*

*

Figure 7. Impact of autophagy in tumor cell proliferation. (A) Differential gene GO and KEGG
enrichment analysis in GSE73158 datasets (A549 control versus autophagy deficient), BP stands for
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biological processes, CC stands for cellular components, and MF stands for molecular functions.
(B) A549-GFP-LC3 cell lines were treated or not with 3-methyladenine (3-MA), SAR405 or bafilomycin
(BAF) and the number of autophagosome was evaluated by confocal microscopy. Scale bars represent
10 µm. (C) A549 cell lines were cultured in media containing CFSE and were treated or not with
3-methyladenine (3-MA), SAR405 or bafilomycin (BAF) for 3 days. Morphological modification and
CFSE staining were analyzed by flow cytometry. (D) A549, SK-MES, LLC and KP cell lines were
treated as previously described and the proliferation of cells was studied following the CFSE staining.
*, p-value < 0.05.

4. Discussion

As a central process of self-digestion and stress adaptation, autophagy has a remark-
able impact on tumor development [4,7,18]. It can provide nutrients for cancer cell survival,
proliferation and migration, promotes drug resistance and helps tumor cells to evade
immune surveillance [4]. In lung cancers, several studies showed that autophagy promotes
tumor cell growth and resistance to radiation or chemotherapy [19,20]. However, due
to the difficulty of visualizing and quantifying autophagy in tumor patients, the role of
autophagy in NSCLC patients is still unclear [20,21].

Gene expression analysis appears to be a relevant approach to analyze autophagy in
NSCLC patients. We first conducted our analysis in LUAD and LUSC, which accounted for
the majority of NSCLC. Based on the TCGA database, our preliminary exploration revealed
that modification for the expression of autophagy genes can be observed in tumor samples,
demonstrating that autophagy is particularly active in cancers. Autophagy expression
was very dependent on cancer subtypes, and clear clustering of patients has been found
between LUAD and LUSC samples. To further investigate autophagy in lung cancers,
we focused our analysis on LUAD, which is holding the predominant position among
all the pathological types of lung cancer. Performing differential expression analysis of
232 autophagy-related genes between tumor and adjacent tissue samples, we observed
two clusters of patients according to the expression of autophagy signature A (23 genes)
and signature B (12 genes). Patients in cluster 1, characterized by lower expression of
signature A and higher expression of signature B than cluster 2, had the worst overall
survival (OS) and disease-specific survival (DSS). Univariate and multivariate COX analyses
suggested that autophagy signatures could be an independent feature associated with bad
prognosis in patients. We showed that cluster 1 was more metabolically active, expressing
anabolism-related genes involved in cell proliferation and migration. On the contrary,
cluster 2 exhibited an antiproliferative phenotype, with active catabolism pathways. In
addition, cluster 1 samples were less infiltrated by immune cells than cluster 2 and exhibited
decreased immune response features. Analyses of autophagy signatures expression in
single cells or sorted-cell datasets revealed that signature B was largely expressed by
malignant cells, while signature A was preferentially expressed in endothelial and in less
extend in fibroblast cells. Signature B expression in malignant cells correlated with an active
metabolic feature, a decrease in immune cell infiltration and an increase in the immune
checkpoint expression on tumor cells (e.g., PD-L1 and Galectin-9).

Interestingly, signature B correlated with an active autophagy process, supporting
the central role for autophagy in tumor proliferation and migration and suggesting an
important impact of this process on immune escape.

Previous studies analyzed the expression of autophagy genes in lung tumors and
constructed the autophagy-related signature to anticipate the prognosis of LUAD or LUSC
patients using the TCGA datasets [15,16,22]. Two studies also determined predictive
signatures based on autophagy-associated long non-coding RNAs [14,23]. The goal of
this study was not to determine a new predictive signature based on autophagy-related
genes. Instead, we investigated the expression of autophagy genes to understand the
involvement of this process in lung tumor homeostasis. While previous studies established
autophagy signatures in the global TME and correlated the expression of autophagy genes
with the survival probability, we focused our analysis on malignant cells, highlighting a
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new autophagy signature that could help to understand the metabolic and immunologic
status of these cells.

We take advantage of sorted cells and single cell datasets to analyze the expression of
our signature and showed that signature B correlated with active metabolic status of tumor
cells. Interestingly, the patients with high expression of signature B expressed much higher
expression of autophagy genes involved in core machinery, including genes involved in
the initiation complex (e.g., BECN1, ULK1, AMBA1) or elongation system (e.g., the majority
of ATG genes, MAP1LC3A, MAP1LC3B, MAP1LC3C). These data supported previous
studies that described a pro-tumor function for autophagy in lung cancers, favoring the
proliferation and migration of tumor cells [3,20,23,24].

Our data also revealed an important impact of autophagy on immune escape, describ-
ing that autophagy gene expression can reflect the immune cell infiltration and/or the
immunogenic status of malignant cells. Interestingly, the correlation between autophagy
genes expression and immune infiltration has also been described in other types of tu-
mors [23,25]. While some studies observed a similar correlation between autophagy and
immune checkpoint expression [24,26], future research needs to be developed to carefully
understand the impact of autophagy in this context.

Among the genes involved in signature B, some of them reveal a significant prognostic
value in TCGA cohorts. We showed that ERO1L gene was preferentially expressed by
malignant cells, suggesting an important role of this protein in the growth of cancer cells.
ERO1L has already been demonstrated to play a critical role in NSCLC, promoting cancer
development by modulating cell cycle-related molecules [27]. Moreover, recent reports
also mentioned that ERO1L was implicated in anti-tumor immune response, by preventing
T cell-mediated immunity and favoring myeloid suppressor cell activation [28,29]. The
expression of ERO1L gene in malignant cells could explain, at least in part, the reason for
which signature B is associated with a bad prognosis, low infiltration of immune cells and
high proliferative rates. Similarly, ATIC was much more highly expressed in malignant cells
and was associated with a significant prognostic value in our univariate analysis. A recent
report demonstrated that ATIC facilitates tumor growth and migration by upregulating
Myc expression in LUAD [30]. BIRC5, an ATG12-ATG5 conjugate interactor has also been
found to be expressed predominantly by tumor cells. BIRC5 was associated with a bad
prognosis in lung cancers by favoring mitotic cell cycle-related pathways [31]. In some
tumors, BIRC5 was also correlated with high immune cells infiltration [31]. In LUAD,
BIRC5 gene was inversely correlated with dendritic cells and CD4+ T cell infiltration,
observations that we confirmed in our analysis. In our signature A, only DRAM1 was
preferentially expressed by tumor cells. DRAM1 was associated with p53 and played a
critical role in autophagy and apoptosis [32]. However, the biological function of DRAM1
in lung cancer remains controversial. The study by He Q et al. revealed that DRAM1 could
be a target of FTSJ1 and promotes cancer progression [33]. More recently, another study
showed that DRAM1 inhibits the development of lung tumors by promoting the lysosomal
degradation of EGFR [34]. In our analysis, we showed that DRAM1 was associated with a
good prognostic value, suggesting that the expression of DRAM1 in malignant cells could
inhibit tumor growth. Our data highlighted the vital role of these genes expressed by
malignant cells in tumor development. While our study strongly suggests a correlation
between the expression of these genes and the autophagy level in cancer cells, future
investigations should be initiated to understand their role in autophagy modulation in the
context of tumor growth.

5. Conclusions

Taken together, our analysis reveals a novel autophagy-based signature to determine
the metabolic and immunologic status of malignant cells in LUAD. Our study helps to
understand the processes involved in LUAD progression and could be useful for therapeutic
intervention in NSCLC patients.
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21. Überall, I.; Gachechiladze, M.; Joerger, M.; Anděl, J.; Smičková, P.; Kolek, V.; Grygárková, I.; Škarda, J. Tumor Autophagy
Is Associated with Survival Outcomes in Patients with Resected Non-Small Cell Lung Cancer. Lung Cancer 2019, 129, 85–91.
[CrossRef] [PubMed]

22. Deng, J.; Zhang, Q.; Lv, L.; Ma, P.; Zhang, Y.; Zhao, N.; Zhang, Y. Identification of an Autophagy-Related Gene Signature for
Predicting Prognosis and Immune Activity in Pancreatic Adenocarcinoma. Sci. Rep. 2022, 12, 7006. [CrossRef] [PubMed]

23. Jiang, A.; Liu, N.; Bai, S.; Wang, J.; Gao, H.; Zheng, X.; Fu, X.; Ren, M.; Zhang, X.; Tian, T.; et al. Identification and Validation of an
Autophagy-Related Long Non-Coding RNA Signature as a Prognostic Biomarker for Patients with Lung Adenocarcinoma. J.
Thorac. Dis. 2021, 13, 720–734. [CrossRef] [PubMed]

24. Research, A.A. for C. Autophagy Inhibition Synergizes with Immunotherapy in Pancreatic Cancer. Cancer Discov. 2020, 10, 760.
[CrossRef]

25. Zhou, X.; He, Y.-Z.; Liu, D.; Lin, C.-R.; Liang, D.; Huang, R.; Wang, L. An Autophagy-Related Gene Signature Can Better Predict
Prognosis and Resistance in Diffuse Large B-Cell Lymphoma. Front. Genet. 2022, 13. [CrossRef]

26. Ishimwe, N.; Zhang, W.; Qian, J.; Zhang, Y.; Wen, L. Autophagy Regulation as a Promising Approach for Improving Cancer
Immunotherapy. Cancer Lett. 2020, 475, 34–42. [CrossRef]

27. Shi, X.; Wu, J.; Liu, Y.; Jiang, Y.; Zhi, C.; Li, J. ERO1L Promotes NSCLC Development by Modulating Cell Cycle-related Molecules.
Cell Biol. Int. 2020, 44, 2473–2484. [CrossRef] [PubMed]

28. Liu, L.; Wang, C.; Li, S.; Qu, Y.; Xue, P.; Ma, Z.; Zhang, X.; Bai, H.; Wang, J. ERO1L Is a Novel and Potential Biomarker in Lung
Adenocarcinoma and Shapes the Immune-Suppressive Tumor Microenvironment. Front. Immunol. 2021, 12, 677169. [CrossRef]

29. Johnson, B.D.; Geldenhuys, W.J.; Hazlehurst, L.A. The Role of ERO1alpha in Modulating Cancer Progression and Immune Escape.
J. Cancer Immunol. 2020, 2, 103–115. [CrossRef]

30. Niu, N.; Zeng, J.; Ke, X.; Zheng, W.; Fu, C.; Lv, S.; Fu, J.; Yu, Y. ATIC Facilitates Cell Growth and Migration by Upregulating Myc
Expression in Lung Adenocarcinoma. Oncol. Lett. 2022, 23, 131. [CrossRef]

31. Xu, L.; Yu, W.; Xiao, H.; Lin, K. BIRC5 Is a Prognostic Biomarker Associated with Tumor Immune Cell Infiltration. Sci. Rep. 2021,
11, 390. [CrossRef] [PubMed]

32. Crighton, D.; Wilkinson, S.; O’Prey, J.; Syed, N.; Smith, P.; Harrison, P.R.; Gasco, M.; Garrone, O.; Crook, T.; Ryan, K.M. DRAM, a
P53-Induced Modulator of Autophagy, Is Critical for Apoptosis. Cell 2006, 126, 121–134. [CrossRef] [PubMed]

33. He, Q.; Yang, L.; Gao, K.; Ding, P.; Chen, Q.; Xiong, J.; Yang, W.; Song, Y.; Wang, L.; Wang, Y.; et al. FTSJ1 Regulates TRNA
2′-O-Methyladenosine Modification and Suppresses the Malignancy of NSCLC via Inhibiting DRAM1 Expression. Cell Death Dis.
2020, 11, 348. [CrossRef]

34. Geng, J.; Zhang, R.; Yuan, X.; Xu, H.; Zhu, Z.; Wang, X.; Wang, Y.; Xu, G.; Guo, W.; Wu, J.; et al. DRAM1 Plays a Tumor Suppressor
Role in NSCLC Cells by Promoting Lysosomal Degradation of EGFR. Cell Death Dis. 2020, 11, 1–15. [CrossRef] [PubMed]

http://doi.org/10.3390/cancers10090281
http://doi.org/10.1016/j.lungcan.2019.01.001
http://www.ncbi.nlm.nih.gov/pubmed/30797498
http://doi.org/10.1038/s41598-022-11050-w
http://www.ncbi.nlm.nih.gov/pubmed/35488119
http://doi.org/10.21037/jtd-20-2803
http://www.ncbi.nlm.nih.gov/pubmed/33717544
http://doi.org/10.1158/2159-8290.CD-RW2020-063
http://doi.org/10.3389/fgene.2022.862179
http://doi.org/10.1016/j.canlet.2020.01.034
http://doi.org/10.1002/cbin.11454
http://www.ncbi.nlm.nih.gov/pubmed/32841447
http://doi.org/10.3389/fimmu.2021.677169
http://doi.org/10.33696/cancerimmunol.2.023
http://doi.org/10.3892/ol.2022.13251
http://doi.org/10.1038/s41598-020-79736-7
http://www.ncbi.nlm.nih.gov/pubmed/33431968
http://doi.org/10.1016/j.cell.2006.05.034
http://www.ncbi.nlm.nih.gov/pubmed/16839881
http://doi.org/10.1038/s41419-020-2525-x
http://doi.org/10.1038/s41419-020-02979-9
http://www.ncbi.nlm.nih.gov/pubmed/32943616

	Introduction 
	Materials and Methods 
	Dataset Source, Pre-Processing and Workflow 
	Autophagy Signature and Clustering Analysis 
	Functional Annotation Enrichment 
	Immune Cell Infiltration, Stromal Cell Population and Exhaustion Marker Expression Analysis 
	Autophagy Signature Expression in Sorted-Cell Fresh Tumor Samples Datasets and Single Cell Analysis 
	Autophagy Clustering Analysis in Malignant Tumor Cells 
	Gene Set Enrichment Analysis in A549 Deficient for Autophagy 
	Cell Culture, Proliferation Analysis and Confocal Microscopy 
	Statistical Analysis 

	Results 
	Autophagy Gene Expression Was Distinct, According to the Subtype of Lung Tumors 
	Autophagy-Related Gene Signature in Lung Adenocarcinoma Correlates with an Increase in Anabolic and a Decrease in Catabolic Pathways 
	Autophagy-Related Gene Signature Highlighted a Decrease in Immunity-Related Pathways and an Increase in Exhaustion Genes 
	The Autophagy Signature B Was Enriched in Malignant Cells and Revealed Metabolic and Immunogenic Status of Tumor Cells 
	Autophagy Is Required for the Proliferation of Tumor Cells 

	Discussion 
	Conclusions 
	References

