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Simple Summary: This study aimed to explore the added value of magnetic resonance elastography
(MRE) in the prediction of Ki-67 expression in hepatocellular carcinoma (HCC) using a deep learning
combined radiomics (DLCR) model. A total of 108 histopathology-proven HCC patients who
underwent preoperative MRI and MR elastography were included. All the patients were divided
into training and validation cohorts. An independent cohort including 43 patients was included
for testing. A DLCR model was proposed to predict the expression of Ki-67 with conventional MRI
(cMRI) as inputs. The images of shear wave speed (c-map) and phase angle (ϕ-map) derived from
MRE were also fed into the DLCR model. Experimental results show that both c and ϕ values were
ranked within the top six features for Ki-67 prediction with random forest selection, which revealed
the value of MRE-based viscosity for the assessment of the tumor proliferation status in HCC. The
model with all modalities (MRE, AFP, and cMRI) as inputs achieved the highest AUC of 0.90 ± 0.03
(CI: 0.89–0.91) in the validation cohort. The same finding was observed in the independent testing
cohort with an AUC of 0.83 ± 0.03 (CI: 0.82–0.84). MRE-based c and ϕ-maps can serve as important
parameters to assess the tumor proliferation status in HCC.

Abstract: This study aimed to explore the added value of viscoelasticity measured by magnetic
resonance elastography (MRE) in the prediction of Ki-67 expression in hepatocellular carcinoma
(HCC) using a deep learning combined radiomics (DLCR) model. This retrospective study included
108 histopathology-proven HCC patients (93 males; age, 59.6 ± 11.0 years) who underwent preopera-
tive MRI and MR elastography. They were divided into training (n = 87; 61.0 ± 9.8 years) and testing
(n = 21; 60.6 ± 10.1 years) cohorts. An independent validation cohort including 43 patients
(60.1 ± 11.3 years) was included for testing. A DLCR model was proposed to predict the expression
of Ki-67 with cMRI, including T2W, DW, and dynamic contrast enhancement (DCE) images as inputs.
The images of the shear wave speed (c-map) and phase angle (ϕ-map) derived from MRE were also
fed into the DLCR model. The Ki-67 expression was classified into low and high groups with a
threshold of 20%. Both c and ϕ values were ranked within the top six features for Ki-67 prediction
with random forest selection, which revealed the value of MRE-based viscosity for the assessment
of tumor proliferation status in HCC. When comparing the six CNN models, Xception showed the
best performance for classifying the Ki-67 expression, with an AUC of 0.80 ± 0.03 (CI: 0.79–0.81)
and accuracy of 0.77 ± 0.04 (CI: 0.76–0.78) when cMRI were fed into the model. The model with all
modalities (MRE, AFP, and cMRI) as inputs achieved the highest AUC of 0.90 ± 0.03 (CI: 0.89–0.91)
in the validation cohort. The same finding was observed in the independent testing cohort, with an
AUC of 0.83 ± 0.03 (CI: 0.82–0.84). The shear wave speed and phase angle improved the performance
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of the DLCR model significantly for Ki-67 prediction, suggesting that MRE-based c and ϕ-maps can
serve as important parameters to assess the tumor proliferation status in HCC.

Keywords: Ki-67; hepatocellular carcinoma (HCC); conventional MRI (cMRI); magnetic resonance
elastography (MRE); deep learning combined radiomics (DLCR)

1. Introduction

Liver cancer is the fourth most common cancer and the second leading cause of malig-
nant death. As the most common histological type, hepatocellular carcinoma (HCC) accounts
for the majority of incidence and mortality of liver cancer cases [1]. HCC is highly hetero-
geneous and exhibits various biological behaviors. Ki-67 is one of the most common used
cell proliferation biomarkers representing tumor aggressiveness. Previous studies showed
that expression of Ki-67 is valuable in selecting recipients for liver transplant [2], patients
with high Ki-67 expression are often encouraged to receive preoperative adjuvant therapy
to improve prognosis [3], and Ki-67-targeted therapy is an attractive and promising avenue
in HCC treatment [4]. Thus, the precise evaluation of Ki-67 expression preoperatively may
be beneficial to appropriate clinical decision. However, current clinical practice guidelines
recommend imaging to establish diagnosis of HCC noninvasively rather than through confir-
matory biopsy. Therefore, the noninvasive preoperative evaluation of Ki-67 expression in
HCC is warranted to outline personalized treatment strategies in clinical practice.

With the rapid development of deep learning models and radiomics theories, they
have become effective methods of predicting tumor aggressiveness [5]. Preliminary studies
showed the feasibility of MRI-based radiomics or deep learning models in predicting
the Ki-67 expression of HCC. Current results were mainly based on the assessment of
vascularity derived from Gd-DTPA-enhanced images. Hu et al. [6] reported that histogram-
based parameters from apparent diffusion coefficient (ADC) maps and arterial phase (AP)
images could be used to determine the Ki-67 labeling index (LI) in HCC with an AUC up
to 0.826. Similarly, Fan et al. [7] proposed a combined model including an arterial phase-
based RAD-score and serum alpha-fetoprotein (AFP) level to predict Ki-67 expression
preoperatively. The combined model (AUC, 0.863), that included the AP RAD-score and
serum AFP level, demonstrated improved performance when compared with the single AP
radiomics model (AUC, 0.813). Recently, emerging evidence confirmed that hepatobiliary
agent-enhanced MR imaging might provide valuable information to characterize HCC
tumor biology independent of vascularity. Li et al. [8] found that texture analysis on the
hepatobiliary phase (HBP), arterial phase (AP), and portal vein phase (PVP) images were
useful in predicting Ki67 LI. However, the application of the hepatobiliary agent was
limited by severe hepatic dysfunction or cholestasis, the relatively weak arterial phase
hyperenhancement, and the relatively high frequency of arterial phase artifacts. In addition,
interpreting the complex associations between the deep learning or radiomics features and
biologic processes of HCC still remains an enormous challenge.

From the view of biomechanics, MR elastography (MRE) can provide insight into the
mechanisms governing liver biology. Elastography applies mechanical tension or stimuli
to tissue, monitors the tissue’s response to the induced stimulus, and uses it to reconstruct
parameters that characterize the mechanical properties of the image-encoded response.
A variety of factors, including cell types, extracellular matrix deposition, cellularity, and
fluid transport, alter the mechanical properties of biological organization [9,10]. MRE can
also be applied on the liver [11,12]. MRE can measure displacement due to propagating
mechanical waves, from which biomechanical properties of tumors, such as stiffness, can be
calculated [13]. However, stiffness quantified by MRE was always used for depicting diffuse
liver disease, such as liver inflammation, fibrosis, and portal hypertension in chronic hepatitis
patients [11]. To update, nearly all elastography techniques measure stiffness without taking
into account the viscoelastic, anisotropic, and nonlinear properties of most living tissues. The
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complex shear modulus of biological tissues is a composite dimension consisting of a storage
modulus and a loss modulus, representing the elasticity and viscosity, respectively.

Tomoelastography, as an advanced MRE technique [14], yields quantitative maps of
shear wave speed (c in m/s) and loss angle (ϕ in rad) as proxies of tissue stiffness and
viscosity, respectively. These two parameters, especially viscosity, have demonstrated great
potential for tumor detection and aggressiveness prediction of prostate cancer, pancreatic
cancer, and liver cancer [12,15,16]. For malignant tumors, increased cellularity and aggres-
siveness not only leads to the higher stiffness but also changes the tumor microenvironment,
which have liquid properties [17,18]. Moreover, tomoelastography provides full field-of-
view (FOV) quantitative maps with spatial resolution comparable to conventional MR
images, which is suitable for analysis by deep learning or radiomics models. To update, the
biomechanical properties of HCC have not been investigated for aggressiveness evaluation.

Our study aimed to investigate the value of viscoelasticity derived from tomoelas-
tography for predictive capability of Ki-67 expression in HCC using an MRI-based deep
learning combined radiomics (DLCR) model.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by our institutional review board and local
ethics committee in Ruijin Hospital, Shanghai, China. Written informed consent was
obtained from each participant. Between June 2020 and June 2021, 184 patients with
suspected HCCs were initially enrolled to establish the predictive model. For patients with
multiple lesions, the largest one was selected to avoid clustering effect. The inclusion criteria
were as follows: (1) age ≥ 18 years; (2) patients who underwent conventional MRI and
preoperative tomoelastography examinations. The exclusion criteria were: (1) poor image
qualities (n = 3); (2) prior chemotherapy or radiotherapy (n = 24); (3) no histopathological
results (n = 6) (Figure 1). Finally, 108 patients (number of males, 93; number of females, 13;
age, 59.6 ± 11.0 years) were included. All the demographics and clinical characteristics
of patients were recorded (Table 1). They were randomly divided into a training cohort
(76 males; 11 females; age, 59.4 ± 11.1 years) and a testing cohort (17 males; 4 females;
age, 60.38 ± 10.20 years) with a ratio of 8:2. Whereafter, between July 2021 and November 2021,
43 HCC patients (36 males; 7 females; age, 60.01 ± 11.10 years) who met the above criteria
were included as an independent validation cohort. The median time of interval between
liver resection and MRI examination was 2 days, ranging from 1 to 3 days.

Figure 1. Flowchart of inclusions and exclusion criteria of participants.
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Table 1. Demographics and clinical characteristics of the participants in this study.

Variable Total (n = 108) Training (n = 87) Testing (n = 21) p-Value

Age (years) 59.57 ± 10.97 59.38 ± 11.13 60.38 ± 10.20 0.19
Sex, n (%) 93 (87.03%) 76 (88.51%) 17 (80.95%) 0.83
BMI (kg/m2) 23.81 ± 3.01 23.63 ± 2.94 24.59 ± 3.15 0.45
Etiology, No. – - - <0.05

Hepatitis B virus 83 64 18 -
Hepatitis C virus 4 3 1 -
Others 21 19 2 -

AFP level (mg/mL) - - - <0.05
<20 50 40 10 -
≥20 58 47 11 -

Platelet count (×109/L) 143.06 ± 64.93 141.81 ± 65.41 148.40 ± 62.56 0.39
Prealbumin level (mg/L) 195.99 ± 60.55 195.74 ± 62.60 197.05 ± 50.78 0.31
ALT level (IU/L) 41.08 ± 60.21 41.23 ± 65.27 40.45 ± 29.96 0.27
AST level (IU/L) 45.25 ± 64.87 46.37 ± 71.14 40.45 ± 22.68 0.25
Total bilirubin (µmol/L) 18.95 ± 12.09 18.52 ± 8.02 20.77 ± 22.23 0.16
Direct bilirubin (µmol/L) 3.89 ± 2.96 3.90 ± 2.72 3.83 ± 3.84 0.35
Albumin level (g/L) 34.77 ± 11.81 39.86 ± 5.87 40.30 ± 7.70 0.27
Prothrombin time (s) 12.54 ± 1.13 12.14 ± 1.36 12.89 ± 0.91 0.44
INR 1.04 ± 0.12 1.03 ± 0.12 1.10 ± 0.08 0.57
Ki-67(%) 27.28 ± 20.47 27.55 ± 19.52 26.14 ± 23.98 0.26

2.2. Conventional MRI (cMRI)

Conventional MRI was performed on two 1.5 T MR scanners (Magnetom Aera,
Siemens, Munich, German; uMR 660, United Imaging, Shanghai, China) and a 3.0 T MR
scanner (Ingenia, Philips, Amsterdam, The Netherlands). The imaging protocol consisted
of T1-weighted (T1w), T2w, diffusion weighted imaging (DWI) with b-values of 0, 50, and
800 s/mm2, and multiphase dynamic contrast-enhanced (DCE) imaging (Table S1).

2.3. Tomoelastography

Tomoelastography was performed using a 1.5 T MR scanner (Magnetom Aera, Siemens,
Germany). Continuous harmonic vibrations at frequencies of 30, 40, 50, and 60 Hz were
induced by an external pressurized-air driving system. Two rear pneumatic actuators (0.6 bar)
and one front pneumatic actuator (0.4 bar) were positioned near the liver. To ensure a sta-
ble mechanical state, apply vibration 5 s before imaging. Three-dimensional wavefields
were acquired using a single-shot spin-echo echo-planar imaging (EPI) sequence with flow-
compensated motion encoded gradients (MEG). Fifteen consecutive transverse slices of images
were acquired with an FOV of 384 × 312 mm2 and a resolution of 3 × 3 × 5 mm3 (correspond-
ing to a matrix size of 128 × 104 pixels) during the free breathing period. The other imaging
parameters were a slice thickness of 5 mm, an echo time (TE) of 59 ms, a repetition time
(TR) of 2050 ms, a GRAPPA parallel imaging factor of 2, an MEG frequency of 43.48 Hz for
30, 40, and 50 Hz vibrations and 44.88 Hz for 60 Hz vibration, and an MEG amplitude of
30 mT/m. The total time for the MRE measurements was approximately 3.5 min. Technical
success of tomoelastography was evaluated by visual assessment of the shear wave images
by an experienced operator.

Multifrequency wave field data were processed using the processing pipeline [19].
High spatial resolution maps of shear wave velocity (c) and phase angle (ϕ) over the entire
FOV were obtained. Since c is proportional to the square root of the storage modulus, while
ϕ continuously changes between 0 (solid properties) and π/2 (liquid properties), it can be
considered to represent stiffness and fluidity, respectively.

2.4. Histopathological Analysis

Histopathological analysis was performed by a pathologist with 10 years of experience
in liver pathology, who was blinded to the radiological and clinical findings. Immunohisto-
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chemistry staining for Ki-67 protein was performed. The Ki-67 expression was assessed
by noting the percentage of positively stained cells with brownish yellow nuclei. Then,
HCC was classified as low Ki-67 expression (Ki-67 ≤ 20%) and high Ki-67 expression
(Ki-67 > 20%) groups.

2.5. Image Preprocessing

DCE and DWI images were registered to T2-weighted image using ANTs toolbox [20].
The B-spline interpolation was applied to the conventional MR images to normalize the
image resolution to 0.9 × 0.9 × 4.0 mm3 and FOV to 360 × 360 mm2. The tumor region
of interest (ROI) was manually annotated by an abdominal radiologist (with five years of
experience) on T2-weighted images, c-map, and ϕ-map using ITK-SNAP software [21].

2.6. cMRI-Based DLCR Model

Six CNN network architectures (Inception-Resnet [22], Inception [23], Resnet [24],
VGG16 [25], VGG19 [26], and Xception [26]) were used and compared for the extraction
of deep and high-dimensional image features based on T2WI, DWI, and DCE images
(Table S2). In addition, the radiomics features were extracted from the same modalities
using the PyRadiomics toolbox in Python [27], which included first order features, shape
features, gray level co-occurrence matrix (GLCM) features, gray level size zone matrix
(GLSZM) features, gray level run length matrix (GLRLM) features, neighboring gray tone
difference matrix (NGTDM) features, and gray level dependence matrix (GLDM) features.

Clinical data were also fed into the predictive model, including alpha-fetoprotein
(AFP), platelet count, prealbumin level, alanine aminotransferase (ALT) level, aminotrans-
ferase aspartate (AST) level, total bilirubin, direct bilirubin, albumin level, etc. To avoid
overfitting, LASSO regression (λ = 0.001) with 5-fold cross-validation was applied to re-
duce the dimensionality of features. Finally, the top six features were filtered out for
further modeling. After features reduction, an SVM model (with penalty parameter = 1.0,
kernel = ‘rbf’, order of polynomial kernel function = 3) was employed for the final predic-
tion of high Ki-67 expression. The different network architectures (i.e., Inception-Resnet,
Inception, Resnet, VGG16, VGG19, and Xception) were compared in the DLCR model
based on conventional MRI (including T2, DWI, and DCE). After comparison, the best
model was determined (Figure 2).

Figure 2. Diagram of the DLCR model, including procedures of (a) image selection, (b) image
preprocessing, (c) feature extraction, (d) feature reduction, and (e) prediction of Ki-67 expression.

2.7. cMRI-Based DLCR Model with Tomoelastography

The cMRI-based DLCR model incorporated traditional MRI modalities. On this basis,
both the c-map and ϕ-map were integrated to establish the model to compare prediction
effects. To visualize the contributions of each feature, a random forest-based feature ranking
was implemented (Figure 3).
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Figure 3. Weighting and ranking of the top six predominant features for the prediction of Ki-67
expression calculated by random forest (a) without and (b) with the inclusion of tomoelastography-
derived c and ϕ maps. With the introduction of tomoelastography, two were related to the ϕ-map,
which were the top 2 in importance, and one was related to the c-map, which demonstrated the
importance of features extracted by c-map and ϕ-map (red squares) in Ki-67 expression prediction.

2.8. Statistical Analysis

Continuous data were expressed as mean ± standard deviation. Categorical data were
expressed as number and percentages. Receiver operating characteristic (ROC) analysis was
conducted to evaluate the performance of two models in predicting high Ki-67 expression.
Comparisons between the AUCs were conducted using the Delong test. A two-tailed
Student’s t-test with a p-value of <0.05 was considered statistically significant.

3. Results
3.1. Demographics and Clinical Characteristics

In the training cohort, the high Ki-67 expression group included 40 patients while
the low Ki-67 expression group included 47 patients. In the testing cohort, the high Ki-
67 expression group included 9 patients while the low Ki-67 expression group included
12 patients. In the independent testing cohort, the high Ki-67 expression group included
17 patients while low Ki-67 expression group included 26 patients. Clinical characteristics
were not significantly different between the training and validation cohorts. The detailed
information is summarized in Table 2.

Table 2. Comparison of the demographics and clinical characteristics between high Ki-67 expression
groups and low Ki-67 expression groups.

Variable
Training (n = 87)

p Value
Validation (n = 21)

p Value
Testing (n = 43)

p Value
High Ki-67 (n = 40) Low Ki-67 (n = 47) High Ki-67 (n = 9) Low Ki-67 (n = 12) High Ki-67 (n = 17) Low Ki-67 (n = 26)

Age (years) 56.8 ± 11.5 65.0 ± 7.9 0.07 61.8 ± 9.5 59.3 ± 10.6 0.09 59.4 ± 11.7 60.7 ± 10.5 0.17
Sex, n (%) 35 (87.50%) 41 (87.23%) 0.78 7 (77.78%) 10 (83.33%) 0.81 15 (88.24%) 21 (80.77%) 0.38

BMI (kg/m2) 23.30 ± 2.83 24.32 ± 3.05 0.57 26.02 ± 2.46 23.51 ± 3.19 0.67 23.18 ± 2.34 25.35 ± 4.06 0.27
Etiology, No.

Hepatitis B virus 27 (67.50%) 39 (82.98%) 8 (88.89%) 10 (83.33%) 11 (64.71%) 18 (69.23%)
Hepatitis C virus 3 (7.50%) 1 (2.13%) 1 (11.11%) 1 (8.33%) 2 (11.76%) 1 (3.85%)

Others 10 (25.00%) 7 (14.89%) 0 (0%) 1 (8.33%) 4 (23.53%) 7 (26.92%)
AFP level (mg/mL) 0.03 0.02 0.04

<20 6 (15.00%) 38 (80.85%) 3 (33.33%) 8 (66.67%) 4 (23.53%) 15 (57.69%)
≥20 34 (87.50%) 9 (19.15%) 6 (66.67%) 4 (33.33%) 13 (76.47%) 11 (42.31%)

Platelet count (×109/L) 142.32 ± 70.08 140.70 ± 53.78 0.35 133.50 ± 40.53 158.33 ± 71.99 0.34 156.00 ± 89.57 152.32 ± 73.11 0.36
Prealbumin level (mg/L) 187.86 ± 54.95 212.96 ± 73.84 0.24 194.13 ± 45.34 199.00 ± 54.01 0.31 177.18 ± 58.22 178.44 ± 53.98 0.27

ALT level (IU/L) 45.32 ± 77.39 32.30 ± 19.06 0.35 53.25 ± 36.98 31.92 ± 20.05 0.34 35.24 ± 22.25 33.40 ± 17.74 0.45
AST level (IU/L) 50.76 ± 84.47 36.78 ± 19.83 0.15 46.63 ± 27.50 36.33 ± 17.63 0.12 49.53 ± 41.14 36.80 ± 13.22 0.12

Total bilirubin (µmol/L) 18.23 ± 7.51 19.18 ± 9.00 0.36 15.35 ± 4.38 24.38 ± 27.90 0.17 17.09 ± 5.09 16.54 ± 7.70 0.24
Direct bilirubin (µmol/L) 3.99 ± 2.90 3.70 ± 2.26 0.26 3.00 ± 1.04 4.38 ± 4.81 0.28 3.79 ± 2.18 3.53 ± 2.24 0.23

Albumin level (g/L) 39.58 ± 4.68 40.48 ± 7.83 0.39 37.75 ± 2.90 42.00 ± 9.27 0.41 38.65 ± 4.73 38.92 ± 4.07 0.72
Prothrombin time (s) 12.21 ± 1.33 12.01 ± 1.39 0.81 12.66 ± 0.52 13.04 ± 1.07 0.89 12.47 ± 0.76 12.56 ± 1.11 0.82

INR 1.04 ± 0.12 1.02 ± 0.12 0.67 1.08 ± 0.05 1.11 ± 0.10 0.57 1.06 ± 0.07 1.07 ± 0.10 0.67
c (rad) 2.45 ± 0.65 2.26 ± 0.66 0.17 2.38 ± 0.85 2.23 ± 0.97 0.05 2.07 ± 0.58 2.11 ± 0.61 0.11

ϕ (m/s) 1.14 ± 0.25 1.05 ± 0.24 0.09 1.20 ± 0.24 0.99 ± 0.20 0.71 1.03 ± 0.22 1.02 ± 0.25 0.20

p value (bolded) represented significant difference between the two groups.

Among all 108 patients in the internal cohort, high Ki-67 expression was pathologically
diagnosed in 49 patients (45.4%). Compared to the low Ki-67 expression groups, the high
Ki-67 expression group had elevated AFP levels (49.35 vs. 277.17 mg/mL). p value (bolded)
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represented significant difference between the two groups. The other demographic and
laboratory parameters showed no significant difference between the two groups.

3.2. Optimization of cMRI-Based DLCR Models

When comparing the CNN models based on the six network architectures, the Xcep-
tion architecture showed the best performance for classifying high Ki-67 expression,
with an AUC of 0.80 ± 0.03 (95% confidence interval (CI): 0.79–0.81) and an accuracy
of 0.77 ± 0.04 (95%CI: 0.76–0.78). The predictive power of the other five network architec-
tures were as follows: Inception-Resnet (AUC = 0.71 ± 0.04 (95%CI: 0.70–0.72)), Resnet
(AUC = 0.70 ± 0.04 (95%CI: 0.69–0.70)), Inception (AUC = 0.65 ± 0.03 (95%CI:0.64–0.66)),
VGG19 (AUC = 0.65 ± 0.03 (95%CI: 0.64–0.66)), and VGG16 (AUC = 0.62 ± 0.03
(95%CI: 0.61–0.63)) (Table 3). Thus, the Xception architecture was selected as the final
deep learning feature extraction. By adding clinical data as input, the AUC achieved to
0.84 ± 0.03 (95%CI: 0.83–0.85) in the validation cohort and 0.74 ± 0.02 (95%CI: 0.73–0.75) in
the independent testing cohort.

Table 3. Comparison of different CNN model architectures in the prediction task.

Model Inception-Resnet Xception Inception Resnet VGG16 VGG19

AUC
0.71 ± 0.04 0.61 ± 0.03 0.80 ± 0.03 0.71 ± 0.02 0.65 ± 0.03 0.56 ± 0.03 0.70 ± 0.04 0.62 ± 0.03 0.62 ± 0.03 0.53 ± 0.03 0.65 ± 0.03 0.55 ± 0.05
(0.70–0.72) (0.60–0.62) (0.79–0.81) (0.70–0.72) (0.64–0.66) (0.55–0.57) (0.69–0.71) (0.61–0.63) (0.61–0.63) (0.52–0.54) (0.64–0.66) (0.54–0.57)

Accuracy 0.71 ± 0.05 0.61 ± 0.04 0.77 ± 0.04 0.68 ± 0.03 0.66 ± 0.05 0.57 ± 0.04 0.70 ± 0.04 0.61 ± 0.04 0.62 ± 0.04 0.53 ± 0.03 0.64 ± 0.04 0.55 ± 0.03
(0.70–0.72) (0.60–0.62) (0.76–0.78) (0.67–0.69) (0.65–0.67) (0.56–0.58) (0.69–0.71) (0.60–0.62) (0.61–0.63) (0.52–0.54) (0.63–0.65) (0.54–0.56)

Sensitivity 0.68 ± 0.05 0.60 ± 0.03 0.76 ± 0.06 0.67 ± 0.04 0.65 ± 0.04 0.57 ± 0.05 0.67 ± 0.05 0.59 ± 0.03 0.59 ± 0.03 0.53 ± 0.04 0.66 ± 0.04 0.57 ± 0.02
(0.67–0.69) (0.59–0.61) (0.75–0.77) (0.66–0.68) (0.65–0.67) (0.55–0.58) (0.66–0.68) (0.58–0.60) (0.58–0.60) (0.52–0.54) (0.65–0.67) (0.56–0.58)

Specificity 0.72 ± 0.04 0.63 ± 0.02 0.78 ± 0.06 0.68 ± 0.04 0.67 ± 0.05 0.58 ± 0.04 0.72 ± 0.03 0.58 ± 0.04 0.64 ± 0.04 0.55 ± 0.03 0.62 ± 0.04 0.52 ± 0.03
(0.71–0.73) (0.62–0.64) (0.77–0.79) (0.67–0.69) (0.66–0.68) (0.57–0.59) (0.71–0.73) (0.57–0.59) (0.63–0.65) (0.54–0.56) (0.61–0.63) (0.51–0.53)

PPV
0.69 ± 0.03 0.63 ± 0.02 0.76 ± 0.03 0.65 ± 0.04 0.64 ± 0.02 0.55 ± 0.04 0.67 ± 0.02 0.58 ± 0.02 0.59 ± 0.04 0.52 ± 0.03 0.65 ± 0.03 0.56 ± 0.04
(0.68–0.70) (0.62–0.64) (0.75–0.77) (0.64–0.66) (0.64–0.65) (0.54–0.56) (0.67–0.68) (0.57–0.59) (0.58–0.60) (0.51–0.53) (0.64–0.66) (0.55–0.57)

NPV
0.71 ± 0.02 0.62 ± 0.03 0.77 ± 0.04 0.68 ± 0.03 0.68 ± 0.03 0.59 ± 0.04 0.72 ± 0.01 0.55 ± 0.03 0.64 ± 0.03 0.55 ± 0.02 0.63 ± 0.02 0.54 ± 0.03
(0.71–0.72) (0.62–0.64) (0.76–0.78) (0.67–0.69) (0.67–0.69) (0.58–0.60) (0.72–0.73) (0.54–0.56) (0.63–0.65) (0.54–0.56) (0.63–0.64) (0.53–0.55)

AUC = area under curve, PPV = positive predictive value, NPV = negative predictive value. Xception performed
best among all six models (bolded).

3.3. Comparison of DLCR Models with/without Tomoelastography

Based on the training cohort, both the cMRI-based DLCR model and the DLCR model
with tomoelastography were established. When combined tomoelastography with cMRI
and clinical data, the model achieved a higher AUC of 0.90 ± 0.03 (95%CI: 0.89–0.91) than
the AUC of 0.84 ± 0.03 (95%CI: 0.83–0.85) for the DLCR model without tomoelastography
in the validation cohort.

For the independent testing cohort, the DLCR model with tomoelastography also
performed better than the cMRI-based DLCR model. The AUC of the cMRI-based DLCR
model was 0.74 ± 0.02 (95%CI: 0.73–0.75). Accuracy was just 0.72 ± 0.03 (95%CI: 0.71–0.73).
The AUC achieved 0.83 ± 0.03 (95%CI: 0.82–0.84) and the corresponding accuracy was
0.83 ± 0.02 (95%CI: 0.82–0.84) for the DLCR model with tomoelastography (Table 4).

Table 4. Performance of the DLCR models with different combinations of parameters.

Cohort
Parameter

Combinations

Evaluation

AUC Accuracy Sensitivity Specificity PPV NPV

Internal
validation

cohort

cMRI + AFP
0.84 ± 0.03 0.81 ± 0.04 0.80 ± 0.06 0.82 ± 0.06 0.78 ± 0.06 0.80 ± 0.03
(0.83–0.85) (0.80–0.82) (0.79–0.81) (0.81–0.83) (0.77–0.79) (0.79–0.81)

cMRI + AFP
+ MRE

0.90 ± 0.03 0.87 ± 0.05 0.86 ± 0.04 0.93 ± 0.02 0.84 ± 0.03 0.87 ± 0.02
(0.89–0.91) (0.86–0.88) (0.85–0.87) (0.93–0.94) (0.83–0.85) (0.87–0.88)

Independent
testing cohort

cMRI + AFP
0.74 ± 0.02 0.72 ± 0.03 0.72 ± 0.05 0.72 ± 0.04 0.68 ± 0.05 0.71 ± 0.03
(0.73–0.75) (0.71–0.73) (0.71–0.74) (0.71–0.73) (0.67–0.70) (0.70–0.72)

cMRI + AFP
+ MRE

0.83 ± 0.03 0.83 ± 0.02 0.80 ± 0.03 0.86 ± 0.01 0.78 ± 0.02 0.80 ± 0.03
(0.82–0.84) (0.82–0.84) (0.79–0.81) (0.86–0.87) (0.77–0.79) (0.79–0.81)

cMRI = conventional magnetic resonance imaging (including T2 + DWI + DCE); AFP = α-fetoprotein;
DCE = dynamic contrast enhanced; MRE = magnetic resonance elastography.
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3.4. Contribution of Predictive Efficacy

Both c and ϕ values were ranked within the top six features for Ki-67 prediction with
random forest selection (Figure 3b). The top two features were related to the viscosity
parameter ϕ, which revealed the value of MRE-based viscosity for the assessment of the
tumor proliferation status in HCC. Two representative cases with different Ki-67 levels are
shown in Figure 4. The lesions with higher Ki-67 expression tended to have higher ϕ.

Figure 4. Representative MRI, tomoelastography parameter maps and Ki-67 stained images (mag-
nification, ×400, corresponding HE stained images at bottom right) of HCCs that have (a) low
(Ki-67 = 10%) and (b) high (Ki-67 = 60%) Ki-67 expression. The two HCC lesions (red arrow) showed
similar imaging patterns on the conventional MRI while different imaging modes on tomoelastography.

4. Discussion

Our study demonstrated that the MRE-based viscoelasticity map improved the per-
formance of the DLCR model for Ki-67 expression in HCC. The results suggested that
biomechanical properties, elasticity, and viscosity could provide additional information
for the assessment of the HCC proliferation status. To the best of our knowledge, this is
the first study to investigate contribution of biomechanics for HCC aggressiveness using
machine learning methods.

According to the AUC, our model achieved better performance than the previously
mentioned studies, and the reason can be explained because more imaging biomarkers were
introduced in the predictive model. Our model used both deep learning and radiomics, and
innovatively incorporated MRE. Compared to the models that only included conventional
MRI and routine clinical data for the prediction of Ki-67 expression, the proposed DLCR
model combined cMRI as well as MRE provided more information of the tumor characteris-
tics. The tomoelastography that we used in this study provided high-resolution parameter
maps, which can reflect the mechanical properties of the tissue accurately instead of only
the total water content in the conventional MRI [28].
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It is worth noting that several studies have found the value of elasticity in predicting
the Ki-67 expression of breast cancer. Cha et al. [29] had found that higher elasticity value
was associated with Ki-67 and the invasive size of the tumor in breast cancer. Choi et al. [30]
discovered that Ki-67 positivity, high nuclear grade, large tumor (invasive) size, and so
on, were associated with a significantly high shear wave elasticity ratio. However, its
application in the prediction of HCC Ki-67 expression has not yet been investigated. In ad-
dition, those studies of breast cancer only measured the shear wave velocity by ultrasound,
while we used two-dimensional tomoelastography in the DLCR model, which can better
capture the textures for modeling and provide another vital biomechanical parameter ϕ,
representing the viscosity of tissue.

MRE quantified the stiffness of tissues with structural and elastic characteristics, which
was widely reported for tumor detection and classification [31,32]. However, the previous
studies only reported the simple relationship between tumor aggressiveness and MRE-
based measurements, while we used c and ϕ maps as inputs of the DLCR model in order
to get more detailed and spatial information about the tumor biomechanical properties.
Our results showed that tomoelastography images, especially the ϕ-map, improved the
performance of the DLCR model significantly. The features extracted by CNN and the zone
variance value extracted by radiomics from the ϕ-map ranked the top two contributions
in the DLCR model for the prediction task. In other words, the viscosity of HCC, which
represents the fluidity properties, showed a good predictive ability of tumor aggressiveness.

The elevated fluidity was supposed to be associated with higher vessel density and
the increased intracellular fluid mobility of tumor cells [30]. Higher Ki-67 expression is
associated with faster progression and poorer prognosis for HCC patients. During tumor
progression, increased vascularity and cellularity, a denser extracellular matrix, and higher
interstitial pressure influenced the tumor stiffness and fluidity [33,34]. Moreover, constant
elevating blood supply for maintaining tumor growth and development also had an impact
on the tumor fluidity. Similarly, previous studies had found that the fluidity of tumors,
which was related to angiogenesis and intercellular friction, have a significant contribution
to the development and proliferation of malignant tumors [12,30]. In addition, solid tumors
become aggressive by metastatic spread, which requires partial fluidification so that cancer
cells can move. These findings show the close relationship between tumor fluidity and
aggressiveness and can help to explain why the features from the ϕ-map ranked the top
two contributions in the DLCR model.

Nevertheless, the present study had some limitations. First, the sample size was not
large enough. Although we tested our model on an independent cohort, more validations
are still needed, especially multicenter validations. Second, there is currently no standard-
ized Ki-67 expression level threshold in HCC, which varies from 10% to 30% in studies. We
treated the Ki-67 prediction task as a binary classification problem (with a threshold of 20%)
according to previous studies [35,36] in order to make sure that the two groups had roughly
the same number of people. A better solution might be dividing the Ki-67 expression into
several subgroups. Third, the use of deep learning models was more targeted, which may
not have widespread application. The complexity of the Inception architecture made it
harder to make changes to the network. Xception performed better on the small dataset.
As the number of layers increased, the VGG network showed a degradation problem. We
only compared six widely used network architectures for the prediction task. More recently
proposed architectures such as lightBGM can be used to further improve the prediction
performance. Fourth, the morphological features from conventional MRIs, such as the
LI-RADS classification [37] and other pathological features like MVI, are very important in
evaluating the HCC aggressiveness and the patients’ prognosis. Further work about the
other prognostic factors for the HCC prognosis from the point of view of the biomechanical
can be done.
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5. Conclusions

In conclusion, our study proposed a noninvasive DLCR model and explored the added
value of multifrequency MRE in the prediction of Ki-67 expression in HCC patients. The
experimental results proved that the shear wave speed and phase angle improved the
performance of the DLCR model significantly, suggesting that MRE-based c and ϕ-maps
can serve as important parameters to assess tumor proliferation status in HCC.
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