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Simple Summary: In this prospective pilot study, we investigated the potential of clinical multidi-
mensional diffusion magnetic resonance imaging (MDD MRI) for the microstructural characterization
of breast cancers and normal fibroglandular breast tissue. The method relies on advanced gradient
waveforms to encode the signal with information about cell densities, shapes, and orientations,
and to quantify tissue composition as a probability distribution of diffusion tensors in a space with
dimensions analogous to those on a cellular level. Sixteen patients with breast cancer underwent
MDD MRI within a clinically feasible scan time of approximately 4 min, providing voxel-resolved
distributions and parameter maps with microstructural information that is not accessible with
conventional methods.

Abstract: Diffusion-weighted imaging is a non-invasive functional imaging modality for breast
tumor characterization through apparent diffusion coefficients. Yet, it has so far been unable to
intuitively inform on tissue microstructure. In this IRB-approved prospective study, we applied
novel multidimensional diffusion (MDD) encoding across 16 patients with suspected breast cancer
to evaluate its potential for tissue characterization in the clinical setting. Data acquired via custom
MDD sequences was processed using an algorithm estimating non-parametric diffusion tensor
distributions. The statistical descriptors of these distributions allow us to quantify tissue composition
in terms of metrics informing on cell densities, shapes, and orientations. Additionally, signal
fractions from specific cell types, such as elongated cells (binl), isotropic cells (bin2), and free
water (bin3), were teased apart. Histogram analysis in cancers and healthy breast tissue showed
that cancers exhibited lower mean values of “size” (1.43 + 0.54 x 1072 mm?/s) and higher mean
values of “shape” (0.47 & 0.15) corresponding to binl, while FGT (fibroglandular breast tissue)
presented higher mean values of “size” (2.33 & 0.22 x 1073 mm?/s) and lower mean values of
“shape” (0.27 + 0.11) corresponding to bin3 (p < 0.001). Invasive carcinomas showed significant
differences in mean signal fractions from bin1 (0.64 £ 0.13 vs. 0.4 & 0.25) and bin3 (0.18 + 0.08 vs.
0.42 £ 0.21) compared to ductal carcinomas in situ (DCIS) and invasive carcinomas with associated
DCIS (p = 0.03). MDD enabled qualitative and quantitative evaluation of the composition of breast
cancers and healthy glands.
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1. Introduction

The continuous evolution and versatility of diffusion-weighted imaging (DWI) have
made this technique a valuable tool that is increasingly used in breast cancer imaging with
a wide variety of applications [1]. DWI non-invasively probes the random thermal motion
of water molecules in vivo over the micrometer length scale and millisecond timescale.
Such motion is more commonly referred to as “diffusion”. The resulting diffusion pattern
of water molecules is shaped by the local tissue microstructure, e.g., different cellular
densities, shapes, orientations, and membrane permeabilities. In pathological states such
as cancer, these parameters are altered, which is reflected in the water mobility.

Current clinical conventional DWI methods, such as trace DWI, quantify water mo-
bility in terms of a single apparent diffusion coefficient (ADC) per imaging voxel, which
inversely reports on voxel-averaged cell density [2,3]. However, these methods fail to
discriminate between the various mechanisms contributing to water mobility over the
millimeter scale of typical DWI voxels [4]. Indeed, single ADCs per voxel cannot capture
the non-Gaussian diffusion characterizing “heterogeneous tissues”, i.e., tissues comprising
distinct cell types and orientations [5-7]. Another conventional approach to interpreting
DWI is diffusion tensor imaging (DTI) [8]. This method describes tissues in terms of a single
diffusion tensor averaged over the voxel scale. While the trace of this diffusion tensor, i.e.,
the mean diffusivity (MD), corresponds to the previously mentioned ADC, the anisotropy
of this diffusion tensor corresponds to an additional biomarker: the fractional anisotropy
(FA) [3]. This latter diffusion measure, reporting on the average anisotropy of the voxel con-
tent, confounds cell elongation and orientational order (degree of alignment of elongated
cells) [9]. Consequently, FA vanishes in voxels containing complex crossing configurations
of fibrous tissue, as their diffusion profiles appear isotropic once averaged over the voxel
scale. The implications of this limitation, especially relevant in the central nervous system,
are still unclear in the breast. Besides, DTI cannot capture tissue heterogeneity via its single
voxel-averaged diffusion tensor [10]. Alternatively, diffusion kurtosis imaging (DKI) has
enabled researchers to delve into tissue heterogeneity by capturing a normal distribution
of diffusion coefficients [11-13]. In addition to providing the aforementioned MD, this
approach employs higher b-values to estimate the mean kurtosis (MK), which reports
on global microstructural tissue heterogeneity, i.e., a lack of internal organization [14].
Although MK has been shown to be superior to ADC or MD for lesion differentiation
in the breast [15-17], it still confounds two sources of tissue heterogeneity, namely the
variance of cell densities over the voxel scale and the presence of anisotropic cells, whether
these are aligned or not over the voxel scale. Although other approaches have revealed
nonparametric cell size distribution, this limitation has not been addressed yet [18,19].

The lack of specificity of the aforementioned conventional techniques used to interpret
DWI data has recently been overcome within the framework of multidimensional diffusion
(MDD) MRI [20-22]. This framework, inspired by the field of solid-state nuclear magnetic
resonance (NMR) [23,24], relies on novel diffusion gradient waveforms to acquire comple-
mentary pieces of diffusion information that, once combined, enable the disentanglement of
various tissue properties. Indeed, MDD measurements generalize the concept of diffusion
encoding from the conventional b-value b and diffusion-sensitized orientation (®, ®) to
more versatile b-tensors b [22,25-28]. While the trace and main orientation of the b-tensor
coincide with the b-value b and orientation (®, ®), respectively, its anisotropy can be
tailored to measure specific types of diffusion patterns. On the one hand, conventional
diffusion MRI measurements correspond to linear b-tensors, only probing diffusion along
their main orientation. On the other hand, non-trivial b-tensors consist of, e.g., planar b-
tensors probing diffusion perpendicularly to their main orientation and spherical b-tensors
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probing isotropic diffusion. From a clinically relevant standpoint, MDD has so far been
employed mostly in the brain, using more general truncated cumulant expansions of the
diffusion signal [20,22,29]. The early results using microstructural information from MDD
showed promising results in differentiating meningiomas and glioblastomas [30-32], differ-
entiating cortex and white matter in malformations of cortical development associated with
epilepsy [33], and characterizing white-matter lesions linked to multiple sclerosis [34] and
Parkinson’s disease [35]. Diffusion tensor distribution (DTD) imaging [36] can be further
applied to MDD data to estimate nonparametric intra-voxel distributions of diffusion
tensors [37,38] via a quasi-genetic algorithm. DTD imaging has shown potential in the
healthy brain to quantify various microstructural diffusion properties and differentiate
tissue-specific subparts [39-41].

In this work, we hypothesized that acquiring MDD data and fitting the signal using
DTD imaging allows for a more refined, non-invasive microstructural characterization
of normal and neoplastic breast tissue through new quantitative imaging biomarkers.
Therefore, the aim of this prospective pilot MDD was to investigate the potential of clinical
multidimensional diffusion (MDD) MRI for the microstructural characterization of breast
cancers and normal fibroglandular breast tissue (FGT).

2. Materials and Methods
2.1. Patients

This prospective Institutional Review Board-approved study was compliant with
the Health Insurance Portability and Accountability Act (HIPAA), and was performed
according to the principles of the Declaration of Helsinki. All participants gave their written
informed consent for inclusion in the study.

From October 2019-March 2020, 16 consecutive women (mean age: 51.1 years, age
range: 32-76 years) with newly diagnosed or clinically suspected breast cancer were in-
cluded. All these women underwent a breast multiparametric MRI. The exclusion criteria of
the study were: pregnancy or breastfeeding, contraindications to MRI or gadolinium-based
contrast agents, and no previous breast surgery or treatment (i.e., neoadjuvant chemother-
apy). There is no subject overlap with previously published studies in the literature.

2.2. MRI Examination Protocol

All MRI examinations were performed using a 3T magnet (Discovery MR750; GE
Healthcare, Milwaukee, WI) with a dedicated 16-channel phased-array breast coil (Sen-
tinelle Vanguard, Toronto, ON, Canada). The multiparametric MRI protocol comprised
axial T1-weighted non-fat saturated, axial T2-weighted fat saturated images, and T1-
weighted fat saturated axial images before and after contrast injection (0.1 mmol Ga-
davist/kg body weight). In addition, axial DW (diffusion-weighted) images were acquired
after contrast injection. First, conventional DW echo planar imaging (EPI) was acquired
with two b-values (0, 800 s/mm?) and 3 encoding directions. Subsequently, MDD was
acquired using a custom DW sequence (spin echo-prepared EPI sequence using TE = 98 ms,
TR =2.7-5.0 s, FOV = 35 x 35 cm, matrix size = 128 x 128, in-plane resolution = 2.7 mm,
slice thickness = 5 mm, and scan time = 4 min). Five sets of b-values (0, 100, 700, 1400,
and 2000 s/mm?) were acquired using gradient waveforms targeting 37 isotropic linear
encoding directions and 43 spherically encoded signals. A maximum of 35 slices were
individually adjusted to cover the whole breast. Technical details of the MRI protocol are
shown in Table 1.
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Table 1. Full breast axial 3T protocol, 16-channel breast array.

Sequences 1 2 3 4 5
Series descriptor 3D axial T2 3D axial T1 3D axial DISCO 2D axial DWI 2D axial MDD DWI
Sequence type Fast-Spin Echo G@;ié;r:ﬁ%ho Gradient-Echo Spin-Echo EPI Spin-Echo EPI
Field of view (cm) 34-38 34-38 34-38 34-38 34-38
Slice thickness (mm) 3 1.1 1.1 3.9 3.9
Gap (mm) 3 0 0 0 2.7
Fat saturation Yes No Yes Yes Yes
TE (ms) Minimum Minimum Minimum Minimum 98
TR (ms) 2500-6000 4-45 4-45 2000-6000 2700-5000
Matrix size (mm) 512 x 512 512 x 512 512 x 512 256 x 256 128 x 128
Flip angle 111 10 12 90 90
Direction ALL ALL
Number of directions 3 43
b-values (s/ mmz) 0, 800 100, 700, 1400, 2000
Frequency direction A/P A/P A/P A/P A/P
Scan time (min:sec) 2:32 1:30 5-61 4:02 4:12

Abbreviations: A /P, anterior/posterior; DISCO, differential subsampling with Cartesian ordering; EPI, echo planar imaging; MDD,
multidimensional diffusion; VIBRANT, volume imaging for breast assessment. ! For a total of 10-13 phases with a temporal resolution of

12 ms.

2.3. Image Assessment and Data Collection

Images were reviewed by a breast dedicated radiologist with 5 years of experience
(ILD.N.) using CentricityTM universal viewer (GE Healthcare, IL, USA). Cancers were
identified on dynamic contrast-enhanced (DCE) images and the slice location was recorded
to match DW images. The largest lesion axis measurements and the amount of FGT were
determined by DCE series according to the American College of Radiology Breast and
Imaging Reporting and Data System (BI-RADS) [42]. Clinical history was reviewed to
determine age and menopausal status. Histopathology results were reviewed for cancer
histology, histological grade, and immunohistochemistry (IHC) status [43]. Evaluation of
IHC status included estrogen (ER), progesterone (PR), and human epidermal growth factor
receptor 2 (HER2) status according to the standard protocols using an automated Ventana
Benchmark XT device (Ventana, Tucson, AZ, USA). The reference standard was histological
analysis of the surgical specimen; in patients who received neoadjuvant treatment, the
results from image-guided biopsies were considered the reference standard.

2.4. Diffusion Tensor Distributions (DTDs) and DTD-Derived Maps

The biological content of a given imaging voxel is commonly described by a diffu-
sion tensor distribution (DTD), wherein each diffusion tensor D encapsulates the “size”,
“shape”, and “orientation” of a microscopic diffusion pattern [37,38]. The DTD also cor-
responds to the joint distribution of quantities that specifically reflect these diffusion
dimensions. In particular, for a given diffusion tensor with axial diffusivity D|| and radial

diffusivity D , the isotropic diffusivity Djs, = (DH +2D L) /3 and the diffusion anisotropy

Di = [(D” —-D J_) / (3Diso)} ? [44] are associated with the “size” and “shape” dimensions,
respectively. Importantly, the “size” of a diffusion tensor is proportional to the inverse cell
density in a given tissue, and is not related to cell size per se. While Figure 1 illustrates the
correspondence between local tissue geometry and diffusion tensor properties, Figure 2
presents DTDs in the context of breast healthy FGT and cancers.
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Figure 1. “Ink drop” analogy to describe and parametrize microscopic diffusion patterns (A). When
ink drops into a medium, it diffuses over time and leaves a stain (diffusion pattern), the size and shape
of which are conditioned by the microstructure of the medium. Grey objects correspond to rather
permeable cell membranes (B). Diffusion patterns are mathematically described by diffusion tensors
D, which can be represented geometrically by glyphs (black three-dimensional objects) shaped
like the corresponding diffusion patterns. In particular, the size, shape, and orientation of these
glyphs are given by the trace of D, the variance of the eigenvalues of D, and the main eigenvector of
D, respectively.
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Figure 2. Set of diffusion tensor distributions (DTDs) for individual voxels extracted from a T2-weighted non diffusion-
weighted Sy map with an invasive ductal carcinoma in the right breast. The distributions are represented in two-dimensional
plots of diffusion tensor sizes (Djgo) and shapes (Da2). Size (Diso) reports on cellularity in an inversely proportional relation.
Shape (Da?) values range from 0 for spherical tensors to 1 for elongated tensors. Voxels (A,B) including cancer exhibit
diffusion in densely packed elongated cells and tumoral isotropic cells. Voxel (C) presents isotropic cells with higher
diffusivity corresponding to healthy fibroglandular tissue. The directional color-coding is based on the diffusion tensor
eigenvalues, normalized by the maximum eigenvalue, and reports on the orientation of the underlying diffusion patterns.
The red/green/blue directions correspond to the left-right/anterior-posterior/superior-inferior directions, respectively. The
key diffusion properties of these cellular configurations can be quantified via the statistical descriptors of the DTD, i.e.,
means and (co)variances calculated over the size (Djg,), shape (Da2), and orientation dimensions of the DTD. The diffusion
encoding strategies offered by multidimensional diffusion (MDD) acquisitions enable simultaneous measurement of various
features of the DTD, thereby enhancing the specificity of the microstructural information arising from diffusion processes
in vivo.
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MDD gradient waveforms allow for the simultaneous measurement of various features
of these voxel-wise DTDs in a unique way [21,27]. In particular, DTD imaging [36] employs
MDD data to estimate nonparametric intra-voxel DTDs. These distributions are obtained
via a quasi-genetic approach detailed in previous works [39,40,45]. Let us briefly describe
this approach. A set of 200 diffusion tensors (components) is randomly generated and its
components’ likelihood to explain the measured signals is assessed via non-negative least-
squares (NNLS) fitting [46]. After repeating this so-called “proliferation” step 20 times,
the remaining components with non-zero weight are randomly perturbed during the
“mutation” step. Original and perturbed components are then competing with one another
on the NNLS basis, with largest-weight solutions kept at the end of this “extinction”
step. After repeating the mutation and extinction steps 20 times, the 50 largest-weight
components form the final solution (or DTD). The entire procedure is repeated 100 times
using bootstrap with replacement [47,48] on the measured signal. Statistical descriptors of
the DTD, e.g., means E| - | and variances V| - | calculated over the tensor size (Djs,), shape
(Da?), and orientation dimensions of the DTD can then be computed as medians across
these bootstrap solutions [45].

The mean size E[Djg,] corresponds to the conventional mean diffusivity and is propor-
tional to the inverse cell density. The mean shape E[D?] captures microscopic anisotropy,
i.e., the mere presence of elongated cells, whose values range from 0 for spherical tensors to
1 for completely elongated tensors. The variance of diffusion tensor size V[Djs,] quantifies
the variance of cell densities over the voxel scale. The 10th percentile values of the mean
diffusion tensor size, denoted by (E[Djs,])10%, can be calculated within tumors to capture
the most diffusion-restrictive areas. DTD imaging also retrieves the conventional FA and
the orientational order parameter (OP), defined as the ratio (FA /uFA)? between the FA
and the microscopic fractional anisotropy uFA [20,22]. OP reflects the degree to which
elongated cells align together over the voxel scale, ranging from 0 for randomly oriented
cells to 1 for perfectly aligned cells. In other words, DTDs allow for the quantification of the
composition and orientational order of heterogeneous tissues, such as the breast healthy
FGT and cancerous lesions of Figure 2.

Moreover, the size-shape space of these distributions can be binned to isolate signal
fractions from elongated cells (f1,,1), isotropic diffusion environments with low diffusivity
(fbin2), and large isotropic diffusion environments with high diffusivity (fpin3) [27,39,41].
The result of this binning procedure is illustrated in Figure 3 using a color-coded segmenta-
tion map representing the different proportions of these various tissue types within each
voxel. The bins were defined as follows:

- Bin 1 within Djs, € [0, 2.5] um?/ms and D /D € [4,1000],
- Bin 2 within Dj, € [0, 2.5] um?/ms and D/Dy €[0.01, 4],
- Bin 3 within Dy, € [2.5, 10] um?/ms and Dy/D_ € [0.01, 1000].

Bin-specific statistical descriptors were estimated following the above process for the
retrieved components specifically falling into each bin. Note that this manual binning
corresponds to the one typically performed in the healthy brain [27,39,41], and was directly
translated to the breast in this work, with no data-driven optimization. In particular, the
Diso = 2.5 um?/ms bound typically yields a good separation between cerebrospinal fluid
and white/grey matter, and the D /D, = 4 bound corresponds to the diffusion anisotropy
Dp = 0.5 and the fractional anisotropy FA = 0.7. In other words, this binning procedure
consists merely of a preliminary attempt to comprehend the rich information contained
in the DTD and is, as such, a limitation that could be mitigated by automatic clustering
methods or by higher dimensional versions of data-driven techniques, such as those which
have been previously published [49,50].
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Figure 3. Binning of the size-shape space of the diffusion tensor distributions (DTDs) in a case
of invasive ductal carcinoma (A). Color-coded map derived from bin-resolved signal fractions,
respectively associated with elongated cells (bin1, red), isotropic diffusion environments with low
diffusivity (bin2, green), and isotropic diffusion environments with high diffusivity (bin3, blue) (B).
Definition of the tissue-specific bins in the two-dimensional plane of tensor size Djs, and squared
tensor shape D2 (C,D). Grey scale maps reporting on the mean size E[Djg,] and mean shape E[DAZ]
of the entire voxel content, respectively. The cancer (white arrows) exhibits high cellularity (low mean
size E[Djg,]) compared to the healthy fibroglandular tissue (large blue and cyan areas indicated by the
yellow arrow in (A). It also features prominent heterogeneity, with a core consisting of slow-diffusive
isotropic environments (large fpin2, low mean shape E[D4?]), which could correspond to densely
packed isotropic cells or necrotic tissue, surrounded by a layer of elongated cells (large fp;,1, high
mean shape E[DA2)).

The raw MDD images were corrected for motion and eddy currents using the extrapolation-
based references method [51]. Further processing in a per-voxel manner using the DTD
imaging algorithm [36] was implemented in dVIEWR powered by MICE Toolkit™ (Ran-
dom Walk Imaging AB and NONPI Medical AB, Sweden, www.dviewr.com and www.
micetoolkit.com) (accessed on 29 March 2021) to quantify intravoxel tissue composition in
terms of the aforementioned DTD statistical descriptors.

2.5. Quantitative Analysis of the Maps

According to the location and lesion dimensions on DCE images, cancers were identi-
fied in dVIEWR on b = 700 s/mm? images and multiparametric maps, and a volumetric
region of interest (ROI) was manually drawn. ROIs containing more than 10 voxels were
placed in locations classified as FGT in the healthy breast, and as cancer on areas with
correlative tumor confirmed by DCE images. In the case of lesions with enhancing and
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non-enhancing components, a whole-tumor ROI was drawn with the intention of capturing
distinguishable features between the various estimated DTD statistical descriptors.

2.6. Statistical Analysis

Statistics for nominal data were reported using percentages and absolute values, and
metrics data were reported using mean =+ standard deviation. Statistical software SPSS
24.0 (IBM Corp., Chicago, IL, USA) was used to perform the statistical analysis. The Mann—
Whitney U test was used to analyze differences in metrics between the study participants
and biological tissues. p < 0.05 was considered indicative of a significant difference.

3. Results
3.1. Patient Cohort and Lesion Characteristics

Sixteen women with 16 breast cancers (mean size 30 mm, range 6-80 mm) were
analyzed. A review of the images and clinical history revealed eight post-menopausal
and eight pre-menopausal women with predominantly dense breast (almost entirely fatty
breast = 1, scattered FGT = 3, heterogeneous FGT = 8 and extreme amount of FGT = 4).
There were two ductal carcinomas in situ (DCIS), one invasive lobular carcinoma (ILC),
eight invasive ductal carcinomas (IDC), and five IDCs with associated extensive DCIS
component. Among these cancers, eight were grade 3, seven were grade 2 and one was
grade 1. Among invasive carcinomas, 12 were positive for ER, 11 were positive for PR, and
4 were positive for HER2. Clinicopathologic characteristics of the patients and lesions are
shown in Table 2.

Table 2. Clinicopathologic characteristics of patients and lesions.

Feature Value
Patients (n = 16)
Mean patient age in years (SD) 51.1 (13.5)
Menopausal status
Pre-menopausal 8 (50%)
Post-menopausal 8 (50%)
Breast type
Almost entirely fatty 1 (6.25%)
Scattered FGT 3 (18.25%)
Heterogeneous FGT 8 (50%)
Extreme FGT 4 (25%)
Breast tumors (n = 16)
Size in mm (SD) 30 (17.5)
Lesion type on DCE-MRI
Mass 12 (75%)
NME 2 (12.5%)
Mixed 2 (12.5%)
Histopathology
IDC 8 (50%)
ILC 1 (6.25%)
DCIS 2 (12.5%)
IDCs with extensive DCIS component 5 (31.25%)

Abbreviations: DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging; DCIS, ductal carcinoma in
situ; FGT, fibroglandular tissue; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; n, number;
NME, non-mass-enhancing lesion; SD, standard deviation.

3.2. Diffusion Tensor Distributions (DTDs) Results

The mean size of the voxels analyzed was 4.23 & 4.21 cubic centimeters for cancers
and 2.97 & 1.24 cubic centimeters for FGT (p = 0.92). The visual analysis of the parametric
maps showed that tumors were consistently characterized by high signal intensity Sp7q9 in
the b = 700 s/mm? images, i.e., hindered diffusivity associated with a low mean size E[Dj,],
and a high mean shape E[D5?] corresponding to bin1, as shown on Figure 4. Importantly,
all cancer types were invisible in the conventional FA maps. This is due to the fact that they
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featured a low orientational order parameter OP [20], reflecting the random orientation of
their elongated-cell components over the voxel scale.
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Figure 4. Cases of four representative cancers. Figure shows subtracted dynamic contrast-enhanced images and the different
multidimensional diffusion (MDD)-derived parametric maps for each case with corresponding histograms. Abbreviations:
DCE, dynamic contrast-enhanced; DCIS, ductal carcinoma in situ; FA, fractional anisotropy; G, grade; IDC, invasive ductal

carcinoma; OP, orientational order parameter.

The various DTD-derived metrics obtained from tumor ROI analysis and within FGT
are summarized in Table 3. The whole tumor ROI histogram analysis of the DTD-derived
maps for the tumors exhibited the mean diffusion tensor shape E[D A2]=0.47 4+ 0.15 and the
mean diffusion tensor size E[Djs,] = (1.43 4 0.54) x 1073 mm? /s, corresponding to a pre-
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ponderance of elongated cells, as captured by the signal fraction of bin1, fp;,1 = 0.53 £ 0.27.
Figure 5 shows an example of a hematoxylin and eosin-stained section of an invasive
ductal carcinoma with a predominance of irregular and oval-shaped cells, and healthy
fibroglandular tissue with a predominance of round and uniformly smooth cells.

Table 3. Mean values of DTD-derived metrics for tumors and FGT.

Metrics Tumors FGT p-Value
Mean diffusion tensor size (E[Djs,]) 1.43 (0.54) 2.33(0.22) <0.001
Variance of diffusion tensor sizes (V[Djs,]) 0.73 (0.19) 0.97 (0.33) 0.06
Mean diffusion tensor shape (E[Dx?]) 0.47 (0.15) 0.27 (0.11) <0.001
Fractional anisotropy (FA) 0.39 (0.07) 0.32 (0.08) 0.02
Orientational order parameter (OP) 0.38 (0.16) 0.38 (0.17) 0.71
Signal fraction of bin 1 (fpin1) 0.53 (0.27) 0.17 (0.14) <0.001
Signal fraction of bin 2 (fLin0) 0.23 (0.11) 0.22 (0.07) 0.40
Signal fraction of bin 3 (fpin3) 0.29 (0.19) 0.62 (0.10) <0.001

While E[Djs,] is expressed in 1073 mm? /s, V[Djg,] is expressed in 10~° mm*/s2. Other coefficients are unitless.
Numbers in brackets are standard deviations. FGT stands for fibroglandular tissue.

Figure 5. 400 x magnified hematoxylin and eosin-stained sections. (A) 39 mm microscopic invasive ductal carcinoma

corresponding to the one shown in Figure 3. The anatomopathological section shows moderately pleomorphic cells with
a majority exhibiting irregular and oval shape. (B) Benign breast parenchyma adjacent to the tumor in Figure 5A. In
contrast to the large, irregular nuclei in the tumor cells, the nuclei in the cells forming the benign mammary acini are round

and uniformly smooth. Mean diffusion tensor size (E[Djg,]) value in this cancer was 1.09 X 1073 mm?/s, compared to
2.32 x 1073 mm? /s for the healthy glandular tissue, reflecting a higher cell density within the neoplastic section. Mean
diffusion tensor shape (E[D4?]) value in this carcinoma was 0.64, compared to 0.26 for the healthy glandular tissue, which

denotes predominantly elongated components within the cancerous tissue section.

The variance of isotropic diffusivities in the tumors was V[Djs,] = (0.73 £ 0.19)
x 107% mm*/s? (maps not shown in the figures). On the contrary, the healthy FGT yielded
higher values of E[Djs,] and lower values of E[D4?], which corresponds to a preponder-
ance of fast-diffusing, i.e., non-hindered isotropic environments, as captured by the signal
fraction of bin 3, fpin3 = 0.62 £ 0.1. The variance of isotropic diffusivities in FGT was
V[Disol = (0.97 £ 0.33) x 10~° mm*/s2.

Cancers and normal FGT were significantly different according to all the metrics
except for the variance of isotropic diffusivities V[Djgo], OP and fy,ip, which is associated
with densely packed isotropic cells or slow-diffusing isotropic environments. The color-
coded segmentation map derived from bin-resolved signal fractions in Figure 3 indeed
shows that both cancers and FGT can contain this tissue type.
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We previously reported values for the 10th percentile of mean diffusion tensor size
within tumors, denoted by (E[Djsol)10% [52]. The mean value for this parameter was
(1 £0.46) x 1073 mm?/s. When comparing purely invasive carcinomas with mixed
invasive and in situ carcinomas and DCIS tumors in this study, the differences in the
mean values of (E[Dis,])10% were not significant: (0.88 & 0.28) x 103 mm?/s versus
(1.17 £ 0.62) x 10~3 mm? /s, respectively (p = 0.11). However, signal fractions from bin1
and bin3 did show significant differences: f,,1 = 0.64 £ 0.13 for invasive tumors and
fbin1 = 0.4 = 0.25 for the second group (p = 0.03), and fpin3 = 0.18 £ 0.08 for invasive
tumors and fi3 = 0.42 £ 0.21 (p = 0.03) for the second group. DTD-derived metrics and
comparisons based on tumor histopathology are reported in Table 4.

Table 4. Mean values of DTD-derived metrics for tumor histopathology.

DCIS and IDCs

. Invasive with Extensive
Metrics Tumors DCIS p-Value
Component
Mean diffusion tensor size (E[Djs,]) 1.22 (0.32) 1.72 (0.66) 0.05
Variance of diffusion tensor sizes (V[Djso]) 0.68 (0.16) 0.79 (0.22) 0.24
Mean diffusion tensor shape (E[DA2]) 0.53 (0.10) 0.4 (0.18) 0.11
Fractional anisotropy (FA) 0.38 (0.07) 0.4 (0.08) 0.45
Orientational order parameter (OP) 0.35 (0.15) 0.43 (0.17) 0.20
Signal fraction of bin 1 (fiin1) 0.64 (0.13) 0.4 (0.25) 0.03
Signal fraction of bin 2 (fpiny) 0.24 (0.12) 0.21 (0.11) 0.15
Signal fraction of bin 3 (fpin3) 0.18 (0.08) 0.42 (0.21) 0.03

While E[Dj,] is expressed in 1073 mm?/s, V[Diso] is expressed in 10~% mm*/s2. Other coefficients are unitless.
Numbers in brackets are standard deviations. Abbreviations: DCIS, ductal carcinoma in situ; IDC, invasive ductal
carcinoma.

The metrics obtained from the histogram analysis for healthy FGT were compared
based on the menopausal status of the participants. No significant differences were found
with any of the metrics. DTD-derived metrics and comparisons based on menopausal
status are reported in Table 5.

Table 5. Mean values of DTD-derived metrics for menopausal status.

Metrics Premenopausal Postmenopausal p-Value
Mean diffusion tensor size (E[Djso]) 2.35(0.22) 2.31(0.23) 0.96
Variance of diffusion tensor sizes (V[Djs,]) 0.88 (0.3) 1.06 (0.36) 042
Mean diffusion tensor shape (E[Dx?]) 0.25 (0.09) 0.29 (0.13) 0.71
Fractional anisotropy (FA) 0.3 (0.07) 0.33 (0.09) 0.37
Orientational order parameter (OP) 0.36 (0.18) 0.4 (0.18) 0.42
Signal fraction of bin 1 (fpin1) 0.14 (0.11) 0.20 (0.17) 0.42
Signal fraction of bin 2 (fpin) 0.23 (0.08) 0.21 (0.06) 0.96
Signal fraction of bin 3 (fpin3) 0.63 (0.11) 0.61 (0.10) 0.87

While E[Dj,,] is expressed in 1073 mm? /s, V[Djs,] is expressed in 10~% mm*/s2. Other coefficients are unitless.
Numbers in brackets are standard deviations.

The small number of observations within categories for tumor grade, HER2, and
hormonal receptor status prevented more detailed correlation of DTD-specific metrics with
these features of invasive cancers.

4. Discussion

In this prospective pilot study, we investigated the potential of clinical MDD MRI for
the microstructural characterization of breast cancers and normal fibroglandular breast
tissue. Our results showed that cancers were characterized by low E[Djs,] and high E[D A2l
corresponding to binl (elongated cells), while normal FGT exhibited high E[D;s,] and low
E[D4?], corresponding to bin3 (fast-diffusing, i.e., non-hindered isotropic environments).
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When comparing pure invasive carcinomas with mixed invasive and ductal in situ carcino-
mas and DCIS tumors, signal fractions from binl and bin3 were significantly different, with
fpin1 typically higher than fy,;,3, suggesting the predominance of elongated cells in invasive
carcinomas. Maps allowed qualitative and quantitative evaluation of the composition and
orientational order of healthy breast FGT and heterogeneous cancerous tumors.

Conventional imaging biomarkers, MD and ADC, that are commonly used in clinical
practice to differentiate healthy tissue, benign lesions, and malignant lesions [52] are
equivalent to the DTD-derived mean size E[Djg,]. Previous observations in breast lesions
have reported that MD is inversely correlated with tissue cellularity. The observations of
MD in breast tumors and FGT in previous publications [53,54] are in agreement with our
results, wherein the E[Djs,] values in cancers were significantly lower than in FGT due to
higher cellularity. Our values for E[Djs,] in FGT are in line with previous MD observations,
with values over 2 x 1073 mm? /s [55-57]. Furthermore, our E[Djs,] values in cancers are
within the bracket of those reported for MD in malignant tumors in a recent meta-analysis
by Wang et al. [58]. Although MD values have been shown to be reproducible, it is worth
noting that Wang et al. reported a wide range of MD values in tumors across different
studies, ranging from 0.71 x 1073 mm?2/s to 1.62 x 10~3 mm?/s, which may be explained
by different histopathologies and growth patterns that are not evaluable with conventional
DWI [58,59]. Therefore, new DTD-derived mean size E[Djs,] may provide more consistent
and reproducible results, as DTD imaging [36] accounts for the non-Gaussian diffusion
effects originating from the existence of multiple cell densities, shapes, and orientations
below the imaging voxel scale in biological tissues.

Both MD and ADC, which correspond to the same biomarker of inverse cell density,
have been used interchangeably in the literature [54,60,61], and are employed in clinical
practice to distinguish between benign and malignant breast lesions. While malignant
lesions are typically identified as regions of low ADC, it is important to note that di-
agnostic accuracy is highly dependent on the choice of an appropriate threshold below
which ADC is considered “low”. While the European Society of Breast Imaging (EU-
SOBI) International Breast Diffusion-Weighted Imaging working group advocates for a
conservative ADC threshold of 1.3 x 103 mm?/s to indicate lesion suspiciousness, a
recent meta-analysis based on 13,847 lesions by Surov et al. recommends a cut-off value of
1 x 1073 mm?2/s [52,62]. What seems to be clearer is the fact that minimum ADC values
with small ROIs yield the best results [52]. Bickel et al. reported that minimum ADC values
and those obtained from 2D ROIs showed the best diagnostic performance [63]. Similarly,
Arponen et al. reported that the use of small ROIs achieved better accuracies than the
use of a whole-tumor approach. In addition, they reported that cut-off values differed
significantly depending on the measurement procedure [64]. Following this evidence, and
according to recommendations from the EUSOBI International Breast Diffusion-Weighted
Imaging working group, we reported values for the 10th percentile (E[Djso])109% of the
DTD-derived mean size within tumors to reflect the most active part of the tumors without
being overly sensitive to outliers [63]. In this study, no significant differences were found
with this parameter between invasive carcinomas and the group of mixed carcinomas and
DCIS tumors. These results denote that the approach used in our study surely captured
the most aggressive components of the tumors, since most of the cancers in the second
group contained infiltrative components to some extent. This may have an impact on
treatment planning and biopsy guidance. Nevertheless, it is worth mentioning that, given
the significance of values obtained, a comparison with a bigger sample of DCIS would be
desirable to fully evaluate the potential of this biomarker to differentiate invasive from
non-invasive cancers.

FA values confound cell elongation and cell orientational order (alignment) by captur-
ing the average anisotropy of the voxel content [9]. While the DTD-derived mean shape
E[Dx?] also reports on tissue anisotropy, it does so without being influenced by the orienta-
tional order of fibrous tissues at the sub-voxel scale (quantified by the orientational order
parameter OP). We found significantly higher mean values of FA and E[Dx?] in tumors
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compared to FGT, agreeing with the previous literature on FA [55,65], which indicates
that both metrics could be appropriate for breast cancer diagnosis. However, the mean
shape E[D4?] appears to be a more reliable metric than FA, as shown by its higher values
in tumors with low OP and its higher statistical power for distinguishing tumors and FGT
(p < 0.001 for E[Da?] versus p = 0.02 for FA).

Low E[Da?] and FA values throughout healthy breast tissue may indicate that the
abundance of elongated structures such as ducts, lobules, and stroma in FGT have larger
diameters than the mean displacement of water molecules during the diffusion time [55]
probed by our acquisition gradient waveforms. While theoretical tools are currently being
developed to further investigate diffusion time-dependent effects [18,19] in the context of
MDD acquisitions [27,66], such investigations go beyond the scope of the present work.

Several studies have reported lower diffusion coefficients and higher anisotropy
indices in elderly volunteers, probably secondary to a decrease in water content and
an increase in adipose tissue [55,67,68]. Like observations reported by Cakir et al. [54],
our analysis did not show significant differences in metrics between premenopausal and
postmenopausal participants in the healthy breast. This could be due to the age range of
the participants around the perimenopausal period.

From a heterogeneity standpoint, our study showed that MDD alleviates the limita-
tions of DKI in the breast, teasing apart the two microstructural sources of mean kurtosis:
the variance of isotropic diffusivities and the microscopic anisotropy. Indeed, we found
significant differences in mean diffusion tensor shape (E[D?]) between tumors and FGT,
whereas no differences were found in the variance of isotropic diffusivities V[Djs,].

This current study has some limitations. Firstly, the in-plane resolution of this se-
quence is low in comparison with other DWI encoding methods. This can influence the
delineation of lesions, especially small ones. A combination of these advanced MDD
gradients with high resolution DWI encoding strategies would be desirable. Secondly,
the MDD sequence was performed after contrast injection, which might produce a bias
towards tissues which enhance after contrast (i.e., tumors), reducing measured ADC val-
ues; however, this has been shown to have no significant impact on overall breast cancer
diagnostic performance [69,70]. Thirdly, we acknowledge that the small sample size lim-
ited the conclusion on tumor grading or molecular profiles of the tumors; yet, this was a
prospective pilot study designed to demonstrate clinical feasibility. Fourthly, although our
choice of DTD bins yielded consistent results among the cases investigated in this work,
their manual setting may limit generalizations to larger patient cohorts. Instead, efforts
should be made towards developing data-driven ways of identifying these bins. Promising
approaches consist of automatic clustering methods, such as the density peak clustering
method [71], which was recently combined with DTD [72], and higher dimensional ver-
sions of previously published data-driven techniques [49,50]. Note, however, that the mean
shape E[D4?], identified in this work as a potential biomarker of microscopic anisotropy,
remains unaffected by binning. Lastly, although the validity of MDD in brain tumors has
been confirmed in recent correlative studies with histopathology [31], we acknowledge
that our initial results of this pilot study in breast tumors will require further validation in
preclinical and clinical studies in which whole tumor histological specimens are carefully
co-registered to in vivo imaging.

5. Conclusions

Our prospective pilot study for MDD MRI imaging in breast cancer patients indicates
the potential for the more specific characterization of breast cancer through additional
quantitative imaging biomarkers with intuitive relations to the underlying tissue and cell
structure. These new metrics, computed using DTD imaging, quantify fundamentally
different microstructural properties that are inextricably entangled, and thus not available
for cancer characterization with conventional diffusion MRI. Although MDD requires
customized sequences that rely on advanced gradient waveforms with both spherical
and multidirectional linear encodings of the MR signal, the acquisition time is similar to
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conventional diffusion MRI, thus being suitable for easy clinical translation. The promising
results in our prospective pilot study encourage further studies with larger patient groups
and correlation with histopathology and immunohistochemistry.

Author Contributions: Conceptualization, .D.N., K.P-D. and S.B.T.; methodology, LD.N., AR;
software, P.B.; validation, L.D.N., A.R., RL.G,, S.B.T., K.B., J.S.R., D.T., D.D.G. and K.P.-D.; formal
analysis, P.B.; investigation, LD.N. and R.L.G.; resources, A.R., P.B., D.D.G. and D.T.; data curation,
LD.N., RL.G. and P.B.; writing—original draft preparation, .D.N.; writing—review and editing,
AR, PB,RLG.,SBT, KB, JSR, D.T., D.D.G. and K.P--D.; visualization, LD.N., P.B. and D.T.;
supervision, A.R., S.B.T. and K.P-D.; project administration, S.B.T., K.P.-D.; funding acquisition, I.D.N.
and K.P-D. All authors have read and agreed to the published version of the manuscript.

Funding: This study received funding from the NIH/NCI Cancer Center Support Grant (P30
CAO008748), the Breast Cancer Research Foundation, Susan G. Komen, and the Spanish Foundation
Alfonso Martin Escudero.

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of Memorial Sloan
Kettering Cancer Center (protocol code 13-239, approved on 25 November 2013).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author.

Acknowledgments: The authors of the manuscript want to thank Joanne Chin, MFA, ELS, for
manuscript editing.

Conflicts of Interest: A.R. and P.B. are employees of Random Walk Imaging A.B., which holds patents
related to the described methods. P.B. is also the co-founder and a shareholder of NONPI Medical A.B.,
which, along with Random Walk Imaging A.B., own the source code of the dVIEWR software used for
data analysis. D.T. owns shares of Random Walk Imaging A.B., K.B. is a shareholder and employee
of Random Walk Imaging A.B., and K.P.-D. received payment for activities not related to the present
article, including lectures and service on speakers bureaus and for travel/accommodations/meeting
expenses unrelated to activities listed from the European Society of Breast Imaging (MRI educational
course, annual scientific meeting), the IDKD 2019 (educational course), and Siemens Healthineers.
The remaining authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the
decision to publish the results.

References

1.

10.

Partridge, S.C.; Nissan, N.; Rahbar, H.; Bs, A.E.K.; Sigmund, E.E. Diffusion-weighted breast MRI: Clinical applications and
emerging techniques. J. Magn. Reson. Imaging 2017, 45, 337-355. [CrossRef]

Basser, PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed.
1995, 8, 333-344. [CrossRef] [PubMed]

Basser, PJ.; Pierpaolib, C. Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor
MRL J. Magn. Reson. Ser. B 1996, 111, 209-219. [CrossRef] [PubMed]

Le Bihan, D. Apparent Diffusion Coefficient and Beyond: What Diffusion MR Imaging Can Tell Us about Tissue Structure.
Radiology 2013, 268, 318-322. [CrossRef] [PubMed]

Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions:
Application to diffusion and perfusion in neurologic disorders. Radiology 1986, 161, 401-407. [CrossRef]

Bokacheva, L.; Kaplan, ]J.B.; Giri, D.D.; Patil, S.; Gnanasigamani, M.; Nyman, C.G.; Deasy, ].O.; Morris, E.A.; Thakur, S.B.
Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and
breast parenchyma. J. Magn. Reson. Imaging 2014, 40, 813-823. [CrossRef] [PubMed]

Cho, G.Y.; Gennaro, L.; Sutton, E.J.; Zabor, E.C.; Zhang, Z.; Giri, D.; Moy, L.; Sodickson, D.K.; Morris, E.A.; Sigmund, E.E.; et al.
Intravoxel incoherent motion (IVIM) histogram biomarkers for prediction of neoadjuvant treatment response in breast cancer
patients. Eur. |. Radiol. Open 2017, 4, 101-107. [CrossRef]

Basser, P; Mattiello, J.; LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. ]. 1994, 66, 259-267. [CrossRef]
Pierpaoli, C.; Jezzard, P.; Basser, PJ.; Barnett, A.; Chiro, G.D. Diffusion tensor MR imaging of the human brain. Radiology 1996,
201, 637-648. [CrossRef]

Tournier, J.-D.; Mori, S.; Leemans, A. Diffusion tensor imaging and beyond. Magn. Reson. Med. 2011, 65, 1532-1556. [CrossRef]


http://doi.org/10.1002/jmri.25479
http://doi.org/10.1002/nbm.1940080707
http://www.ncbi.nlm.nih.gov/pubmed/8739270
http://doi.org/10.1006/jmrb.1996.0086
http://www.ncbi.nlm.nih.gov/pubmed/8661285
http://doi.org/10.1148/radiol.13130420
http://www.ncbi.nlm.nih.gov/pubmed/23882093
http://doi.org/10.1148/radiology.161.2.3763909
http://doi.org/10.1002/jmri.24462
http://www.ncbi.nlm.nih.gov/pubmed/24273096
http://doi.org/10.1016/j.ejro.2017.07.002
http://doi.org/10.1016/S0006-3495(94)80775-1
http://doi.org/10.1148/radiology.201.3.8939209
http://doi.org/10.1002/mrm.22924

Cancers 2021, 13, 1606 15 0f 17

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

Jensen, ].H.; Helpern, J.A.; Ramani, A.; Lu, H.; Kaczynski, K. Diffusional kurtosis imaging: The quantification of non-gaussian
water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 2005, 53, 1432-1440. [CrossRef]

Jensen, ].H.; Helpern, J.A. MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed. 2010, 23,
698-710. [CrossRef]

Camps-Herrero, ]. Diffusion-weighted imaging of the breast: Current status as an imaging biomarker and future role. BJR Open
2019, 1, 20180049. [CrossRef]

Zhou, W.-P; Zan, X.-Y.; Hu, X.-Y,; Liu, X.; Sudarshan, S.K.P;; Yang, S.-D.; Guo, Y.-].; Fang, X.-M. Characterization of breast lesions
using diffusion kurtosis model-based imaging: An initial experience. J. X-Ray Sci. Technol. 2020, 28, 157-169. [CrossRef]
Partridge, S.C.; Ziadloo, A.; Murthy, R.; White, S.W.; Peacock, S.; Eby, PR.; DeMartini, W.B.; Lehman, C.D. Diffusion tensor MRI:
Preliminary anisotropy measures and mapping of breast tumors. J. Magn. Reson. Imaging 2010, 31, 339-347. [CrossRef]

Wu, N.; Li, G,; Zhang, J.; Chang, S.; Hu, ].; Dai, Y. Characterization of Breast Tumors Using Diffusion Kurtosis Imaging (DKI).
PLoS ONE 2014, 9, €113240. [CrossRef]

Huang, Y; Lin, Y,; Hu, W,; Ma, C.; Lin, W,; Wang, Z; Liang, J.; Ye, W.; Zhao, ].; Wu, R. Diffusion Kurtosis at 3.0T as an In Vivo
Imaging Marker for Breast Cancer Characterization: Correlation with Prognostic Factors. J. Magn. Reson. Imaging 2019, 49,
845-856. [CrossRef]

Xu, J; Jiang, X,; Li, H.; Arlinghaus, L.R.; McKinley, E.T.; Devan, S.P.; Hardy, B.M.; Xie, J.; Kang, H.; Chakravarthy, A.B.; et al.
Magnetic resonance imaging of mean cell size in human breast tumors. Magn. Reson. Med. 2020, 83, 2002-2014. [CrossRef]

Xu, J; Jiang, X.; Devan, S.P.; Arlinghaus, L.R.; McKinley, E.T.; Xie, J.; Zu, Z.; Wang, Q.; Chakravarthy, A.B.; Wang, Y.; et al.
MRI-cytometry: Mapping nonparametric cell size distributions using diffusion MRI. Magn. Reson. Med. 2021, 85, 748-761.
[CrossRef]

Lasi¢, S.; Szczepankiewicz, E; Eriksson, S.; Nilsson, M.; Topgaard, D. Microanisotropy imaging: Quantification of microscopic
diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the g-vector. Front. Phys.
2014, 2, 2. [CrossRef]

Topgaard, D. Multidimensional diffusion MRI. ]. Magn. Reson. 2017, 275, 98-113. [CrossRef]

Westin, C.-F,; Knutsson, H.; Pasternak, O.; Szczepankiewicz, F,; Ozarslan, E.; van Westen, D.; Mattisson, C.; Bogren, M.; O'Donnell,
L.J.; Kubicki, M; et al. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neurolmage 2016, 135,
345-362. [CrossRef]

Andrew, E.R.; Bradbury, A.W.; Eades, R.G. Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by
Specimen Rotation. Nature 1959, 183, 1802-1803. [CrossRef]

Schmidt-Rohr, K.; Spiess, H-W. Multidimensional Solid-State NMR and Polymers; Academic Press: London, UK, 1994.

Eriksson, S.; Lasi¢, S.; Nilsson, M.; Westin, C.-E.; Topgaard, D. NMR diffusion-encoding with axial symmetry and variable
anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. J.
Chem. Phys. 2015, 142, 104201. [CrossRef] [PubMed]

Szczepankiewicz, F; Westin, C.-F; Nilsson, M. Gradient waveform design for tensor-valued encoding in diffusion MRI. J. Neurosci.
Methods 2021, 348, 109007. [CrossRef]

Topgaard, D. Advanced Diffusion Encoding Methods in MRI; Royal Society of Chemistry: Croydon, UK, 2020.

Ning, L.; Szczepankiewicz, F; Nilsson, M.; Rathi, Y.; Westin, C.-F. Probing tissue microstructure by diffusion skewness tensor
imaging. Sci. Rep. 2021, 11, 135. [CrossRef]

Szczepankiewicz, F.; Sjolund, J.; Stahlberg, F.; Litt, J.; Nilsson, M. Tensor-valued diffusion encoding for diffusional variance
decomposition (DIVIDE): Technical feasibility in clinical MRI systems. PLoS ONE 2019, 14, e0214238. [CrossRef] [PubMed]
Szczepankiewicz, F.; Lasi¢, S.; van Westen, D.; Sundgren, P.C.; Englund, E.; Westin, C.-F; Stahlberg, F.; Litt, J.; Topgaard, D.;
Nilsson, M. Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure:
Applications in healthy volunteers and in brain tumors. Neurolmage 2015, 104, 241-252. [CrossRef]

Szczepankiewicz, F.; van Westen, D.; Englund, E.; Westin, C.-F,; Stdhlberg, F; Litt, J.; Sundgren, P.C.; Nilsson, M. The link between
diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).
Neurolmage 2016, 142, 522-532. [CrossRef] [PubMed]

Nilsson, M.; Szczepankiewicz, E.; Brabec, J.; Taylor, M.; Westin, C.; Golby, A.; Van Westen, D.; Sundgren, P.C. Tensor-valued
diffusion MRI in under 3 minutes: An initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors.
Magn. Reson. Med. 2020, 83, 608—620. [CrossRef]

Lampinen, B.; Zampeli, A.; Bjorkman-Burtscher, .M.; Szczepankiewicz, E.; Kéllén, K.; Strandberg, M.C.; Nilsson, M. Tensor-
valued diffusion MRI differentiates cortex and white matter in malformations of cortical development associated with epilepsy.
Epilepsia 2020, 61, 1701-1713. [CrossRef] [PubMed]

Andersen, K.W.; Lasi¢, S.; Lundell, H.; Nilsson, M.; Topgaard, D.; Sellebjerg, E.; Szczepankiewicz, F.; Siebner, H.R.; Blinkenberg,
M.; Dyrby, T.B. Disentangling white-matter damage from physiological fibre orientation dispersion in multiple sclerosis. Brain
Commun. 2020, 2, 2. [CrossRef]

Kamiya, K.; Kamagata, K.; Ogaki, K.; Hatano, T.; Ogawa, T.; Takeshige-Amano, H.; Murata, S.; Andica, C.; Murata, K.;
Feiweier, T.; et al. Brain White-Matter Degeneration Due to Aging and Parkinson Disease as Revealed by Double Diffusion
Encoding. Front. Neurosci. 2020, 14, 584510. [CrossRef]

Topgaard, D. Diffusion tensor distribution imaging. NMR Biomed. 2019, 32, e4066. [CrossRef] [PubMed]


http://doi.org/10.1002/mrm.20508
http://doi.org/10.1002/nbm.1518
http://doi.org/10.1259/bjro.20180049
http://doi.org/10.3233/XST-190590
http://doi.org/10.1002/jmri.22045
http://doi.org/10.1371/journal.pone.0113240
http://doi.org/10.1002/jmri.26249
http://doi.org/10.1002/mrm.28056
http://doi.org/10.1002/mrm.28454
http://doi.org/10.3389/fphy.2014.00011
http://doi.org/10.1016/j.jmr.2016.12.007
http://doi.org/10.1016/j.neuroimage.2016.02.039
http://doi.org/10.1038/1831802a0
http://doi.org/10.1063/1.4913502
http://www.ncbi.nlm.nih.gov/pubmed/25770532
http://doi.org/10.1016/j.jneumeth.2020.109007
http://doi.org/10.1038/s41598-020-79748-3
http://doi.org/10.1371/journal.pone.0214238
http://www.ncbi.nlm.nih.gov/pubmed/30921381
http://doi.org/10.1016/j.neuroimage.2014.09.057
http://doi.org/10.1016/j.neuroimage.2016.07.038
http://www.ncbi.nlm.nih.gov/pubmed/27450666
http://doi.org/10.1002/mrm.27959
http://doi.org/10.1111/epi.16605
http://www.ncbi.nlm.nih.gov/pubmed/32667688
http://doi.org/10.1093/braincomms/fcaa077
http://doi.org/10.3389/fnins.2020.584510
http://doi.org/10.1002/nbm.4066
http://www.ncbi.nlm.nih.gov/pubmed/30730586

Cancers 2021, 13, 1606 16 of 17

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Basser, PJ.; Pajevic, S. A normal distribution for tensor-valued random variables: Applications to diffusion tensor MRI. IEEE
Trans. Med. Imaging 2003, 22, 785-794. [CrossRef] [PubMed]

Jian, B.; Vemuri, B.C.; Ozarslan, E.; Carney, PR.; Mareci, T.H. A novel tensor distribution model for the diffusion-weighted MR
signal. Neurolmage 2007, 37, 164-176. [CrossRef] [PubMed]

de Almeida Martins, ].P.; Tax, CM.W.; Szczepankiewicz, F.; Jones, D.K.; Westin, C.-F.; Topgaard, D. Transferring principles of
solid-state and Laplace NMR to the field of in vivo brain MRI. Magn. Reson. 2020, 1, 27-43. [CrossRef]

de Almeida Martins, J.P.; Topgaard, D. Multidimensional correlation of nuclear relaxation rates and diffusion tensors for
model-free investigations of heterogeneous anisotropic porous materials. Sci. Rep. 2018, 8, 2488. [CrossRef]

Reymbaut, A.; Critchley, J.; Durighel, G.; Sprenger, T.; Sughrue, M.; Bryskhe, K.; Topgaard, D. Toward nonparametric diffusion-
characterization of crossing fibers in the human brain. Magn. Reson. Med. 2021, 85, 2815-2827. [CrossRef] [PubMed]

Breast Imaging Reporting and Data System, 5th ed.; ACR BI-RADS® Atlas; American College of Radiology: Reston, VA, USA, 2013;
Available online: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads (accessed on 30 March 2021).
Elston, C.; Ellis, I. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience
from a large study with long-term follow-up. Histopathology 1991, 19, 403—410. [CrossRef] [PubMed]

Conturo, T.E.; McKinstry, R.C.; Akbudak, E.; Robinson, B.H. Encoding of anisotropic diffusion with tetrahedral gradients: A
general mathematical diffusion formalism and experimental results. Magn. Reson. Med. 1996, 35, 399—-412. [CrossRef] [PubMed]

Reymbaut, A.; Mezzani, P.; de Almeida Martins, ].P; Topgaard, D. Accuracy and precision of statistical descriptors obtained from
multidimensional diffusion signal inversion algorithms. NMR Biomed. 2020, 33, e4267. [CrossRef] [PubMed]

Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1974.

Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1-26. [CrossRef]

De Kort, D.W.; Van Duynhoven, ].P.M.; Hoeben, F.J.M.; Janssen, H.M.; Van As, H. NMR Nanoparticle Diffusometry in Hydrogels:
Enhancing Sensitivity and Selectivity. Anal. Chem. 2014, 86, 9229-9235. [CrossRef]

Pas, K.; Komlosh, M.E.; Perl, D.P,; Basser, PJ.; Benjamini, D. Retaining information from multidimensional correlation MRI using
a spectral regions of interest generator. Sci. Rep. 2020, 10, 3246. [CrossRef]

Slator, PJ.; Hutter, J.; Marinescu, R.V.; Palombo, M.; Young, A.L.; Jackson, L.H.; Ho, A.; Chappell, L.C.; Rutherford, M.;
Hajnal, J.V.; et al. InSpect: INtegrated SPECTral Component Estimation and Mapping for Multi-contrast Microstructural MRI. In
Information Processing in Medical Imaging. IPMI 2019; Chung, A., Gee, ]J., Yushkevich, P.,, Bao, S., Eds.; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2019; Volume 11492, pp. 755-766.

Nilsson, M.; Szczepankiewicz, F.; Van Westen, D.; Hansson, O. Extrapolation-Based References Improve Motion and Eddy-Current
Correction of High B-Value DWI Data: Application in Parkinson’s Disease Dementia. PLoS ONE 2015, 10, €0141825. [CrossRef]

Baltzer, P.; Mann, RM.; Iima, M.; Sigmund, E.E.; Clauser, P; Gilbert, FJ.; Martincich, L.; Partridge, S.C.; Patterson, A.;
Pinker, K; et al. Diffusion-weighted imaging of the breast—A consensus and mission statement from the EUSOBI Interna-
tional Breast Diffusion-Weighted Imaging working group. Eur. Radiol. 2020, 30, 1436-1450. [CrossRef] [PubMed]

Jiang, R.; Ma, Z.; Dong, H.; Sun, S.; Zeng, X.; Li, X. Diffusion tensor imaging of breast lesions: Evaluation of apparent diffusion
coefficient and fractional anisotropy and tissue cellularity. Br. ]. Radiol. 2016, 89, 20160076. [CrossRef]

Cakir, O.; Arslan, A ; Inan, N.; Anik, Y; Sarisoy, T.; Guimtistas, S.; Akansel, G. Comparison of the diagnostic performances of
diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. Eur. |. Radiol. 2013, 82,
801-806. [CrossRef] [PubMed]

Nissan, N.; Furman-Haran, E.; Feinberg-Shapiro, M.; Grobgeld, D.; Eyal, E.; Zehavi, T.; Degani, H. Tracking the Mammary
Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging. J. Vis. Exp. 2014, e52048.
[CrossRef]

Plaza, M.].; Morris, E.A.; Thakur, S.B. Diffusion tensor imaging in the normal breast: Influences of fibroglandular tissue
composition and background parenchymal enhancement. Clin. Imaging 2016, 40, 506-511. [CrossRef] [PubMed]

Eyal, E.; Shapiro-Feinberg, M.; Furman-Haran, E.; Grobgeld, D.; Golan, T.; Itzchak, Y.; Catane, R.; Papa, M.; Degani, H. Parametric
Diffusion Tensor Imaging of the Breast. Investig. Radiol. 2012, 47, 284-291. [CrossRef] [PubMed]

Wang, K.; Li, Z.; Wu, Z.; Zheng, Y.; Zeng, S.; E, L.; Liang, ]. Diagnostic Performance of Diffusion Tensor Imaging for Characterizing
Breast Tumors: A Comprehensive Meta-Analysis. Front. Oncol. 2019, 9, 1229. [CrossRef]

Tagliafico, A.; Rescinito, G.; Monetti, F.; Villa, A.; Chiesa, F; Fisci, E.; Pace, D.; Calabrese, M. Diffusion tensor magnetic resonance
imaging of the normal breast: Reproducibility of DTI-derived fractional anisotropy and apparent diffusion coefficient at 3.0 T.
Radiol. Med. 2012, 117,992-1003. [CrossRef]

Mukherjee, P; Berman, ].I; Chung, S.W.; Hess, C.P.; Henry, R.G. Diffusion Tensor MR Imaging and Fiber Tractography: Theoretic
Underpinnings. AJNR Am. ]. Neuroradiol. 2008, 29, 632—-641. [CrossRef]

Soares, ].M.; Marques, P.; Alves, V.; Sousa, N. A hitchhiker’s guide to diffusion tensor imaging. Front. Neurosci. 2013, 7, 31.
[CrossRef] [PubMed]

Surov, A.; Meyer, H.].; Wienke, A. Can apparent diffusion coefficient (ADC) distinguish breast cancer from benign breast findings?
A meta-analysis based on 13 847 lesions. BMC Cancer 2019, 19, 955. [CrossRef] [PubMed]

Bickel, H.; Pinker, K.; Polanec, S.; Magometschnigg, H.; Wengert, G.; Spick, C.; Bogner, W.; Bago-Horvath, Z.; Helbich, T.H.;
Baltzer, P. Diffusion-weighted imaging of breast lesions: Region-of-interest placement and different ADC parameters influence
apparent diffusion coefficient values. Eur. Radiol. 2017, 27, 1883-1892. [CrossRef]


http://doi.org/10.1109/TMI.2003.815059
http://www.ncbi.nlm.nih.gov/pubmed/12906233
http://doi.org/10.1016/j.neuroimage.2007.03.074
http://www.ncbi.nlm.nih.gov/pubmed/17570683
http://doi.org/10.5194/mr-1-27-2020
http://doi.org/10.1038/s41598-018-19826-9
http://doi.org/10.1002/mrm.28604
http://www.ncbi.nlm.nih.gov/pubmed/33301195
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads
http://doi.org/10.1111/j.1365-2559.1991.tb00229.x
http://www.ncbi.nlm.nih.gov/pubmed/1757079
http://doi.org/10.1002/mrm.1910350319
http://www.ncbi.nlm.nih.gov/pubmed/8699953
http://doi.org/10.1002/nbm.4267
http://www.ncbi.nlm.nih.gov/pubmed/32067322
http://doi.org/10.1214/aos/1176344552
http://doi.org/10.1021/ac502211q
http://doi.org/10.1038/s41598-020-60092-5
http://doi.org/10.1371/journal.pone.0141825
http://doi.org/10.1007/s00330-019-06510-3
http://www.ncbi.nlm.nih.gov/pubmed/31786616
http://doi.org/10.1259/bjr.20160076
http://doi.org/10.1016/j.ejrad.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24099642
http://doi.org/10.3791/52048
http://doi.org/10.1016/j.clinimag.2015.12.001
http://www.ncbi.nlm.nih.gov/pubmed/27133695
http://doi.org/10.1097/RLI.0b013e3182438e5d
http://www.ncbi.nlm.nih.gov/pubmed/22472798
http://doi.org/10.3389/fonc.2019.01229
http://doi.org/10.1007/s11547-012-0831-9
http://doi.org/10.3174/ajnr.A1051
http://doi.org/10.3389/fnins.2013.00031
http://www.ncbi.nlm.nih.gov/pubmed/23486659
http://doi.org/10.1186/s12885-019-6201-4
http://www.ncbi.nlm.nih.gov/pubmed/31615463
http://doi.org/10.1007/s00330-016-4564-3

Cancers 2021, 13, 1606 17 of 17

64.

65.

66.

67.

68.

69.

70.

71.
72.

Arponent, O.; Sudah, M.; Masarwah, A.; Taina, M.; Rautiainen, S.; Kénénen, M.; Sironen, R.; Kosma, V.-M.; Sutela, A.;
Hakumaiki, J.; et al. Diffusion-Weighted Imaging in 3.0 Tesla Breast MRI: Diagnostic Performance and Tumor Characterization
Using Small Subregions vs. Whole Tumor Regions of Interest. PLoS ONE 2015, 10, e0138702. [CrossRef]

Luo, J.; Hippe, D.S.; Rahbar, H.; Parsian, S.; Rendi, M.H.; Partridge, S.C. Diffusion tensor imaging for characterizing tumor
microstructure and improving diagnostic performance on breast MRI: A prospective observational study. Breast Cancer Res. 2019,
21,102. [CrossRef]

Lundell, H.; Nilsson, M.; Dyrby, T.B.; Parker, G.].M.; Cristinacce, P.L.H.; Zhou, F.-L.; Topgaard, D.; Lasi¢, S. Multidimensional
diffusion MRI with spectrally modulated gradients reveals unprecedented microstructural detail. Sci. Rep. 2019, 9, 9026.
[CrossRef] [PubMed]

O’Flynn, E.AM.; Morgan, V.A; Giles, S.L.; DeSouza, N.M. Diffusion weighted imaging of the normal breast: Reproducibility of
apparent diffusion coefficient measurements and variation with menstrual cycle and menopausal status. Eur. Radiol. 2012, 22,
1512-1518. [CrossRef] [PubMed]

Shin, S.; Ko, E.S.; Kim, R.B.; Han, B.-K.; Nam, S.J.; Shin, J.H.; Hahn, S.Y. Effect of menstrual cycle and menopausal status on
apparent diffusion coefficient values and detectability of invasive ductal carcinoma on diffusion-weighted MRI. Breast Cancer Res.
Treat. 2015, 149, 751-759. [CrossRef]

Fanariotis, M.; Tsougos, I.; Vlychou, M.; Fezoulidis, I.; Vassiou, K. Contrast-enhanced and unenhanced diffusion-weighted
imaging of the breast at 3 T. Clin. Radiol. 2018, 73, 928-935. [CrossRef]

Janka, R.; Hammon, M.; Geppert, C.; Nothhelfer, A.; Uder, M.; Wenkel, E. Diffusion-Weighted MR Imaging of Benign and
Malignant Breast Lesions Before and After Contrast Enhancement. RoFo 2014, 186, 130-135. [CrossRef] [PubMed]

Rodriguez, A.; Laio, A. Clustering by fast search and find of density peaks. Science 2014, 344, 1492-1496. [CrossRef] [PubMed]
Reymbaut, A.; de Almeida Martins, J.P.; Tax, CM.W.; Szczepankiewicz, E; Jones, D.K.; Topgaard, D. Resolving orientation-specific
diffusion-relaxation features via Monte-Carlo density-peak clustering in heterogeneous brain tissue. arXiv 2020, arXiv:2004.08626.


http://doi.org/10.1371/journal.pone.0138702
http://doi.org/10.1186/s13058-019-1183-3
http://doi.org/10.1038/s41598-019-45235-7
http://www.ncbi.nlm.nih.gov/pubmed/31227745
http://doi.org/10.1007/s00330-012-2399-0
http://www.ncbi.nlm.nih.gov/pubmed/22367471
http://doi.org/10.1007/s10549-015-3278-6
http://doi.org/10.1016/j.crad.2018.06.019
http://doi.org/10.1055/s-0033-1350298
http://www.ncbi.nlm.nih.gov/pubmed/23929263
http://doi.org/10.1126/science.1242072
http://www.ncbi.nlm.nih.gov/pubmed/24970081

	Introduction 
	Materials and Methods 
	Patients 
	MRI Examination Protocol 
	Image Assessment and Data Collection 
	Diffusion Tensor Distributions (DTDs) and DTD-Derived Maps 
	Quantitative Analysis of the Maps 
	Statistical Analysis 

	Results 
	Patient Cohort and Lesion Characteristics 
	Diffusion Tensor Distributions (DTDs) Results 

	Discussion 
	Conclusions 
	References

