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Simple Summary: The pancreatic cancer field suffers from a lack of effective treatment options in
part due to the severely compromised tumor vasculature that leads to hypoxia and an immunosup-
pressive environment. Our study aimed to identify and characterize pathological pericyte phenotypes
that contribute to the defective tumor vasculature. We found that a large population of PDAC per-
icytes present ectopic α-smooth muscle actin (αSMA) expression, and this subtype was induced
by cancer cell-derived exosomes. We also showed that the PDAC exosome-induced αSMA+ peri-
cyte exhibits aberrant biomechanical properties and an acquired immunomodulatory phenotype.
Considering a lack of efficient anti-angiogenic approaches in PDAC, identifying a unique molecular
phenotype or the target molecule of a pathological pericyte will be an entry point toward a vascular
normalization approach.

Abstract: The subpopulations of tumor pericytes undergo pathological phenotype switching, affect-
ing their normal function in upholding structural stability and cross-communication with other cells.
In the case of pancreatic ductal adenocarcinoma (PDAC), a significant portion of blood vessels are
covered by an α-smooth muscle actin (αSMA)-expressing pericyte, which is normally absent from
capillary pericytes. The DesminlowαSMAhigh phenotype was significantly correlated with intratu-
moral hypoxia and vascular leakiness. Using an in vitro co-culture system, we demonstrated that
cancer cell-derived exosomes could induce ectopic αSMA expression in pericytes. Exosome-treated
αSMA+ pericytes presented altered pericyte markers and an acquired immune-modulatory feature.
αSMA+ pericytes were also linked to morphological and biomechanical changes in the pericyte.
The PDAC exosome was sufficient to induce αSMA expression by normal pericytes of the healthy
pancreas in vivo, and the vessels with αSMA+ pericytes were leaky. This study demonstrated that
tumor pericyte heterogeneity could be dictated by cancer cells, and a subpopulation of these pericytes
confers a pathological feature.

Keywords: pancreatic ductal adenocarcinoma (PDAC); pericytes; vascular leakiness; hypoxia;
α-smooth muscle actin (αSMA); tumor microenvironment (TME); cancer exosomes

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death
in both men and women in the US, with a five-year survival rate of 11% [1]. However,
more than half of these patients are diagnosed after metastasis has occurred; for patients
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in this group, the five-year survival rate is decreased to 3% [1]. Reasons for this poor
prognosis include the aggressive nature of the disease, lack of early detection methods,
its complex and dense tumor microenvironment (TME) and lack of effective treatment
options [2]. PDAC TME is composed of cancer-associated fibroblasts (CAFs), extracel-
lular matrix (ECM), endothelial cells, perivascular cells or pericytes, immune cells and
neurons [3]. Among the various components of the TME, tumor blood vessels orchestrate
many tumor-specific features and aggressiveness. Tumor growth depends on a coordinated
angiogenic response and vascular remodeling to meet the nutrient and oxygen demands
posed by exponential growth [4–8]. Tumor vessels also serve as the main route for therapeu-
tic drugs and immune cell trafficking [6,9–13], making it a double-edged sword for disease
progression and targeting approaches. Tumor vessels are largely abnormal, leaky and lack
proper pericyte coverage [9,14–18], contributing to elevated hypoxia, acidosis and intersti-
tial fluid pressure [3,19], which promote cancer progression and metastasis [12,13,20,21]. In
addition, nonfunctional tumor vessels pose a major obstacle to drug delivery and immune
cell infiltration [12]. While tumor vasculature has a substantial number of pericytes, de-
pending on the tumor type, the perivascular composition is heterogeneous and aberrant
from the normal composition in healthy tissues. Several studies showed that pericyte
coverage significantly correlates with vascular integrity/function and intratumoral hy-
poxia [22–25]. Depletion of specific types of pericytes augments metastatic dissemination in
breast cancer [22], with pericytes as a gatekeeper in TME for multiple solid tumors [26]. In a
preclinical mouse model of breast cancer, angiopoietin-2 (Ang2) neutralizing antibody treat-
ment significantly improved the vascular structure, partly due to the recruitment of mature
pericytes (Desmin+) and reduced hypoxia [23]. Several studies have reported pathological
pericyte phenotypes and their different functions in breast cancer [24]. Ectopic expression
of Klf4, Rgs-5, CD248 and mutant GT198 in tumor-associated pericytes can cause local and
distant metastases in breast cancer and PNETs (pancreatic neuroendocrine tumors) [27–30].
Notably, recent studies reported ectopic expression of αSMA in pericytes of various disease
models. αSMA is an actin isoform and contributes to cell-generated mechanical tension [31].
A recent report on pathological pericytes in ischemic retinopathy showed abnormal ex-
pression of αSMA induces pathological neovascular tuft formation [32]. Morikawa et al.
showed that ectopic αSMA expression by tumor-associated pericytes correlates with PNET
progression [16]. Ectopic expression of αSMA in capillary pericytes [33] is also known to
confer a vascular smooth muscle cell (vSMC)-like phenotype [34,35]. Although abnormal
pericytes confer pathological features of the vessels, a recent study showed that PDAC
patients with more blood vessels have better overall survival [36]. These reports indicate
that an anti-angiogenic approach to deplete/prune tumor vessels will likely yield more
aggressive tumors, especially in PDAC [22,37,38]. Therefore, understanding the nature
of the pathological phenotype of the pericyte is critical before investigating a novel way
to design an anti-vascular approach. Pericytes are known for their plasticity, versatility
and expression of heterogeneous markers [14,39], and specific pericyte phenotypes are
largely influenced by their local environment [24,40]. Structurally, pericytes share a base-
ment membrane with endothelial cells, allowing intimate reciprocal communication [14].
Adhesion molecules are important for this anatomical position and signaling [41]. Pericytes
are also important for cellular trafficking, especially immune cells [42,43]. While physical
contact with endothelial cells is required for pericytes to mature during angiogenesis [7],
exactly what triggers abnormal pericyte phenotypes during pathological angiogenesis is
unclear. Several factors have been suggested to cause the pericyte phenotype shift, includ-
ing TGF-β [7], PDGF-BB [32] and Ang2 [22]. However, the functional consequence and
molecular signature of altered pericytes remain unknown.

In this study, we sought to delineate the unique perivascular phenotype of PDAC
tumors using various mouse models and human tissue microarray (TMA). Robust imaging
analysis demonstrated that tumor-associated pericytes express ectopic αSMA, which is
significantly correlated with hypoxia and vascular leakiness. Through an in vitro vascular
cell culture, we clearly showed that the pericyte phenotype is strongly influenced by
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cancer cell-derived exosomes. We further demonstrated that αSMAhigh pericytes present
morphological and biomechanical differences on PDAC-Exo exposure. In addition, these
pericytes acquired immunomodulatory gene expression, suggesting a potential contribution
of tumor-associated pericytes to immunosuppressive TME of PDAC.

2. Material and Methods
2.1. Animal Studies

The disease progression and genotyping for KPC mice were previously described [44].
To establish KPC mice, Kras-LSL-G12D (JAX 008180) and Pdx-1-Cre (JAX, 014647) mice were
purchased from Jackson Laboratory and bred in the NDSU animal facility. The p53-LSL-
R172H line was established through cryo-recovery using cryo-embryos from the Frederick
National Laboratory for Cancer Research (01XAF, B6.129S4-Trp53 < tm2Tyj) [45]. Three lines
were bred at the NDSU animal facility to generate KPC mice. To that end, C57BL/6J (000664)
was purchased from Jackson Laboratory, while NOD-SCID IL2Rgamma null (NSG) mice
were provided by the NDSU Small Animal Core Facility. NSG immunocompromised mice
between four and six weeks of age were housed in individually ventilated cages on a 12-h
light:12-h dark cycle. Under general anesthesia, 1 × 106 PANC-1 cells suspended in 20 ul of
PBS were injected into the tail of the pancreas using a 25-gauge syringe. After 28 days, the
mice were euthanized, and pancreatic tumors were harvested. For the exosome injection
experiment, NSG mice were injected with HPNE or PANC-1 exosomes (1010 exosomes
per injection) intraperitoneally in 100 µL of PBS every other day for three weeks. WT
C57BL/6J mice were injected with KPC exosomes as described above. KTC tumor tissues
were provided by Dr. Kalluri. All animal experiments were reviewed and approved by the
Institute of Animal Care and Use Committee of the North Dakota State University.

2.2. Vascular Leakage

Mice were injected in the retro-orbital venous plexus with 100 µL of 10 mg/mL
FITC-Dextran (2,000,000 MW, Sigma) 5 min before euthanasia. Pancreatic tumors and
normal pancreases were harvested and fixed in 10% neutral buffered formalin. Paraffin-
embedded sections were immunostained for CD31 to visualize the vessels. CD31 and
FITC-Dextran were then visualized directly by fluorescent microscopy under red and
green fluorescent filters. Fluorescent images were taken under 20× magnification, with
at least three tumors/experimental group. Images were quantified using NIH ImageJ
analysis software. The proportion of leaked FITC-Dextran was calculated by subtracting the
intravascular FITC-Dextran from the total FITC-Dextran present on the individual image.

Total FITC-Dextran (%)—FITC-Dextran within vessels (%) = leaked FITC-dextran.

2.3. Immunofluorescence Staining

Pancreatic tumors and normal pancreas tissues were harvested from mice, fixed
in 10% neutral buffered formalin, embedded in paraffin and sectioned into 5 µm-thick
sections. For antigen retrieval, these sections were deparaffinized, rehydrated and heated
in TE buffer (pH 9.0) at 95◦ for 30 min (EZ Retriever microwave, BioGeneX; Fremont,
CA, USA. For αSMA and Desmin staining, sections were blocked with M.O.M. mouse
IgG blocking reagent (Vector Laboratories; Burlingame, CA, USA) for 1 h. Sections were
incubated with mouse anti-αSMA antibody (1:400, Sigma; Saint Louis, MO, USA and
mouse anti-Desmin antibody (1:50, Invitrogen; Waltham, MA, USA) overnight at 4 ◦C,
followed by incubation with biotin-conjugated anti-mouse IgG (Vector Laboratories) for
10 min. For all other staining, sections were heated for antigen retrieval in 10 mM citrate
buffer at pH 6.0 at 95◦ for 15 min before blocking for 1 h with 4% cold water fish gelatin
(CWFG) in phosphate-buffered saline w/Tween 20 (PBST) at room temperature. Following
blocking, sections were incubated with rat anti-CD31 (1:100, Dianova; Hamburg, Germany),
α-smooth muscle-FITC conjugated (1:500, Sigma), rabbit anti-CA9 (1:000, Invitrogen),
rabbit anti-PDGFRB (1:100, Invitrogen) or rat anti-CK8 (1:50, DSHB; Iowa City, IA, USA) at
4 ◦C overnight. For fluorescent visualization of these antibodies, the secondary antibody
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used was: Streptavidin, Alexa Flour™546 conjugated (1:250, Invitrogen), Cy5™ anti-rat
IgG (1:250, Invitrogen) or Alexa Flour™546 anti-rabbit IgG (1:250, Invitrogen), which
was incubated for 1 h at room temperature. Slides were mounted using Fluoroshield™
mounting media with DAPI to label nuclei. Antibody positivity was analyzed in 5–8 visual
fields at 20× magnification for all staining.

FFPE human TMA blocks were deparaffinized and rehydrated before antigen retrieval
in heated TE buffer (pH 9.0) for 30 min. Each TMA section was sequentially stained for
different primary antibodies. Each round of staining included a blocking step with 4%
CWFG in PBST followed by primary antibody incubation and a corresponding secondary
HRP-conjugated polymer (SuperPicture, Invitrogen). Each HRP-conjugated polymer medi-
ated the covalent binding of a different fluorophore (FITC, Cy3 and Cy5) using Tyramide
Signal Amplification (PerkinElmer). This covalent reaction was followed by additional
antigen retrieval in heated citric acid buffer (pH 6.0) for 15 min to remove bound antibodies
before the next step in the sequence, which allows for the use of multiple primary antibod-
ies with the same species origin. After sequential reactions, sections were counterstained
with DAPI (Life Technologies; Carlsbad, CA, USA) and mounted with VECTASHIELD
Antifade Mounting Medium (Vector Laboratories). The primary antibodies used for this
protocol were: rabbit anti-CA9 (1:1000, Invitrogen), rabbit anti-CD31 (1:4000, Bethyl Labora-
tories; Montgomery, TX, USA), anti-αSMA (1:2000, Sigma) and anti-Desmin (1:600, Abcam;
Waltham, MA, USA).

2.4. Colocalization Analysis of Pericyte Coverage

Images of four-color immunolabeled sections from experimental groups were sub-
jected to colocalization analysis. In this process, overlapping areas between CD31 (endothe-
lial cells) and αSMA (pericytes) or CD31 (endothelial cells) and Desmin (pericytes) were
measured in ImageJ software using colocalization application. Overlapping of pericyte
marker-expressing cells with CD31+ cells indicates physical contact between pericytes and
endothelial cells. Large vessels associated with αSMA-expressing smooth muscle cells that
wrap around the vessels horizontally were excluded from the imaging and quantification if
they remained on the images.

2.5. Human Patient Samples

Human PDAC tissue microarrays were purchased from Biomax.us (T 144a, T142c and
PA482). PDAC tissues and normal pancreatic tissues were subjected to immunofluorescent
staining using the TSA system described above.

2.6. Ang2 ELISA

Blood samples were collected in EDTA-containing tubes and spun down for 20 min
at 2000 g and 4 ◦C. Plasma was collected and stored at −80 ◦C until use. Serial dilutions
of plasma samples were tested for the optimal protein concentration. Plasma was diluted
in the sample diluent buffer provided with the Angiopoietin-2 Mouse ELISA Kit (Abcam,
ab171335), and the ELISA was performed following the manufacturer’s directions.

2.7. Cell Culture

Cancer cells. PANC-1 was obtained from ATCC and cultured in high-glucose DMEM
supplemented with 10% FBS and 1% penicillin-streptomycin. KPC 689 cells were kindly
provided by Dr. Kalluri (MD Anderson Cancer Center, Houston, TX, USA) and cultured in
RPMI supplemented with 10% FBS, 10 mM HEPES and 1% penicillin-streptomycin. HPNE
was obtained from ATCC and cultured in high-glucose DMEM supplemented with 10%
FBS, 1% penicillin-streptomycin and 0.75 ug/mL puromycin.

Primary Cells. Human pericytes from placenta (C-12980 hPC-PL, PromoCell; Hei-
delberg, Germany ) were cultured in pericyte growth medium containing PromoCell
SupplementMix (PromoCell; C-28041). HUVECs (PromoCell, C-12200) were cultured in en-
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dothelial cell basal Medium 2 containing PromoCell SupplementPack (PromoCell C-22110).
Primary cells were only used up to passage six for the experiments.

2.8. Quantitative Real-Time PCR Analyses

Cells were lysed using TRIzol®Reagent (Invitrogen), and the total RNA was extracted
using a Direct-zol RNA MiniPrep Kit according to the manufacturer’s instructions. Each
RNA sample was prepared in triplicate, and qPCR reactions were run with technical
triplicates. We used 1 µg of total RNA to synthesize cDNA using the High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems; Waltham, MA, USA). Gene ex-
pression was determined using the QuantStudio 3 Real-Time PCR System and Power
SYBR Green PCR Master Mix (Applied Biosystems). Measurements were standardized to
the housing-keeping gene (beta-2-microglobulin, B2M) or PECAM1 for endothelial cells.
Primer sequence information is listed in Table S1.

2.9. Exosome Isolation and Quantification

PANC-1, HPNE and KPC cells were cultured in their respective media supplemented
with 10% exosome-depleted FBS (Invitrogen) for exosome isolation. Once cells were grown
sub-confluent, the medium was changed to contain exosome-free serum and cultured for
an additional 48 h. Culture supernatant was subjected to sequential centrifugation steps at
800 g for 5 min and 2000 g for 10 min, then filtered with 0.2 mm filters. The filtrate was
subjected to ultracentrifugation at 28,000 rpm using an SW 28 Ti swinging bucket overnight
to collect exosomes. The supernatant was aspirated, and the pellet was resuspended in
PBS. The purified exosomes were then analyzed for quantity and size using NanoSight and
used for experimental procedures.

2.10. Visualization of Exosomes in Cells

Exosomes isolated from HPNE and PANC-1 cells were resuspended in 1 mL PBS, and
2 µL (1:500) DiO’; DiOC18(3) dye was added. The thoroughly mixed solution was incubated
at 37 ◦C for 5 min and then at 4 ◦C for 10 min. The mixture was ultracentrifuged for 2 h and
the pellets were resuspended in PBS. Labeled exosomes were added to pericytes cultured
on glass coverslips for 2 h. The cells were visualized for green fluorescence (exosomes) and
bright-field (cell morphology) using a ZOE Fluorescent Cell Imager (Bio-Rad; Hercules,
CA, USA).

2.11. Exosome Treatment for Cultured Cells

For the exosome treatment experiment, hPCs or hECs (HUVECs) were cultured in a
six-well plate coated with attachment factor protein (GibcoTM). For each well, 150,000 cells
were seeded except when hPC was co-cultured with either HUVEC or KPC-689 cancer cells,
in which case, 75,000 cells of each line were seeded together. For each experimental group,
wells were triplicated. Once cells reached 70% confluency, the medium was replaced with
basal medium for starvation. After 6 h, cells were treated with 2 × 109 exosomes per well
for 24 h, then harvested for total RNA extraction. For immunocytochemistry of pericytes
treated with exosomes, cells were washed with cold PBS and incubated with 4% PFA at
room temperature for 15 min. The cells were then washed with PBS, incubated with 0.05%
Triton X-100 for 10 min, washed with PBS and stained with mouse anti-α-smooth muscle
actin—FITC antibody (1:500, Sigma) and Alexa Fluor™ 594 Phalloidin. The coverslips were
then mounted onto glass slides with mounting media containing DAPI. Images were taken
with a Zeiss Axio Scope A1 upright compound microscope. The maximum Feret’s diameter,
roundness and aspect ratio were measured by ImageJ software. Individual images captured
5–10 cells, and five images per well were used for quantification.

2.12. Atomic Force Microscopy

The cell imaging and spectroscopy measurements were conducted using a commercial
AFM (NT-MDT NTEGRA) with an optical viewing system and V-shaped silicon nitride
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AFM probes as previously described [46]. Briefly, we used a cantilever with a spring
constant of 0.08 N/m and tip face angle of 35◦ (Nanoworld; Neuchâtel, Switzerland). The
cantilever spring was calibrated by the thermal noise fluctuation methods [47] and the
deflection sensitivity of each tip was calibrated by force-distance curve measurements on
the bare glass area of the petri dish. At least seven cells were randomly selected for all
imaging and other force measurements. The scanning resolution was 256 × 256 pixels
with a scan rate of 0.1–0.5 Hz, depending on the scanning areas of irregular cell size. The
acquired images were flattened, if required, to eliminate the background noise and tilt
from the surface using all unmasked portions of scan lines to calculate the individual
least-squares fit polynomials for each line.

2.13. Stiffness and Adhesion Measurements

The relative cell stiffness (Young’s modulus E) and cell surface adhesion were extracted
from force-distance (FD) curves as described previously [46]. The FD curves were obtained
on the central cytoplasmic region of the cell surface. The approaching and retracting rates
of the probe were 1 µm/s for all measurements. To prevent cell damage and eliminate
potential substrate effects, force measurements were performed with a shallow indentation
depth of cells (400 nm). Young’s modulus was determined by fitting the FD curves to
the Hertz model [46,48–50]. The FD curve measurements typically involve non-specific
adhesion between the macromolecules on the cell surface and the AFM probe tip. During tip
retraction from the cell surface, the detachment force (adhesion force) required to separate
the tip from the macromolecules on the cell surface was determined from a rupture event in
a sawtooth-like pattern. The adhesion force was determined as the difference between force
values at the zero-force line of the FD curve and at the negative minimum of the FD curve.

2.14. Nanoparticle Tracking Analysis

The size distribution and concentration of exosomes were determined by nanoparticle
tracking analysis (NTA) using the NanoSight NS300 system (Malvern Panalytical Ltd.,
Malvern, UK). The exosome samples were diluted 1000-fold in PBS for NTA measurements.
The samples were infused with the syringe pump at a constant speed of 20 into the
microfluidic flow cell equipped with a 53- nm laser and a high-sensitivity scientific CMOS
camera. At least three videos per sample were recorded with the camera level of 11–13 for
30 s at 25 ◦C. All data were analyzed using NTA software (version 3.4; Malvern Panalytical
Ltd., Malvern, UK) with a detection threshold of 5.

2.15. Statistical Analysis

n corresponds to the number of animals; N corresponds to the number of independent
experiments performed for qRT-PCR. In correlation plots, individual values from each
image were plotted. From each tumor (animal), 5–10 images were used for the analysis. For
comparison between two groups with one grouping variable, Student’s unpaired two-tailed
t-test was used. To compare multiple groups with one grouping variable, one-way ANOVA
with multiple comparisons and Tukey’s correction was performed. To compare multiple
groups with two grouping variables, two-way ANOVA with Šídák’s multiple comparisons
test was used. Statistical analysis was performed using Prism 9 (version 9.0.1; GraphPad
software, San Diego, CA, USA). Data were averaged and expressed with means ± SEM
and values of p < 0.05 were considered statistically significant.

3. Results
3.1. PDAC-Associated Pericyte Exhibits Ectopic αSMA Expression

Pericyte coverage is critical for vascular structure and function, and its significant het-
erogeneity has been studied in several solid tumors. However, comprehensive perivascular
phenotyping has not been investigated in PDAC despite the severely compromised vas-
cular functionality. Therefore, we investigated perivascular landscaping in PDAC tumors
using various mouse models for PDAC and TMAs constructed using resected tumors of
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PDAC patients. Tumor tissues from two GEMMs, KPC and KTC, and three orthotopic
models, PANC-1, MiaPaCa-2 and HPAF-II, were stained for CD31(endothelium), αSMA
and Desmin (Figure 1 and Figure S1A,B,D,E). For KPC and PNAC-1 tumors, tissues were
also stained for CK8 to identify cancer cells (Figure S2). To exclude non-perivascular mes-
enchymal cells such as tumor-associated fibroblasts that express the same markers, we only
quantified perivascular cells physically attached to the endothelium using a co-localization
function of ImageJ software. One of the most prominent changes, when compared to the
normal pancreas tissues, was the ectopic expression of αSMA in tumor-associated peri-
cytes across all PDAC tumor tissues. Up to ~73% of vessels were associated with αSMA+

pericytes in murine models of PDAC, which is 13 times higher than that of the normal pan-
creas (Figure 1A,B,D and Figure S1A,B). Similarly, 22% of vessels were covered by αSMA+

pericytes in human PDAC tumors, which is about 2.5 times higher than normal pancreatic
vessels (Figure 1C,E). As previously reported [16], a significant portion of pancreatic neu-
roendocrine tumor (PNET) vessels were also covered by αSMA+ pericytes (Figure S1C,F).
αSMA immunostaining on KPC tumors at different stages shows the progressive appear-
ance of αSMA+ pericytes, with strong perivascular localization on capillaries at 14 weeks
(Figure S3A,B). Notably, αSMA + pericytes were present on a small fraction of vessels
associated with PanIN lesions, whereas most, if not all, vessels within adjacent healthy
tissue were not associated with αSMA+ pericytes (Figure S3A,C). A similar phenotypic shift
across different PDAC models indicates that these cells might be undergoing molecular
phenotype changes in response to stimulation in the TME. This result suggests that ectopic
αSMA expression defines the pathological phenotype of PDAC-associated pericytes.

3.2. Perivascular Phenotype Shift Is Correlated with Vascular Integrity/Function

Pericytes are a critical component of intact vasculature for intercellular communication
and structure. Therefore, we next characterized the structural and functional competence
of PDAC tumor vessels using KPC and PANC-1 orthotopic tumor models. We injected
2000 kDa FITC-Dextran retro-orbitally into 20-week-old tumor-bearing KPC mice and
age-matched healthy WT mice and let FITC-Dextran circulate for 5 min before tumors were
harvested. As 2000 K FITC-Dextran cannot extravasate intact blood vessels, the presence
of FITC-Dextran in tumor tissue outside of the blood vessels indicates leaky vasculature.
Of the entire FITC signal detected per each image of the KPC tumor, more than 60% was
outside the vessels, whereas most of the FITC signal was detected within the vessels in case
of normal pancreatic tissue, indicating healthy intact vessels (Figure 2A,B). Leaky vascu-
lature leads to insufficient oxygen delivery, thus inducing a hypoxic tumor environment.
So, we stained healthy pancreas and KPC tumor tissues with carbonic anhydrase 9 (CA9),
indicative of hypoxia. While normal pancreatic tissues showed no detectable CA9 signal,
~25% of KPC tumor tissues were hypoxic (Figure 2C,D). A similar result in the hypoxic
area was also observed in PANC-1 orthotopic tumors (Figure S4A,B). In human PDAC,
both the αSMA+ pericyte coverage and CA9+ hypoxic area were significantly higher in
stage-III than stage-I tumors, suggesting progressive deterioration of tumor vasculature
over time (Figure S4C). Although the PDAC tumors presented significantly higher hypoxia,
the overall microvascular density (MVD) showed no differences between the healthy pan-
creas and PDAC tumors, indicating that hypoxia is due to the quality of vessels rather than
their quantity (Figure 2E,F). Overall, vascular leakiness, measured by FITC-Dextran, was
significantly correlated with tumor hypoxia and αSMA+ pericyte coverage (Figure 2G,H).
The αSMA+ pericyte coverage was also correlated with tumor hypoxia (Figure 2I). This re-
sult strongly supports our hypothesis that ectopic αSMA expression confers a pathological
phenotype to PDAC-associated pericytes.
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Figure 1. PDAC-associated pericytes exhibit aberrant molecular phenotype. (A) Representative
images of FFPE sections of KPC and PANC-1 tumors, and healthy pancreas tissues immunolabeled for
CD31 and αSMA. Sections are counterstained with DAPI (blue) to visualize nuclei. (B) Representative
images of H&E stained KPC and PANC-1 tumors, and healthy pancreas tissues. Scale bar: 200 µm.
(C) Representative images of FFPE tissue microarray sections from normal human pancreas and PDAC
tumors immunolabeled for CD31 and αSMA or H&E-stained. Scale bar: 100 µm. (D) Quantification
of percentage of CD31+ vessels associated with αSMA+ pericytes (WT n = 4, KPC n = 7 and PANC-1
ortho tumors n = 3). One-way ANOVA with Dunnett’s multiple comparisons was used to determine
statistical significance. (E) Quantification of percentage of CD31+ vessels associated with αSMA+

pericytes (healthy pancreas n = 3, PDAC n = 4). Unpaired two-tailed t-test was used to determine
statistical significance. Scale bar: 100 µm; apply to all images. Unless otherwise stated, the data are
represented as the mean ± SEM. * p < 0.05, ** p < 0.001, *** p < 0.0001.
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Figure 2. αSMA+ pericytes’ coverage is significantly correlated with vessel leakiness and hypoxia.
(A) Representative images of FFPE sections of KPC tumors and healthy pancreas immunolabeled for
CD31. Tissue sections were also visualized using perfused 2000-kDa FITC-dextran in the indicated
groups. Sections are counterstained with DAPI (blue) to visualize nuclei. (B) Quantification of
percentage of FITC-dextran leaked to the tissue (n = 3, all groups). (C) Representative images of FFPE
sections of KPC tumors and healthy pancreas. Sections were immunolabeled for carbonic anhydrase
9 (CA9; hypoxia) and CD31. (D) Quantification of percentage of hypoxic area (CA9+ area per image)
(n = 3, all groups). (E) Representative images of KPC and PANC-1 tumors, and healthy pancreas
tissues stained for CD31. (F) Quantification of MVD (WT n = 4; KPC and PANC-1 ortho-tumors
n = 3). One-way ANOVA with Dunnett’s multiple comparisons was used to determine statistical
significance. (G) Correlation of FITC-dextran leakage and hypoxic area (n = 6). (H) Correlation of
FITC-dextran leakage and percentage of αSMA+ pericyte-covered vessels (n = 6). (I) Correlation of
hypoxic area and αSMA+ pericyte-covered vessels (n = 6). Pearson’s r correlation coefficient and
significance levels are presented. Scale bar: 100 µm; apply to all images. Unless otherwise stated, the
data are represented as the mean ± SEM, and an unpaired two-tailed t-test was used to determine
statistical significance. ** p < 0.01, *** p < 0.001, ns = not significant.

3.3. Desminlow/αSMAhigh Phenotype Is Correlated with Vessel Leakiness and Hypoxia

Our previous breast cancer study showed that the ratio of different markers is indica-
tive of pericyte characteristics and functionality. In particular, a high Desmin+/PDGFRβ+

ratio was correlated with better patient outcomes for those who received specific neoadju-
vant therapy [23]. We also investigated the pericyte phenotype in which the ratio between
αSMA and Desmin was quantified. In the case of PDAC tumors, the percentage of ves-
sels covered by Desmin+ pericytes was reduced by 50% compared to that of the healthy
pancreas (Figure 3A,B). Overall, the Desmin+ pericyte coverage was inversely correlated
with vessel leakiness, hypoxia and the αSMA+ pericyte coverage (Figure 3C,D). A decrease
in Desmin+ pericytes and an increase in αSMA+ pericytes resulted in an up to 10 times
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lower Desmin+/αSMA+ ratio in murine PDAC tumor models and four times lower in
human PDAC tumors (Figure 3F). These data suggest that a perivascular phenotype shift
from Desminhigh/αSMAlow to Desminlow/αSMAhigh contributes to the overall quality of
the tumor vasculature, leading to significantly leaky vessels associated with the hypoxic
tumor microenvironment.
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Figure 3. Desminlow/αSMAhigh phenotype is correlated with vessel leakiness and hypoxia. (A) Rep-
resentative images of FFPE sections of KPC and PANC-1 tumors, and healthy pancreas immuno-
labeled for Desmin and CD31. Sections are counterstained with DAPI (blue) to visualize nuclei.
(B) Quantification of percentage of CD31+ vessels associated with Desmin+ pericytes. (WT n = 4;
KPC and PANC-1 ortho-tumors n = 3). One-way ANOVA with Dunnett’s multiple comparisons
was used to determine statistical significance. (C) Correlation of FITC-dextran leakage and Desmin+

pericyte-covered vessels (n = 6). (D) Correlation of hypoxic area and Desmin+ pericyte-covered
vessels (n = 6). (E) Correlation of Desmin+ pericyte and αSMA+ pericyte-covered vessels (n = 10).
Pearson’s r correlation coefficient and significance levels are presented. (F) The ratio of Desmin+

pericyte and αSMA+ pericyte per each tissue section was compared between the healthy pancreas
and PDAC tumors for both murine models and humans. (G) Plasma Ang2 level was compared
between KPC tumor-bearing mice and healthy mice using the Ang2 ELISA kit. Unpaired two-tailed
t-test was used to determine statistical significance. Scale bar: 100 µm; apply to all images. Unless
otherwise stated, the data are represented as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001.
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The underlying mechanism that controls the dynamic switching of the pericyte molec-
ular signature is largely unknown. We have previously shown that the Ang2 level correlates
with the pericyte phenotype, in which lower Ang2 results in a more mature and stable
pericyte phenotype (Desminhigh/PDGFRβlow). When we measured the plasma Ang2 level
by ELISA, orthotopic KPC tumor-bearing mice showed increased circulating Ang2 com-
pared to healthy mice (Figure 3G). This finding partly explains the Desminlow/αSMAhigh

pericyte phenotype in PDAC. However, while a high Ang2 level might contribute to the
Desminlow phenotype, the cause of ectopic αSMA expression needs further elucidation.

3.4. PDAC Cell-Derived Exosomes Manipulate the Pericyte Phenotype and Influence the Quality of
the Tumor-Associated Vasculature

To understand the underlying mechanism of ectopic αSMA expression in PDAC-
associated pericytes, we established an endothelial cell (hEC; HUVEC)/pericyte co-culture
(hPC; hPC-PL) system and analyzed the gene expression profile of a pericyte on exposure
to environmental factors. We exposed pericytes to various conditions such as physical
contact with cancer cells or hECs, hypoxia, changes in media composition, cancer cell-
conditioned medium or cancer cell-derived exosomes. The gene expression profile and
basal gene expression level of both hEC and hPC were established before exposure to
external factors (Figure S5A). Of note, PECAM1 was exclusively expressed by hEC while
all pericyte markers, CSPG4, PDGFRB, DES and ACTA2, were only within a detectable
range in hPC. This finding confirms the cellular identity and rules out the possibility of
these markers being expressed by endothelial cells in the co-culture system.

First, we co-cultured hPC with either hECs or murine PDAC cells (KPC689) and
measured the relative expression levels of αSMA and Desmin (Figure 4A). While there
was no significant difference in Desmin expression, co-culture with KPC 689 stimulated
αSMA expression. hPC co-cultured with hEC showed significantly lower and barely de-
tectable αSMA expression. PDAC TME is extremely hypoxic, and KPC tumor-bearing
mice exhibited a significantly high level of Ang2, which is also known to be induced
by hypoxia. Thus, we compared the αSMA expression when pericytes were cultured in
hypoxic or normoxic conditions (Figure 4B). Interestingly, αSMA expression was signifi-
cantly reduced by a hypoxic environment. While hypoxia is a potent environmental factor,
influencing several aspects of cancer cells and TME, this result might indicate that the
pericyte phenotype conversion requires a more direct molecular signal from either cancer
cells or other stromal cells. To measure the overall effects of pancreatic cancer cells on the
vasculature without physical contact, hPC and hEC were co-cultured with a culture insert
where pancreatic cancer cells were grown as a monolayer on the surface of the membrane
(Figure 4C). Both cancer cell lines, KPC689 and PANC-1, could induce αSMA expression in
pericytes even without physical contact, suggesting the effect is via extracellular secretion
from cancer cells.
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Figure 4. Pericytes’ phenotype is influenced by pancreatic cancer cells. (A–C) Quantification of
ACTA2 expression when pericytes are cultured in various conditions. (A) hPC was culture alone,
with hEC (HUVEC), or KPC 689 cancer cells. (B) hPC was cultured in either a normoxic or hypoxic
condition. (C) hPC and hEC were co-cultured at the bottom of a culture insert, and cancer cells (KPC
or PANC-1) were cultured on the culture insert. (D,E) Either hPC alone or a hPC + hEC co-culture
was treated with PBS, HPNE Exo or PANC-1 Exo. ACTA2 (D) and DES (E) expression levels were
measured by qRT-PCR after exosome treatment. (F) Quantification of pericyte marker gene expression
of hPC treated with HPNE Exo or PANC-1 Exo. (G) Quantification of endothelial cell gene expression
of hEC treated with HPNE Exo or PANC-1 Exo. Endothelial gene expression was normalized by
PECAM1. One-way ANOVA with Tukey’s multiple comparisons test was used for (A,C–E), unpaired
two-tailed t-test was used for (B) and two-way ANOVA with Šídák’s multiple comparisons test
was used for (F,G) to determine statistical significance. N = 3 for all experiments and the data are
represented as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.00, **** p < 0.000, ns = not significant.

Considering this result, we next investigated the effect of PDAC cancer cell-derived
exosomes on αSMA expression in pericytes. Exosomes are known to be representative
of their cell of origin and act as mediators of intercellular communication in health and
disease [51,52]. Exosomes were isolated from PANC-1 and KPC 689, and HPNE cells were
used as a control via a standard ultracentrifugation procedure. The quantity and size
distribution of exosomes were measured by Nanosight (Figure S5B). Exosome uptake by
pericytes was confirmed by fluorescently labeled exosomes inside the pericytes (Figure S5C).
Either hPC alone or a hPC + hEC co-culture were starved in basal media for 6 h and treated
with exosomes for 24 h. While PBS and HPNE exosomes (HPNE Exo) showed minimal to
no effects on the gene expression pattern, PANC-1 exosomes (PANC-1 Exo) induced αSMA
expression that was significantly greater than for control groups (Figures 4D and S5D).

In accordance with the previous observation (Figure 4A), induction of αSMA expres-
sion by PANC-1 Exo was suppressed in the presence of endothelial cells (hPC + hEC
co-culture, Figure 4D), suggesting that physical contact with endothelial cells stabilizes the
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pericyte phenotype. The same phenomenon was observed when the hPC + hEC co-culture
was treated with KPC 689 exosomes (KPC Exo) (Figure S5E,F). While the PDAC exosome
induced a slight increase of Desmin expression (Figure 4E), significantly higher αSMA
expression skewed the overall phenotype to Desminlow/αSMAhigh, resembling the PDAC
pericyte phenotype. Of note, PANC-1 Exo treatment led to mild induction of the other
pericyte markers’ expression except for Rgs-5 (Figure 4F). Interestingly, Col4a1 expression
was noticeably increased by PANC-1 Exo compared to the control (Figures 4F and S5D). To
assess the effect of PDAC exosomes on the endothelial cell phenotype, hEC was treated
with either HPNE or PANC-1 Exo. However, only mild changes in PECAM1 and RGS5
were observed (Figure 4G), suggesting pericytes are more susceptible to environmental
changes than endothelial cells.

3.5. Biomechanical Properties of Pericyte Are Affected by PDAC-Exo Treatment

Pericytes are a critical component of intact vasculature for intercellular communication
and structure. αSMA is a cytoskeletal protein, and considering the significant increase
of αSMA expression on exposure to PDAC exosomes, we investigated the biomechanical
properties of pericytes with an altered phenotype. First, we measured the atomic force
microscopy (AFM)-based stiffness of pericytes treated with HPNE Exo or PANC-1 Exo
according to a previously established protocol [46]. Pericytes were cultured sparsely in
35-mm glass-bottom tissue culture dishes, and AFM measurements were obtained. Changes
in cell stiffness (Young’s modulus E) were measured over the nuclear region of the cells in
the medium. The cells were imaged using a silicon nitride AFM tip and indented by the
cantilever to obtain the force-distance (FD) curves.

Our data show a significant increase in cellular stiffness on treatment with PANC-1
Exo (Figure 5B). Moreover, the cross-sectional analysis of AFM images along the central
cytoplasmic region of the cell revealed that the cell body increases in height after exposure
to PANC-1 Exo (Figure 5B). This result was consistent with stiffness changes in pericytes,
reflecting that the alteration to the cell morphology was coupled with changes in the
cytoskeleton structure induced by PANC-1 Exo treatment. The changes in cellular height
and cytoskeleton structure are well represented in AFM images (Figure 5A). In addition, the
detachment force required to separate the tip from the macromolecules on the cell surface
during the FD curve measurements was used to determine the adhesion force of pericytes
on exosome treatment. PANC-1 Exo-treated pericytes exhibited significantly less adhesion
force (Figure 5B). To visualize cellular morphology changes and cytoskeletal arrangement,
we immunostained exosome-treated pericytes for αSMA and phalloidin (Figure 5C). As we
noted that PANC-1 Exo-treated pericytes were significantly stretched out, with prominent
αSMA expression, we measured the cells’ maximum Feret diameter, roundness and aspect
ratio (Figure 5D). Both the maximum Feret and aspect ratio were significantly increased
when cells were treated with PANC-1 Exo compared to HPNE-Exo, whereas the roundness
was decreased.
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Figure 5. Biomechanical properties of pericytes are significantly influenced by cancer cell-derived
exosomes. Force spectroscopy was performed on HPNE Exo- or PANC-1 Exo-treated pericytes (hPC)
using AFM. (A) Representative AFM images showing the morphological changes in hPC on treatment
with exosomes. Scale bar: 20 µm. (B) Young’s modulus E and the adhesion force were obtained from
the force-distance measurements on the cell surface. Cross-sectional analysis of AFM images was used
to measure the cell height after treatment with either HPNE Exo or PANC-1 Exo. (C) Representative
images of exosome-treated hPC stained with Phalloidin and anti-αSMA Ab. Cells are counterstained
with DAPI (blue) to visualize nuclei. Scale bar: 50 µm. (D) Morphological differences were measured
by the max Feret, roundness and aspect ratio using ImageJ software. Unpaired two-tailed t-test was
used to determine statistical significance and the data are represented as the mean ± SEM. * p < 0.05,
** p < 0.01, **** p < 0.000.

3.6. PDAC Cell-Derived Exosomes Are Sufficient to Induce αSMA Expression and Affect Vascular
Integrity in Vivo

In vitro, PDAC cell-derived exosomes induced robust αSMA expression in the peri-
cytes and affected the molecular, morphological and biomechanical properties. However,
pericytes are part of blood vessels and have various functions together with endothelial
cells, including mutual support. Thus, we sought to test if PDAC exosomes are sufficient to
induce the αSMA expression in the pericytes of a normal pancreas in vivo. Exosomes from
PANC-1 or HPNE cells were prepared and quantified by nanoparticle tracking analysis
as described previously. To that end, 1 × 1010 exosomes suspended in 100 uL PBS were
injected per mouse (WT NSG mice) every other day for four weeks, i.p. We did not note
any histological changes in the pancreas or gross morphological changes in the blood
vessels. However, αSMA expression in capillary-associated pericytes was significantly
increased (Figure 6A,B). To investigate the functional consequence of αSMA-expressing
pericytes on the vascular integrity, FITC-Dextran was injected right before collecting the
pancreases. As indicated by the presence of the FITC signal within the tumor tissue outside
of the vessels (Figure 6A,C), changes in the pericyte phenotype significantly increased the
vascular leakiness in a normal pancreas, indicating that PDAC exosomes are sufficient to
alter the pericyte phenotype in TME. The overall proportions of αSMA+ pericyte coverage
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and vessel leakiness were positively correlated (Figure 6D), confirming ectopic αSMA
expression as a significant contributor to the pathological pericyte phenotype.
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Figure 6. PDAC exosome is sufficient to induce pericyte αSMA expression and vascular leakiness
in vivo. Immunodeficient NSG mice (non-tumor-bearing) were injected with either HPNE Exo or
PANC-1 Exo every other day for four weeks, i.p. Mice were perfused with FITC-Dextran to measure
permeability. Pancreatic tissues were stained for CD31 and αSMA. Leaked Dextran was visualized by
FITC. (A) Representative images of pancreatic tissues from exosome-treated animals stained for CD31
and αSMA. (B) Quantification of percentage of CD31+ vessels associated with αSMA+ pericytes
(HPNE Exo n = 6 mice; PANC-1 Exo n = 6 mice). (C) Quantification of percentage of FITC-Dextran
leaked to the tissue (n = 6, all groups). (D) Correlation of FITC-Dextran leakage and αSMA+ pericyte-
covered vessels. Pearson’s r correlation coefficient and significance levels are presented (n = 12).
Unpaired two-tailed t-test was used to determine statistical significance and the data are represented
as the mean ± SEM. Scale bar: 100 µm; * p < 0.05.

3.7. PDAC Exo-Treated αSMA+ Pericytes Exhibit Immunomodulatory Phenotype

Immune cell trafficking is a highly selective process that is tightly regulated by en-
dothelial cells and pericytes via adhesive interactions [41,42]. Aberrant pericyte phenotypes
have been linked to the pathological function of blood vessels, including an immunosup-
pressive environment [53,54]. However, pericyte-mediated immunoregulatory effects have
not been studied in PDAC. Thus, we also examined whether αSMA-expressing pericytes
exhibit an immunomodulatory phenotype. Either HPNE Exo- or PANC-1 Exo-treated
hPCs were analyzed for their immune-related gene expression by qRT-PCR. PANC-1 Exo-
treated pericytes expressed significantly higher CD80, CD86, HLA-DRA and CD274, all
immunoregulatory molecules. In addition, adhesive molecules such as E-selectin and
P-selectin were significantly upregulated (Figure 7A). In the case of endothelial cells, P-
selectin and ICAM-1 were significantly upregulated, representing an activated endothelial
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cell status (Figure 7B). Interestingly, CD274 was downregulated in PANC-1 Exo-treated
endothelial cells. This result suggests that pathological pericytes represented by ectopic
αSMA expression exhibit structural defects and altered immunoregulatory features.
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Figure 7. PDAC exosome-treated vascular cells acquired immune-related gene expression. Quan-
tification of immunomodulatory and cell adhesion gene expression by (A) hPC or (B) hEC when
treated with either HPNE Exo or PANC-1 Exo. Two-way ANOVA with Šídák’s multiple comparisons
test was used to determine statistical significance and the data are represented as the mean ± SEM.
* p < 0.05, ** p < 0.01, *** p < 0.00, **** p < 0.000, ns = not significant.
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4. Discussion

Accumulating evidence suggests that subpopulations of tumor pericytes undergo
pathological phenotype switching induced by altered gene expression [24,34]. To gain
insight into comprehensive perivascular phenotyping in PDAC, we examined the per-
icyte phenotypes of several mouse models and the human TMA of PDAC. Our study
revealed that a significant portion of tumor vessels are covered by αSMA+ pericytes. We
found the coverage was up to 73%, which is 13× higher than that of the normal pan-
creas (Figures 1 and 2), implicating phenotype conversion during tumor progression. In
addition, the αSMA+ pericyte coverage was significantly correlated with tumor hypoxia
and vascular leakiness. While αSMA has been widely used as a pericyte marker, ectopic
expression of αSMA in capillary pericytes [33] is known to confer a vascular smooth muscle
cell (vSMC)-like phenotype [34,35]. A recent scRNA-seq study confirmed that normal
brain pericytes do not express αSMA, and the absence of specific vSMC genes is the best
way to define normal pericytes [32,55–57]. In brain pericytes, acquired αSMA expression
correlates with conversion to a contractile arterial SMC (aSMC) phenotype, conferring
disease-promoting properties [34]. These results strongly suggest that pericyte presence
alone is not indicative of vascular maturity. In fact, pathological pericytes might do more
harm than good for normal vascular function, which potentially leads to accelerated tumor
progression and metastasis.

Despite the universal abnormalities of tumor-associated pericytes across tumor types,
pericyte phenotypes vary in different tumors [24]. Pericytes are often identified by sets of
molecular markers, but their expression pattern can be dynamic during development or
disease progression [58]. In addition, different molecular subtypes of breast cancer, such
as triple-negative breast cancer (TNBC) and luminal types, present strikingly different
perivascular landscapes [23]. This evidence suggests that the perivascular landscape either
results from an intrinsic property of the cancer cells or is influenced by the specific type
of TME. Our effort to find the cause of the Desminlow αSMAhigh PDAC pericyte pheno-
type revealed that cancer cell-derived exosomes can induce significant αSMA expression
in pericytes (Figure 4), suggesting the perivascular landscape is instructed by evolving
cancer cells. Tumor-derived exosomes significantly influence distant organs to create a
pre-metastatic niche [59], suggesting exosomes are a potent TME influencer. Most studies
of cancer cell-derived exosome effects on stromal cells focus primarily on CAF and immune
cells, and pericytes have yet to be explored in this context.

In addition to the changes in the typical pericyte marker expression, PDAC-Exo-treated
αSMA+ pericytes presented significant expression of immunomodulatory molecules, in-
cluding PD-L1, HLA-DRA, CD86, CD80, E-selectin and P-selectin, which are absent from
normal pericytes (Figure 7). Despite the presence of cytotoxic T cells [60], PDAC is over-
all immune-suppressive, partly due to the impaired activity of these immune cells and
the presence of immune-suppressive cells [30]. Several studies showed that pericytes
are intimately involved in immune cell recruitment, trafficking and activity [41,42]. B16
tumor-derived pericytes induce CD4+ T cell dysfunction or anergy [53]. Excessive VEGF
expression in the TME affects the expression and function of adhesion molecules such as
ICAM-1 and VCAM-1, hampering immune cell extravasation [61]. Studies on vascular
normalization in mouse models of PNET showed that genetic deletion of Rgs-5 changed
the intratumoral pericyte phenotype and enhanced the accumulation of CD8+ T cells after
adoptive transfer [30].

While these results are encouraging and innovative, our data indicate that PDAC
tumor-associated pericytes and PDAC Exo-treated pericytes do not express significant
levels of Rgs-5, emphasizing pericyte heterogeneity across the different types of tumors.
While αSMA expression itself cannot directly explain the acquired immunoregulatory
gene expression, ectopic αSMA expression might represent an unexplored phenotype of
pericytes in PDAC tumors that has acquired an immune-modulatory function. Such an
indirect relationship can potentially be deciphered by using more comprehensive transcript
screening such as single-cell RNA sequencing of PDAC tumor-associated pericytes. PDAC
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Exo also influenced the endothelial cells to a lesser degree, shown with a decrease in
PECAM1 expression (Figure 4) and a significant increase in P-selection and ICAM1, both of
which are indicative of activated endothelial cells. Combinatorial upregulation of CD274,
P-selectin and E-selectin by pericytes might intercept extravasating T cells and negatively
affect their activation and proliferation. The study of such a mechanism will require a
complex co-culture system to examine T cell activity in the presence of tumor pericytes,
along with high-resolution imaging technology to analyze the tumor vasculature in vivo.

αSMA is a cytoskeletal protein that can regulate cell stiffness, migration and down-
stream signaling such as Rec1-mediated signaling [15,62–64]. Our AFM data show a
significant increase in pericyte stiffness and cellular height after exposure to PDAC Exo
(Figure 5). PDAC Exo-treated pericytes also have an elongated morphology and cytoskele-
tal reorganization, as shown by phalloidin staining (Figure 5). Tumor-associated pericytes
are loosely associated with the endothelial cells, with cytoplasmic processes that penetrate
deep into the tumor parenchyma [16]. Perhaps acquired αSMA expression accompanied by
morphological and biomechanical changes might contribute to such an aberrant anatomical
position leading to non-functional or pathological tumor pericytes. Loose attachment
of pathological pericytes will eventually lead to leaky vessels, which induce a hypoxic
environment and increase the interstitial fluid pressure (IFP). Interestingly, a portion of the
pancreatic islet capillary is associated with αSMA+ pericytes, which constrict capillaries
and reduce the blood flow [35]. Blood vessels are constricted and collapsed within PDAC
TME, which may be, at least in part, caused by an abundance of αSMA+ pericytes.

In summary, we have identified a unique perivascular phenotype in PDAC and re-
vealed that the perivascular landscape can be shaped by cancer cell-derived exosomes,
which makes perivascular landscaping one of the intrinsic properties of PDAC. As several
studies have shown, anti-angiogenic approaches to deplete/prune tumor vessels without
extreme caution will likely result in the progression of the disease. Instead, reverting
a pathological phenotype to the normal phenotype might serve as a new vascular nor-
malization approach with long-lasting efficacy when combined with chemotherapy or
immunotherapy. To this end, identifying a unique molecular phenotype or target molecule
of pathological pericytes will be an entry point to introducing a new therapeutic approach
in the future.

5. Conclusions

PDAC TME presents an aberrant pericyte phenotype with high αSMA expression that
can be induced by cancer cell-derived exosomes. A unique αSMA+ pericyte population
presents altered biomechanical properties accompanied by an acquired immunomodulatory
phenotype potentially contributing to hypoxic and immunosuppressive TME of PDAC.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14102448/s1, Figure S1. PDAC-associated pericytes exhibit aberrant molecular
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progressively appear on KPC tumors at different stages, Figure S4. αSMA+ pericytes’ coverage is
correlated with hypoxia in PDAC tumors, Figure S5. Pericytes’ phenotype is influenced by pancreatic
cancer cell-derived exosomes, Table S1. Primer sequences used for qRT-PCR.
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