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Figure S1: (A) The median follow-up duration in years after stratifying by age at diagnosis (catego-

rized), showing a decline in the median follow-up duration with aging. (B) the relative frequencies 

that alter over the years. Overall, the cancer-related death distribution has a declining trend with 

time. “85+”: the patient age is equal to or above 85 years. 
 
 

  



Supplementary File S1 
Dataset 
We utilized the SEER database covering the years 1975-2017 (Version 18) and included 2,006,052 

patients diagnosed with one of the urologic cancers (i.e., prostate, testis, kidney, urinary bladder, 

ureter, renal pelvis, penis, other genital organs). The affected organ by cancer type was determined 

according to the documentation guideline of the SEER program ( Site recode B ICD-O 3/WHO 2008). 

A total of 505 features from the database were available and covered demographic, clinical and 

pathological information. Information on treatments was not included, since only surgery data are 

available. Furthermore, two additional features (cancer-specific death status and the follow-up du-

ration given in years) included the cancer-specific survival follow-up data. Cases in which patients 

died due to the primary cancer in urogenital organs were defined as cancer-specific death. The fol-

low up duration was determined based on the last contact with cancer survivors or the cancer-spe-

cific death of the patients. 

 

Definition of development and out-held test sets 
The validation of the model generalization ideally requires a test set that represents a considerable 

portion of the population. The SEER database covers the most variations in the disease conditions 

and characteristics compared to any data from single or two institutions [1] and represents approx-

imately 30% of the U.S. population [2]. We preferred the conventional validation approach due to 

the fact that the SEER database is representative of the U.S. population; any local dataset for external 

validation would not provide the same representation of the population as the SEER database. 

We randomly divided the database into the development set (90%) and the out-held test set (10%), 

while maintaining the same proportion for the cancer-specific death status cases between these da-

tasets for model development and evaluation. The development and test sets were disjointed to 

ensure no case overlapped between the data sets. Therefore, the out-held test derived from the SEER 

database met the requirements and validated the generalization of our approach. The development 

set was then split into the training (90%) and validation sets (10%). The validation set was used to 

evaluate the optimization procedure of the model weights. We applied feature-wise normalization 

by ranking the units of a feature according to appearance order in the dataset and dividing by the 

maximum rank to achieve a value between 0 and 1. Where the information was missing for the 

feature, a value of -1 was given. In contrast, the follow-up duration was fed as a non-negative con-

tinuous value without normalization into the model, and the cancer-specific death status was bina-

rized (0: no cancer-specific death; 1: cancer-specific death). The reason for considering cancer-spe-

cific death status instead of overall survival (OS) was to mitigate any potential biases associated 

with non-cancer specific survival during the model development. 

 

Feature selection 
According to good practice in data science, data preprocessing is essential to achieve a good model. 

Furthermore, any model used for clinical decision making should incorporate features that are well-

established and accessible during the clinical routine. Therefore, we aimed to select features for sur-

vival modeling that had the relevant clinical information, covering tumor stage and biomarkers in 

addition to age at diagnosis and race due to their well-established clinical importance in urologic 

cancers [3-7]. Here, we manually selected sixteen clinically relevant features which are well-



documented and currently considered by the SEER program. Furthermore, these features are well-

established parameters for clinical decision making, as listed in Table 1. While selecting the features, 

we intended to reduce the version dependency of the tumor stage in our model by considering 

features that describe the tumor extension and tumor dissemination in more detail. The SEER tumor 

stage was considered given that the SEER program used this feature to estimate the cancer-specific 

survival rate according to the tumor dissemination status. These features were selected with the full 

agreement of five urologists (OE, AS, MB, JL, IT) with more than 10 years of profound clinical and 

research experience in urologic cancers. 

Table S1. lists the features selected for survival modeling. ** denotes that this feature was derived from cancer-specific features. 

++ the definition of the features varies by the information sources for staging (e.g., biopsy or surgery). Due to the variational 

options for cancer-specific features, we only provided the feature summary. Details regarding the available options can be 

obtained from https://seer.cancer.gov.info.CS: Cancer-specific; the number of CS site-specific factor is defined by the SEER pro-

gram to differentiate between different CS site specific factors. 

Feature  Input data. 

Common features 

Age at diagnosis Continuous value ranged between 18 and 114 years 

Race White 

Black 

Others 

Unknown 

Total number of ma-

lignant tumors for the 

patient 

Continuous value ranged between 1 and 10 

Regional nodes posi-

tive 1988 

The number of positive lymph nodes: 

The range between 0 and 90 

>=90 

Unknown or not performed (-1) 

Regional nodes exam-

ined 1988  

The number of lymph nodes examined: 

The range between 0 and 90 

>=90 

Unknown or not performed (-1) 

SEER historic stage A 

** 

Tumor stage summary: 

Localized 



Distant 

Regional 

Localized and/or regional (Prostate Cancer) 

Time, year The follow-up duration until the last check or death. 

Cancer-specific fea-

tures (n) 

Prostate Cancer 

(9) 

Kidney Can-

cer (5) 

Urinary 

Bladder 

Cancer (5) 

Renal Pel-

vis or Ure-

ter Cancer 

(5) 

Testicular 

Cancer (5) 

Penile 

Cancer (4) 

CS site-specific factor 

2 

The measure-

ment result of 

serum PSA level 

(ng/mL) 

 

The vein in-

volvement 

(Vena Cava 

and vena re-

nalis) 

The length of the maxi-

mum lymph node metas-

tasis 

Not applicable  

CS Mets at dx 2004 

  

Evidence of metastases at the time of diagnosis.: 

The definition varies between cancers of the genitourinary system. Detailed information 

for the cancer-specific list can be obtained from the SEER program. 

Derived AJCC M 6th 

ed 2004** 

M0 

MX 

M1 

M1a 

M1b 

M1c 

M0 

M1 

MX 

M0 

M1 

MX 

M0 

M1 

MX 

M0 

M1 

M1a 

M1b 

MX 

M0 

M1 

MX 

CS site-specific factor 

12 

Number of posi-

tive biopsy cores 

 

 

Not applicable 

CS site-specific factor 

13 

Number of total 

biopsy cores 

 

Not applicable Postopera-

tive Alpha 

Not appli-

cable 



Fetoprotein 

(AFP) level 

CS extension 2004++ 

 

Tumor stage and extension: 

The definition varies between cancers of the genitourinary system.  Detailed information 

for the cancer-specific list can be obtained from the SEER program. 

CS site-specific factor 

7++ 

First and second 

Gleason patterns 

in Biopsy or 

TURP speci-

mens 

Not applicable 

CS site-specific factor 

9++ 

First and second 

Gleason patterns 

in prostatectomy 

specimen 

Not applicable 

Derived AJCC N 6th ed 

2004 

(Lymph node metasta-

ses status) 

N0 

N1 

NX 

N0 

N1 

NX 

N0 

N1 

N2 

N3 

NX 

N0 

N1 

NX 

N0 

N1 

N2 

N3 

NX 

N0 

N1 

N2 

N3 

NX 

 

Hyperparameter configuration for the model development 
A grid search was applied to identify the optimal hyperparameter configuration for the model ar-

chitecture of the recurrent neural network (i.e., simple recurrent neural network (sRNN), gated re-

current units (GRU) [8] and Long Short-Term Memory unit (LSTM) [9]) and model optimization 

algorithms with the default configuration (i.e., Adaptive Moment Estimation (Adam) [10] and Root 

Mean Square Propagation (RMSprop) [11] ). The loglikelihood function was measured to evaluate 

the goodness of fit of these models with a predefined decay learning rate (start learning rate: 0.001 

and decay rate: 0.8, after every fifth epoch). Furthermore, we evaluated the inclusion of the dropout 

in the model on the loglikelihood. The linear regression function was applied for the final activation 

function and the mean square error was used as a loss function. The lowest value for the loglikeli-

hood on the in-training validation set indicated the best hyperparameter configuration. Given the 

explorative character of the hyperparameter study, utilizing a subset of the development set 

(n=10,000) was adequate to determine the optimal hyperparameter configuration. Each model with 

different hyperparameter configuration was trained for 10 epochs to limit the computational time 



consumption. When the optimal hyperparameters configuration was identified, the final model 

with this configuration was trained on the whole training set until convergence. 

 

Model calibration for the cancer-specific mortality risk estimation 

We utilized the Kaplan–Meier (KM) estimates to calibrate the trained model for cancer-specific sur-

vival estimates on the training set and tested the model fitness on the test set. For the model calibra-

tion, we utilized the lowest and highest boundaries for the 95% confidence intervals of the survival 

estimates for a follow-up period ranging from 1 years to 44 years. Then, we applied Brent’s optimi-

zation algorithm [12] to determine the residual (𝛼 𝜖 [0,1]), with the minimum for the equation cal-

culating the non-negative differences (∆) between the true KM survival estimates 𝑓(𝑦) and pre-

dicted KM survival estimates 𝑓(𝑦̂ + 𝛼). 

 
∆= [𝑓(𝑦) − 𝑓(𝑦̂ + 𝛼)] 2 𝑤ℎ𝑒𝑟𝑒  ∆ ∈ [0,1] 

 

A difference of 0 (∆= 0) means a perfect fitness between the true and predicted KM estimates, while 

a difference of 1 (∆= 1) means poor model calibration for the survival estimation. After incorporat-

ing the residual into the prediction model, the fitness of the model was assessed by comparing KM 

Curves between the prognosticated and observed probabilities and by applying the previous equa-

tion on the out-held test set [13]. 
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