Supplementary Materials

Figure S1 (previous page). Heatmap showing phosphorylation intensities of peptides serving as substrates for tyrosine kinases. Figure shows hyperphosphorylated (red) or hypo phosphorylated (blue) peptides in MM1R (n=3) and MM1S (n=3) samples ranked by the p-value resulting from a t-test. The significance is indicated using a significance code: 000001, 00001, 0000: p < 0.0001, 000: p < 0.001, 00: p < 0.001, 00: p < 0.001, 00: p < 0.005.

Figure S2. MetaCore pathway analysis of differentially phosphorylated protein peptides (p<0.05) in MM1R versus MM1S cells.

Figure S3. Row-annotated heatmap representation of hyperactivated or inhibited kinases in MM1R versus MM1S cells, or following 15 min IBR or WA treatment of MM1R cells, *n*=3 biologically independent samples per treatment group.

Figure S4. Target binding affinities of Ibrutinib. Binding affinities of Ibrutinib to its targets are shown as pAct (-Log(IC50/Ki/EC50,...)). Bars show the target interactions confirmed by ChEMBL/PubChem/papers. Graph was generated using the drug network map tool of the UC San Diego Abagyan Lab (<u>http://ruben.ucsd.edu/dnet/</u>).

Figure S5. Relative viability (%) of U266 cells after 24 h treatment with WA or DEX. Data are plotted as the mean ± s.d., *n*=3 biologically independent samples.

Figure S6. Relative BTK mRNA (upper left) and protein levels (upper right and lower panel) of MM1R cells treated with 1 μ M IBR for the indicated timepoints. Data are plotted as mean ± s.d., n=3 biologically independent replicates (ns = p > 0.05, ANOVA).

Figure S7. Relative viability of MM1R cells treated with increasing concentrations of WA 24 hrs post treatment. Cells were incubated with WA for 15 min (with or without DTT) after which WA was washed away or continuously for 24 hrs. Data are plotted as mean \pm s.d., *n*=3 biologically independent replicates (ns = p > 0.05, *p < 0.05, *p < 0.01, ****p < 0.001, ANOVA).

Figure S8. Relative BTK mRNA (left) and protein (right) expression of siBTK-transfected MM1R cells with or without the C481S BTK mutant. Data are plotted as mean \pm s.d., n=3 biologically independent replicates (ns = p > 0.05, *p < 0.05, *p < 0.01, ****p < 0.001, ANOVA).

Figure S9. The biological targets of WA treatment strongly depends on cellular context. (a) Venn diagram showing the number of significantly differentially expressed genes (p < 0.05, logFC < |1|) in MM1R and MM1S cells after WA treatment. (b) Panther pathway analysis of significantly differentially expressed genes in MM1R only (left) and MM1S only (right). (c) Kinase trees displaying relative changes in kinase activities upon WA treatment in MM1R cells (left) and MM1S cell (right). Kinase trees were generated with the CORAL web tool (http://phanstiel-lab.med.unc.edu/CORAL/)

Table S1. Summary of binding energy and distance of the covalent bond of Cys481 with WA as predicted by covalent docking.

BTK interaction site	PDB ID	Binding energy	Bond length	No. of hydrogen bonds	Amino acid interaction
Cys481	6TFP	-4.93 kcal/mol	1.4 Å	3	Tyr485, Leu482, Gly480

Table S2. Overview of qPCR primers used in this study

Target		Primer Sequence	Gene accession number	
DTI	Forward	GTC CCA CCT TCC AAG TCC TG	ENSG0000010671	
DIK	Reverse	GCC TCT TCT CCC ACG TTC AA		
GAPDH	Forward	GCT CTC TGC TCC TCC TGT TC	ENSG00000111640	
	Reverse	ACG ACC AAA TCC GTT GAC TC		

Table S3. Overview of siRNA sequences used in this study

Target	Target Sequence	siRNA sequence	
BTK	UUU UGA UGU GGG AAA UUU A	TAA ATT TCC CAC ATC AAA A	

Table S4. Original images immunoblot analysis.

Figure	Blot(s) used in figure	Blot(s) with molecular marker
1f : western immunoblot detection and quantification of basal BTK and GAPDH protein levels in MM1R and MM1S	α-BTK [*] (±77 kDa) and α-GAPDH ⁺ (±37 kDa)	180kDa 115kDa 82kDa 49kDa 37kDa 26kDa 19kDa 19kDa 19kDa
3c (left): western immunoblot detection and quantification of BTK and GAPDH expression levels after WA treatment in MM1R cells	α-BTK (±77 kDa)	150kDa 150kDa 150kDa 115kDa 115kDa 115kDa 115kDa 115kDa 115kDa 115kDa 12, 180kDa 19kDa 15kDa 19kDa 15kDa 15kDa 19kDa 15kDa
	Ctrl WA 15' WA 30' + WA 3h	115kDa 82kDa 64kDa 49kDa 37kDa 26kDa 15kDa
3c (right): western immunoblot detection and quantification of BTK and GAPDH expression levels after WA treatment in U266 cells	α-BTK (±77 kDa)	* 40081 40001 115KDa 26KDa 37KDa 26KDa 19KDa 15KDa

	α-GAPDH (±37 kDa) ^Y T ^O O 41 W V V V V V ^Y T ^O O 41 W V V V V V V V V V V V V V V V V V V V	eq100 64700 6470 6470 6470 6470 6470 6470 6470 6470 6470 6470
		37kDa 26kDa 19KDa 15KDa
4a: western immunoblot detection of BTK levels before and after pulldown with biotinylated WA, following 2 h WABI treatment in MM1R cells in the presence or absence of excess thiol donor DTT (1mM)	Ctrl WaBI 1μM WaBI 5μM WaBI 5μM WaBI 7.5μM WaBI 7.5μM + DT WaBI 7.5μM + DT WaBI 7.5μM + DT	031 031 031 031 031 0
	Ctrl WABI 1μM WABI 2.5μM WABI 2.5μM WABI 2.5μM + DTT WABI 2.5μM + DTT WABI 2.5μM + DTT WABI 2.5μM + DTT	0005 0005 005
4b : western immunoblot detection of BTK levels before and after pulldown with biotinylated WA, following 2 h WABI treatment in MM1R cells in	Ctrl Ctrl WABI 1μM WABI 2.5μM WABI 2.5μM WABI 2.5μM HDTT WABI 2.5μM HDTT WABI 2.5μM HDTT WABI 7.5μM HDTT WABI 7.5μM HDTT	e0yst e0yst e0yst e0yst wabi 1µM wabi 5µM wabi 7.5µM wabi 7.5µM wabi 7.5µM wabi 7.5µM + DTT wabi 7.5µM + DTT wabi 7.5µM + DTT

