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Simple Summary: MRI-only simulation in radiation therapy (RT) planning has received attention
because the CT scan can be omitted. For MRI-only simulation, synthetic CT (sCT) is necessary for the
dose calculation. Various methodologies have been suggested for the generation of sCT and, recently,
methods using the deep learning approaches are actively investigated. GAN and cycle-consistent
GAN (CycGAN) have been mainly tested, however, very limited studies compared the qualities
of sCTs generated from these methods or suggested other models for sCT generation. We have
compared GAN, CycGAN, and, reference-guided GAN (RgGAN), a new model of deep learning
method. We found that the performance in the HU conservation for soft tissue was poorest for GAN.
All methods could generate sCTs feasible for VMAT planning with the trend that sCT generated from
the RgGAN showed best performance in dosimetric conservation D98% and D95% than sCTs from
other methodologies.

Abstract: We aimed to evaluate and compare the qualities of synthetic computed tomography
(sCT) generated by various deep-learning methods in volumetric modulated arc therapy (VMAT)
planning for prostate cancer. Simulation computed tomography (CT) and T2-weighted simulation
magnetic resonance image from 113 patients were used in the sCT generation by three deep-learning
approaches: generative adversarial network (GAN), cycle-consistent GAN (CycGAN), and reference-
guided CycGAN (RgGAN), a new model which performed further adjustment of sCTs generated
by CycGAN with available paired images. VMAT plans on the original simulation CT images were
recalculated on the sCTs and the dosimetric differences were evaluated. For soft tissue, a significant
difference in the mean Hounsfield unites (HUs) was observed between the original CT images and
only sCTs from GAN (p = 0.03). The mean relative dose differences for planning target volumes
or organs at risk were within 2% among the sCTs from the three deep-learning approaches. The
differences in dosimetric parameters for D98% and D95% from original CT were lowest in sCT from
RgGAN. In conclusion, HU conservation for soft tissue was poorest for GAN. There was the trend
that sCT generated from the RgGAN showed best performance in dosimetric conservation D98% and
D95% than sCTs from other methodologies.

Keywords: prostate neoplasm; magnetic resonance imaging; synthetic computed tomography; deep
learning; radiotherapy
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1. Introduction

Prostate cancer is the second most common cancer in men and the sixth leading
cause of cancer-related deaths among men worldwide [1]. Radiation therapy (RT) is
one of the most widely utilized local modalities along with surgery and recommended
by various guidelines for the management of prostate cancer [2–4]. The calculation of
radiation dosimetry for RT requires a map of electron densities of the anatomic sites
that are converted from the Hounsfield units (HUs) provided by simulation computed
tomography (CT) [5]. However, due to the unsatisfactory soft tissue contrast on CT scans,
additional magnetic resonance (MR) simulations are commonly performed for accurate
target delineation during RT planning for prostate cancer [6]. Although the quality of target
delineation can be improved by MR imaging (MRI) fused with simulation CT, the process
of co-registration of these images potentially causes systematic errors due to positional
differences between CT and MRI and also due to registration uncertainty [7,8]. Moreover,
additional MR scans increase the patients’ medical expenses and inconvenience as well
as the workload of the medical staff. Considering these problems, RT simulation using
MR alone has been proposed for prostate cancer and various methodologies have been
suggested over several years [9–11].

Since MRI does not provide information regarding electron density, the generation of
synthetic CT images (sCTs) from MRI is an essential process for MR-only simulations [9].
Various methodologies for sCT generation have been suggested and their feasibility has
been evaluated in various studies over the years [10,12]. Particularly, with the recent
emergence of the sCT generation technique based on the deep learning approach, MR-only
simulation methods using neural networks have been developed [11,13–15]. Early investi-
gations regarding sCT generation for RT simulation using deep learning techniques have
focused on RT for cranial sites wherein inter-personal or temporal anatomical variations are
limited. In addition, because the technique for the extraction of image features from MRI,
cranial MRI has been favored due to the advances of those techniques in the brain MRI
using various neural networks [16,17]. However, the use of sCTs for RT was expanded to
other anatomic sites including the chest, abdomen, and pelvis [14,15,18,19]. Conventional
generative adversarial networks (GANs) trained with paired image sets have been investi-
gated most comprehensively for the generation of sCTs for RT simulations [20,21]. With
the emergence of another deep learning technique using cycle-consistent GAN (CycGAN),
which performs unpaired image-to-image translation, studies evaluating the feasibility of
deep learning sCT models other than those based on GAN have been conducted [22,23].
However, such studies are limited to date. Herein, we evaluated the sCTs generated by
various deep learning methods including GAN and CycGAN in RT for prostate cancer.

2. Materials and Methods
2.1. Patients

Simulation CT and MRI data from patients with prostate cancer who underwent RT
with or without prostatectomy between January 2016 and July 2018 at Samsung Medical
Center were utilized. This retrospective study was approved by the institutional review
board (SMC 2018-11-087).

2.2. CT and MRI Acquisition

The simulation CT scans were obtained using Discovery CT590 RT (GE Healthcare,
Chicago, IL, USA). The CT simulation had an 80 cm wide bore, flat couch, and a detector
with 16 channels. X-rays were generated from 120 mVp tube. The field of view was 65 cm.
Patients were instructed to void and drink 200–300 cc of water for bladder filling at 2 h
before the simulation CT scan. The CT scans were performed with helical mode and
reconstructed with bone-plus filter. Contrast agent was not administrated. During the
simulation CT scan, all patients were placed in the supine position and immobilized using
Vac-lok. A rectal balloon with a volume of approximately 70 cc was inserted and filled
with air for photon RT or with water for proton beam RT. CT scans were performed with a
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head-first orientation. The resolution of the CT images was 512 × 512 with a pixel spacing
of 0.98 × 0.98 mm.

MR scans were performed immediately after the simulation CT scans on the same
day at Samsung Medical Center. For MR simulation, Ingenia 3.0T MR simulation system
(Philips Healthcare, Best, the Netherlands) with a 16-channel abdominal receiving coil and
integrated posterior coil assembly was utilized. The patient setup was the same as that in
the simulation CT except for the feet-first supine orientation, which allowed more flexibility
than the head-first setup while positioning the anterior receiving coil. T2-weighted MRI
scans were acquired in the axial plane at the resolution of a dedicated three-dimensional
radiofrequency spoiled incoherent gradient 2-echo instrument (two-dimensional T2 turbo
spin echo [TSE], repetition time: 6152 ms, echo time: 100 ms).

2.3. Network Training and sCT Generation

The simulation CT and MRI datasets from 93 and 20 patients were randomly selected
and used as training and test sets, respectively. For the generation of sCTs, we utilized three
deep learning approaches: GAN with two convoluted neural networks (CNNs) contained
in one generator and one discriminator, CycGAN with four CNNs in two generators and
two discriminators, and reference-guided CycGAN (RgGAN), which performed further
adjustment of the sCTs generated by CycGAN with available paired images. The schematic
flow for sCT generation based on the deep learning methods is shown in Figure 1.
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dimensional volume. (c) The GAN model only had the GMRI and discriminator (DCT) networks and 
was trained with GAN and reference loss (lGAN + lRef). The cycle-consistent GAN (CycGAN) model 
has four networks (GMRI, GCT, DMRI, and DCT) and was trained with GAN and cycle loss (lGAN + lcyc). 
The reference-guided CycGAN model (RgGAN), used the same networks as the CycGAN model 
and was trained with GAN, cycle, and reference loss (lGAN + lcyc + lRef). (d) Architectures of the gen-
erator and discriminator used in this study. The number at the top and bottom of the feature maps 
indicates the number of channels and spatial dimensions (width, height), respectively. 
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Figure 1. Schematic of the deep learning-based synthetic computed tomography (sCT) generation.
(a) During training 2-dimensional (2D) axial slices are extracted from the volumes and fed to the
model, which is shown as the cycle-consistent generative adversarial network (GAN) model. (b) The
well-trained generator of magnetic resonance imaging (GMRI) is used to generate 2D sCT images
from the test magnetic resonance imaging volume at test time. The sCT slices are reassembled to
3-dimensional volume. (c) The GAN model only had the GMRI and discriminator (DCT) networks and
was trained with GAN and reference loss (lGAN + lRef). The cycle-consistent GAN (CycGAN) model
has four networks (GMRI, GCT, DMRI, and DCT) and was trained with GAN and cycle loss (lGAN

+ lcyc). The reference-guided CycGAN model (RgGAN), used the same networks as the CycGAN
model and was trained with GAN, cycle, and reference loss (lGAN + lcyc + lRef). (d) Architectures of
the generator and discriminator used in this study. The number at the top and bottom of the feature
maps indicates the number of channels and spatial dimensions (width, height), respectively.

2.4. Data Pre-Processing

Initially, the data were manually inspected to remove those with unusual artifacts,
resulting in the selection of 113 pairs of MRI/CT volumes among 119 pairs. To process
the data for training the networks, we resampled both MRI and CT volumes to a common
1.3 × 1.3 × 2.5 mm3 spacing and registered MRI to CT with affine transformation using the
implementation in the SimpleElastix library. MR slices that missed more than 5% of the
body information due to the registration process were discarded. We cropped the central
384 × 384 pixels in the axial plane to remove the background. Simple thresholding and
three-dimensional connected component analysis was applied to the resampled CT volumes
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to extract only the body and remove irrelevant features such as couch and background
intensity. The entire range of CT intensities [−1024, 3071] was then normalized to [−1, 1].
A similar processing method was utilized for the MRI data with the exception of intensity
normalization. To normalize the MRI data, we subtracted the mean divided by 2.5 times
the standard deviation of the voxels inside the body (98.7 percentile) and clipped the values
to [−1, 1]. The processed data were split randomly into 86, 7, and 20 subjects for training,
validation, and testing, respectively. For MRI, 6467 training images, 538 validation images,
and 1582 test images were used. For CT, 6983 training images, 538 validation images, and
1582 test images were used.

2.5. Network Training and sCT Generation

We used the processed data to train and compare three different deep learning models
for sCT generation. The first model involved a GAN-based method with a single generator
and a single discriminator [24]. This model was trained with a combination of the mean
absolute error (MAE) between the sCTs and reference CT images and the adversarial loss
with a ratio of 15:1. The adversarial loss is based on the least-square GAN loss and is
defined as:

Ladv,dis = Ex∈CT(DCT(x)− 1)2 +Ey∈MRI(DCT(GMRI(y)))
2 (1)

Ladv,gen = Ey∈MRI(DCT(GMRI(y))− 1)2 (2)

for the discriminator and generator, respectively.
The second model was a CycGAN-based [25] method with two generators and two

discriminators. The loss of cycle-consistency enables unpaired training, which was applica-
ble in our case due to the imperfect registration between MR and CT. Hence, this model
was trained without the MAE loss, using only the standard CycGAN losses, namely the
cycle-consistency loss and the adversarial loss with a ratio of 10:1. The adversarial loss for
the CycGAN included the terms for distinguishing real and fake MRI images:

Ladv,dis = Ex∈CT(DCT(x)− 1)2 +Ey∈MRI(DCT(GMRI(y)))
2

+Ey∈MRI(DMRI(y)− 1)2 +Ex∈CT(DMRI(GCT(x)))2 (3)

Ladv,gen = Ex∈CT(DMRI(GCT(x))− 1)2 +Ey∈MRI(DCT(GMRI(y))− 1)2 (4)

The third model, referred to as RgGAN in this study, followed the CycGAN formula-
tion with the addition of MAE for available paired images during training with a weight of
100. The additional use of MAE for available paired images in CycGAN was hypothesized
to improve the performance of the CycGAN model by enhancing the similarity between the
sCTs and the original CT images. The Adam optimizer was used to train all networks with
momentum parameters of β1 = 0.5 and β2 = 0.999 on a graphic processing unit (GeForce
GTX 1080Ti, NVIDIA Corp, Santa Clara, CA, USA). The batch size was 2 and the learning
rate was 0.0002 for the first 10 epochs and linearly decayed to 0 for the next 30 epochs. Dur-
ing training, the images were randomly cropped to 356× 356 before being processed by the
network. During testing, the images were centrally cropped to the same size, processed by
the network, padded with 0 to 384 × 384, and resampled to the CT spacing to be consistent
with the preprocessing that was used during training. The schematic flow for the training
and testing of sCT generation with a CycGAN-based network and the network architecture
are shown in Figure 1. Each generator had 11.3 million parameters and each discriminator
had 2.7 million parameters.

2.6. Assessment of sCT Quality

HUs of the sCTs generated from the three networks were compared with those of
the original simulation CT images by calculating the mean error (ME) and the MAE. Dice
similarity coefficients (DSCs) and Hausdorff distances for body, bony structure, rectal
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balloon, and soft tissue, segmented in each original CT and sCT image were calculated to
compare the structural metrics between the sCTs and the original simulation CT images
according to the networks [26]. The peak signal-to-noise ratio (PSNR) was also computed
to measure the reconstruction quality.

For dosimetric evaluation, original CT-based RT dose distributions were recalculated
on the sCTs generated from the three networks. The clinical target volumes (CTVs) were
delineated as prostate with or without seminal vesicle according to the tumor extent for
definitive RT or prostate bed for RT after radical prostatectomy on the original simulation
CT images. The CTVs were expanded by 0.3–0.5 mm to generate the planning target
volume (PTV). The organs at risk (OARs) including the bilateral femoral heads, bladder,
penile bulb, and rectum were delineated. In addition, body contours, bony structures and
soft tissues which was generated by extraction of bony structures from body contours were
also delineated via the auto-contouring tool using the threshold of HU units with manual
adjustment on original simulation CT and all of the sCTs for the assessment of the sCT
quality according to the anatomic subsites. Volumetric modulated arc therapy (VMAT)
was selected as the techniques for RT. Pinnacle version 9.10 (Philips Radiation Oncology
Systems, Philips Healthcare, Best, the Netherlands) was used for target volume delineation
and dosimetric calculation. The dose differences between the original simulation CT
images and sCTs were evaluated by comparing the dose-volume histogram (DVH) metrics
including D98%, D95%, D50%, D5%, and D2% of the CTV, PTV, and OAR between the original
simulation CT images and the sCTs. Three-dimensional global gamma pass rates were
computed using the original simulation CT dose as a reference and a dose threshold of 10%.
The gamma pass rates were evaluated with 2 mm and 3 mm distances to agreement, 2%
dose difference and 2 mm distance to agreement, and 2% dose difference.

2.7. Statistical Analysis

The chi-squared test or Fisher’s exact test was used to compare the patients’ character-
istics between the training/validation and testing groups. One-way analysis of variance
with Bonferroni correction was performed to compare continuous variables among the
sCTs or the original simulation CT images. Statistical significance was set at a two-sided
p-value < 0.05. Statistical analyses were performed using the IBM SPSS Statistics version 25
(IBM Corp., Armonk, NY, USA).

3. Results
3.1. Patients’ Characteristics

The characteristics of the training, validation group and testing group are summarized
in Table 1. No statistically significant differences were observed in median age, stage,
prostatectomy status, or RT modalities between the groups.

3.2. Image Quality

Figure 2 shows an example of original simulation CT and sCTs generated based on
GAN, CycGAN, and RgGAN. Comparisons of ME, MAE, and PSNR among the sCTs are
shown in Figure 3. While there were significant differences in mean ME between the sCT
from GAN and that from CycGAN (p < 0.001) or RgGAN (p < 0.001), the mean MAE was
significantly higher in the sCTs from CycGAN than in the sCTs from GAN (p = 0.023)
and RgGAN (p = 0.002). No significant differences were observed in PSNR among the
sCTs. The mean HU values of various anatomic subsites according to the original CT
images or sCTs are compared in Figure 3. For soft tissue, a significant difference in the
mean HUs was observed only between the original CT images and the sCTs from GAN
(p = 0.03). For other sites, no significant difference was observed in the mean HUs between
the original CT images and the sCTs. Figure 4 shows the comparison of DSCs among the
sCTs according to the subsites. For the bone and soft tissues, the mean DSCs of CycGAN
were significantly lower than those of GAN (p < 0.001 for bone and p = 0.003 for soft tissue)
and RgGAN (p < 0.001 for both bone and soft tissue). Similarly, the Hausdorff distances
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were significantly higher in CycGAN for bone and soft tissue than in GAN (p < 0.001 for
both bone and soft tissue) and RgGAN (p < 0.001 for both bone and soft tissue) as shown in
Figure 4.

Table 1. Patients’ characteristics of training and test sets (N = 113).

Characteristics
Number (%) p Value

Training/Validation Group (n = 93) Test Group (n = 20)

Median age (range) 72 (58–82) 69 (58–88) 0.908
T stage 0.476

1–2 32 (34.4) 9 (45.0)
3–4 61 (65.6) 11 (55.0)

N stage 0.778
0 68 (73.1) 16 (80.0)
1 25 (26.9) 4 (20.0)

M stage 1.000
0 85 (91.4) 19 (95.0)
1 8 (8.6) 1 (5.0)

Prostatectomy 0.443
Yes 9 (9.7) 3 (15.0)
No 84 (90.3) 17 (85.0)

Radiotherapy modality 0.379
X-ray 86 (92.5) 17 (85.0)

Proton 7 (7.5) 3 (15.0)
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Figure 4. Comparison of dice-similarity coefficients for body (a), bone (b), rectal balloon (c), and
soft tissue (d) and Hausdorff’s distance (HD) for body (e), bone (f), rectal balloon (g), and soft tissue
(h) in synthetic computed tomography according to the deep learning techniques. Abbreviations:
DSC, dice-similarity coefficient; GAN, generative adversarial network; CycGAN, cyclo-consistent
generative adversarial network; RgGAN, Reference-guided cyclo-consistent generative adversarial
network; HD, Hausdorff distance. * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001.

3.3. Dosimetric Comparison

Figure 5 shows the dosimetric distributions in an example case, the differences in DVH
parameters for PTV between original CT and sCT, and the gamma-pass rates. The mean
differences in various DVH parameters for PTV were less than 2% in the original CT. No
significant differences were observed among the sCTs except for differences in D98% and
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D95% between GAN and other deep learning methods (Figure 5). The gamma-pass rates
were consistently lowest in the sCTs from CycGAN, with a significant difference compared
to the sCTs from RgGAN for gamma indices of 3%/2 mm and 2%/2 mm. For OARs
including the rectum, bladder, bilateral femurs, and penile bulb, the DVH parameters were
not significantly different among the sCTs (Figure S1).
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volume; VMAT, volumetric modulated arc therapy; PBT, proton beam therapy; GAN, generative 
adversarial network; CycGAN, cyclo-consistent generative adversarial network; RgGAN, Refer-
ence-guided cyclo-consistent generative adversarial network. * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** 
p < 0.001. 
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Figure 5. (a) Example for the comparison of dosimetric distributions on original and synthetic
computed tomography according to the deep learning techniques. Dosimetries of axial, coronal, and
sagittal views for volumetric modulated arc therapy (VMAT) on original computed tomography
(CT), and synthetic CTs (sCT) based on generative adversarial network (GAN), cyclo-consistent GAN
(CycGAN), and Reference-guided CycGAN (RgGAN). The dosimetric distributions are represented
on axial (right), coronal (middle), and sagittal (right) slices of original CT, and sCTs generated
from GAN, CycGAN, RgGAN from the uppermost row to lowermost row (a). (b) Difference of
dosimetric parameters in planning target volume on sCTs according to the deep learning techniques
comparing with original plan for VMAT. (c) Comparisons of gamma-pass rates among the sCTs
according to the deep learning techniques for VMAT. Abbreviations: PTV, planning target volume;
VMAT, volumetric modulated arc therapy; PBT, proton beam therapy; GAN, generative adversarial
network; CycGAN, cyclo-consistent generative adversarial network; RgGAN, Reference-guided
cyclo-consistent generative adversarial network. * 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001.

4. Discussion

Previous investigations regarding feasibility of the sCTs generated from MRI using
deep learning technologies for MR-only RT simulations have mainly focused on the sCTs
generated by GAN, which requires paired image sets in the training process [24]. However,
simulation CTs and planning MRIs in the training set were not perfectly matched pairs.
Therefore, another deep learning methodology, CycGAN, has recently been evaluated
for the generation of sCTs for RT simulation. It does not require paired image sets in the
training [24]. In the present study, we evaluated the feasibility of CycGAN and GAN for
the generation of sCTs in an MR-only RT simulation for prostate cancer in VMAT planning.
Furthermore, a third model, referred to as RgGAN, was also evaluated in our study. It uses
the CycGAN formulation, but also utilizes the MAE between available paired reference
images. In the present study, sCTs based on RgGAN showed the tendency to improve the
quality of those from CycGAN in terms of the conservations in the radiological parameters
of anatomic subsite, especially soft tissue and conserve DVH parameters regarding higher
dose comparing with those from GAN or CycGAN.

In the evaluation of sCT quality, CycGAN showed a significantly higher MAE and
lower ME when compared with GAN. In addition, significantly lower DSCs and higher
Hausdorff distances of bone and soft tissue were observed in CycGAN when compared
with GAN. These significant differences in MAE, DSCs, and Hausdorff distances were
maintained between GAN and RgGAN. These results suggest that GAN performed better
in sCT generation than CycGAN and the limitations of CycGAN were complemented using
paired reference images in addition to the formulation of CycGAN in RgGAN. However,
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these parameters are indicators for the similarities between original CT images and sCTs
originating from the corresponding MRIs, which have intrinsically different geometries due
to inter-scan variations between the original CT and MR images and intra-scan variations
during the MRI scan. While training using GAN minimizes the loss of sCTs from the
paired original CT images, CycGAN does not specifically concern the loss from its paired
original CT image. Therefore, these parameters could potentially indicate higher similarities
between GAN-generated sCTs and the original CT images when compared with those
between CycGAN-generated sCTs and the original CT images. Previous studies comparing
the sCTs generated from GAN and CycGAN showed a similar tendency wherein MAE
tended to be higher in the sCTs from CycGAN than in those from GAN. These studies also
suggested that inter-scan geometric distortion between CT and MRI scans and intra-scan
deformities during MRI could result in a worse performance of CycGAN when compared
with GAN [13,27]. Contrary to the results regarding MAE, DSC, and Hausdorff distances,
the difference in the mean HUs of soft tissues was statistically significant only between
the original CT images and the sCTs generated from GAN. The comparison of mean HUs
between original CT images and corresponding sCTs according to the anatomical subsites
can exclude the geometric distortion in the analyses and evaluate the quality in terms of
HU conservation according to the anatomical subsites. Therefore, these results imply that
the performance in terms of conservation of HU distribution in the soft tissue could be
potentially superior in the sCTs from CycGAN or RgGAN when compared with those from
GAN.

Despite the differences in quality among the sCTs, most of the calculated dosimetric
parameters such as PTVs or OARs were not significantly different among the sCTs from the
three deep learning approaches. The gamma indices also indicated acceptable conservation
of dosimetric distribution. Since the RT plans that were recalculated on the sCTs were
optimized for the target volume on the original CT images showing geometrical distortion
compared to the sCTs, the differences in the sCT dosimetric parameters could also be
affected by the geometrical distortions compared to the original CT images. Therefore,
it could be predicted that the dosimetry conservation would be best in the sCT from
GAN or RgGAN which followed the paired original CT more than CycGAN. However,
the differences in the DVH parameters of PTV for higher doses (D98% and D95%) were
significantly higher in the plans based on sCTs from GAN rather than in those based on
sCTs form CycGAN or RgGAN when compared with the plans on the original CT images.
Between the CycGAN and RgGAN, RgGAN showed higher conservation in the DVH
parameters of PTV for higher does although there was no statistical significance. These
results suggest that a lower amount of geometrical similarity between the sCTs and the
original CT images does not necessarily lead to inferior dosimetric conservation on the
sCTs for VMAT planning. Instead, the lower conservation of HU in anatomical subsites
could lead the lower conservation of dosimetric distribution as our result showing that
the difference in mean HU and DVH parameters for higher does for PTV. Further studies
would be necessary to confirm the hypothesis.

In terms of parameters such as ME, MEA, or gamma indices, our results do not seem
to show improved performance when compared with the previous literature [15,18,19].
Direct comparisons among relevant studies are difficult, since sCT generation is dependent
on the protocols of the dataset acquisition for training, which are extremely diverse among
different studies. Particularly, spatial blurring can occur in MRI depending on the sequence.
In the present study, T2-TSE MRI sequence was used in the training, which can result in an
image blurring effect due to T2-related signal loss on late echoes [28,29]. Since the quality
of sCTs depends on that of the original MRI, adequate MRI sequences for sCT generation
need to be established. Alternatively, it is worth considering the use of a combination of
multiple MRI sequences that complement sCT generation [15,16].

The present study has some limitations. It involved a small number of datasets for the
training, potentially leading to suboptimal sCT generation performance. The results are
from a single institution and further external validation studies are required to evaluate
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whether the protocol in our study can be generalized. In addition, since the delineations
of anatomic subsites were involved by manual adjustments, there could be biases in the
comparisons of the sCTs in terms of the mean HU, DSC, or Hausdorff distances according
to the anatomic subsites. Finally, since the evaluated plans were limited only to the prostate
or the prostate bed, the feasibility of sCTs in RT planning of larger target volumes remains
to be investigated.

5. Conclusions

CycGAN and RgGAN may improve the similarity of sCTs with the original CT images
in terms of soft tissue HU distribution when compared with GAN. GAN, CycGAN, and
RgGAN could generate sCTs from T2-weighted MR images that are feasible for use VMAT
planning by achieving clinically acceptable dosimetric conservation when compared with
the original RT plans. There was a trend that sCT generated from the RgGAN showed best
performance in terms of the HU accuracy in soft tissue and dosimetric conservation D98%
and D95% than sCTs from other methodologies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers14010040/s1. Figure S1: Difference of dosimetric parameters in organs at risk on
synthetic computed tomography according to the deep learning techniques comparing with original
plan for volumetric modulated arc therapy and proton beam therapy.
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