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Simple Summary: Signal transducer and activator of transcription 3 (STAT3)/Cyclin-dependent
kinases are multifunctional proteins that play instrumental roles in carcinogenesis. However, the ge-
netic alterations of the STAT3/CDK2/4/6 signaling axis and its role in predicting immune infiltration
and immunotherapeutic response remain unclear. Here, we used in silico analyses of multi-Omics
data to map out the role of epigenetic and genetic alterations of STAT3/CDK2/4/6 in tumor immune
infiltrations, immunotherapy response, and prognosis of cancer patients. Our study collectively
suggested that STAT3/CDK2/4/6 are important onco-immune signatures that contribute to tumor
immune invasion, poor prognoses, and immune therapy failure. Our finding may be clinically useful
in designing therapeutic strategies, prognosis assessment, and follow-up management in patients
receiving immunotherapy in multiple cancers.

Abstract: Signal transducer and activator of transcription 3 (STAT3)/Cyclin-dependent kinases are
multifunctional proteins that play an important implicative role in cancer initiations, progression,
drug resistance, and metastasis, and has been extensively explored in cancer therapy. However, the ge-
netic alterations of STAT3/CDK2/4/6 and its role in predicting immune infiltration and immunother-
apeutic response are yet to be well exploited. In this study, we use in silico methods to analyze
differential expression, prognostic value, genetic and epigenetic alterations, association with tumor-
infiltrating immune cells, and cancer-associated fibroblast (CAF) infiltrations of STAT3/CDK2/4/6 in
multiple cancer types. Our results revealed that the expression of STAT3/CDK2/4/6 was altered in
various cancers and is associated with poor overall and disease-free survival of the cohorts. Moreover,
genetic alterations in STAT3/CDK2/4/6 co-occurred with a number of other genetic alterations and
are associated with poorer prognoses of the cohorts. The protein-protein interaction (PPI) network
analysis suggests CDK2/4/6/STAT3 may directly interact with factors that promote tumorigen-
esis and immune response. We found that STAT3/CDK2/4/6 expressions were associated with
infiltrations of CAF and the various immune cells in multiple cancers and it’s associated with poor
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response to immunotherapy. Collectively, our study suggested that STAT3/CDK2/4/6 are important
onco-immune signatures that play central roles in tumor immune invasion, poor prognoses and,
immune therapy response. Findings from the present study may therefore be clinically useful in
prognosis assessment and follow-up management of immunotherapy.

Keywords: cyclin-dependent kinases; signal transducer and activator of transcription 3; genetic
alterations; tumor immune infiltrations; cancer-associated fibroblast infiltration

1. Introduction

Early diagnosis of cancer increases the success of conventional therapies including
surgery, chemo-, radio- and immunotherapy. However, cancers diagnosed at a later stage
are more susceptible to treatment failure, drug resistance, metastasis, and poor prognosis [1].
Because most cancers are diagnosed at a later stage, the survival rate of patients is often
low, less than 3 years in most cases. Therefore, cancer remains a public health concern and
currently ranked the second leading cause of global mortality [2,3].

The role of genetic mutation as a biomarker in the diagnosis and prognosis of different
cancers has been described in previous studies, providing insight into the developments
of neoantigens for tumor immune invasion and cancer’s life-threatening physiognomies,
such as incessant growth and metastasis [4,5]. Accumulating evidence indicates that the
tumor microenvironment (TME) and immune cell infiltration play a key role in tumor pro-
gression and poor prognosis [6,7]. The accretion of various infiltrating immune cells such
as regulatory T cells, natural killer cells, B-cells, and tumor-associated-macrophages, in the
TME, has been found to be associated with tumor progression. These infiltrating immune
cells, do not inhibit the growth of cancer cells but play a crucial role in mediating tumor
immune escape [8,9]. Immune checkpoints such as cytotoxic T lymphocyte-associated
antigen 4 (CTLA4) and programmed cell death ligand-1 (PD-L1) have been shown to im-
pede anti-tumor immunity, leading to the invasion of host immune attack [10,11]. Already,
several biomarkers have been incorporated into clinical practice, the outcome of cancer
immunotherapy is still disappointing [8]. Therefore, finding novel potential targets for
cancer immunotherapy and biomarkers for effective screening in the earlier stages can be a
powerful tool to improve long-term survival [12,13].

Cyclin-dependent kinases (CDKs) are serine/threonine enzymes of cell cycle check-
points whose catalytic activities are controlled by occasional complexation of its catalytic
unit with its regulatory unit, cyclins [14]. CDKs are multi-functional proteins whose role
includes metabolism, epigenetic regulations, spermatogenesis cell cycle transition, and
stem cell self-renewal [15,16]. Clinical studies also indicated that CDKs regulate pro-
inflammatory response by mediating pro-inflammatory transcription factors such as the
signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa B [17].
STAT3 is also a multifunctional transcriptional factor with an important implicative role in
cancer progression and drug resistance [18,19] and has been extensively explored in cancer
therapy [20,21]. However, its role in predicting immune infiltration and immunotherapeu-
tic response is yet to be well exploited. Among the CDKs, CDK1/2/4/6 are particularly
important in regulating cell cycle transition. They regulate cell cycle transition via phos-
phorylation and inactivation of various regulatory proteins such as cell cycle inhibitors
Whi5 [22] and retinoblastoma (Rb), a cell cycle inhibitor and tumor suppressor protein [23].
However, epigenetic factors and genetic factors including the loss of cyclin D-CDK4/6
negative regulators, overexpression of cyclin D, amplification and/or mutation of CDK4/6,
compromises the regulatory integrity of the CDKs leading to hyper complexation of the
catalytic and regulatory unit and consequently un-control cell cycle progression, cancer
initiation and developments [23–25]. Aberrant CDKs expressions, therefore, constitute
an important event in cancer development, progression, and aggressiveness. Altogether,
identifying the association between CDK2/4/6/STAT3 and infiltration of various immune
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cells will help in developing an important biomarker for early stratification of patient
immune status and response to immunotherapy.

The use of bioinformatics for the identification of important cancer biomarkers is
increasingly becoming a reliable and profitable method [26,27], owing to the availability of
multi-omics clinical data including differentially expressed genes, mutation profile, thera-
peutic response, and survival profile of cancer patients in public databases providing a reli-
able guideline for the development of appropriate therapeutic intervention [12]. In addition,
network analysis of multi-omics data has also helped our understanding of the epigenetic
mechanism of cancer development and facilitated the discovery of epigenetic-based prog-
nostic biomarkers and therapies [28–32]. In this study, we identified STAT3/CDK2/4/6
as an oncogenic prognosticator of cancer-associated fibroblasts and tumor immune infil-
trations. We also demonstrated that the STAT3/CDK2/4/6 signature is associated with
immune therapy response and poor prognosis of multiple cancer cohorts. Genetic al-
teration of STAT3/CDK2/4/6 co-occurred with other gene alteration and are associated
with poorer prognosis of the cohorts. Our finding may be clinically useful in designing
appropriate therapeutic strategies, prognosis assessment, and follow-up management of
immunotherapy in multiple cancers.

2. Materials and Methods
2.1. Differential Expression Analysis of STAT3/CDK2/D/6 Signatures in a Panel of Human Cancers

We used the Tumor IMmune Estimation Resource (TIMER2.0) algorithm (http://
timer.cistrome.org/, accessed on 13 December 2020) to compare the STAT3, CDK2, CDK4,
and CDK6 expression levels between tumor tissues and matched normal tissues in The
Cancer Genome Atlas (TCGA) database. Furthermore, immunohistochemical data from
the Human Protein Atlas (HPA) database (www.proteinatlas.org, accessed on 13 December
2020) was used to analyze CDK2, CDK 4, CDK6, and STAT3 expressions in tumor samples
from cancer patients.

2.2. Survival Analysis of STAT3/CDK2/D/6 Signature in a Panel of Human Cancers

To analyzed the prognostic value of STAT3/CDK2/D/6 signature, we collected the
RNA expression profile of STAT3/CDK2/4/6 signature from the 9736 tumor samples across
33 TCGA and GTEx datasets using the Gene Expression Profiling Interactive Analysis
(GEPIA) database (http://gepia.cancer-pku.cn/, accessed on 15 December 2020) [33] and
then set the median expression as the expression threshold to split the patient samples
into high-STAT3/ CDK2/4/6 high-expression and low-expression groups, and used the
Kaplan-Meier survival plot to assess the overall survival (OS) and disease-free survival
(DFS) with the hazard ratio (HR), a 95% confidence interval (CI), and a log-rank test p-value.

2.3. Protein-Protein Interaction and Functional Enrichment Analysis

The protein-protein interaction (PPI) network and the functional enrichment analysis
including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene On-
tology (GO); biological process and clinical pathology enriched in STAT3/CDK2/4/6 PPI
network were analyzed using the Search Tool for Retrieval of Interacting Genes (STRING,
version 10.5, (https://www.string-db.org/, accessed on 24 December 2020) with the ad-
justed threshold confidence set at 0.900 [34] and Enrich (https://maayanlab.cloud/Enrichr/
enrich#, accessed on 24 December 2020) [35,36].

2.4. Analysis of STAT3/CDK2/4/6 Genetic Alterations and Its Prognostic Relevance in
Multiple Cancers

We explore the cancer genomic data set through the cBioPortal tool (http://www.
cbioportal.org/, accessed on 26 December 2020) to analyze the genomic alterations, survival
analysis, gene alteration co-occurrence, and perform group comparisons of STAT3/CDK2/4/6
in 10,953 cancer patient (10,967 samples) from different cancer types [37,38]. While we
used the Tumor Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu,

http://timer.cistrome.org/
http://timer.cistrome.org/
http://gepia.cancer-pku.cn/
https://www.string-db.org/
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accessed on 15 February 2021) tools [39] to analyze the copy number alterations (CAN) data
together with both survival durations and tumor gene expression profiles of cancer cohorts
from 36 cancer types consisting of 30 TCGA cancers datasets [40] and six METABARIC
breast cancer subtypes (luminal A, luminal B, Her2 positive, basal, and triple-negative)
datasets [41] through the TIDE server. All the analysis was considered significant at
p < 0.05.

2.5. Analysis of STAT3/CDK2/4/6 Association with Infiltrations of Cancer-Associated Fibroblast
and Various Immune Cells

We also used the TIMER algorithm to comprehensively analyze correlations between
STAT3/CDK2/4/6 expressions and six tumor-infiltrating immune cell subsets (B cells,
CD4 T cells, CD8 T cells, macrophages, neutrophils, and dendritic cells) in multiple cancers
from the TCGA database [42]. We used the purity adjustment and partial Spearman’s cor-
relation to analyzed the STAT3/CDK2/4/6 expression correlations with cancer-associated
fibroblast (CAF) across 40 TCGA cancer types using the TIMER server. To evaluate the
prognostic relevance of these associations, we classified all cohorts into 4 groups; lowCAF +
lowSTAT3/CDK2/4/6, lowCAF + highSTAT3/CDK2/4/6, highCAF + lowSTAT3/ CDK2/4/6,
and highCAF + highSTAT3/CDK2/4/6 and used the Kaplan-Meier survival plot to analyzed
the cumulative survival of the cohorts.

2.6. Analysis of STAT3/CDK2/4/6 Association with Dysfunctional T-Cells and Clinical Outcome
of Immunotherapy

To determine the association between STAT3/CDK2/4/6 DNA methylation and
dysfunctional T-cell phenotype, and survival of cancer patients, we analyzed the promoter
DNA methylation data of STAT3/CDK2/4/6 together with the survival durations and
tumor gene expression profiles of 30 TCGA cancer types using the TIDE server. All the
analysis was considered significant at p < 0.05. In order to obtain the relationship between
the STAT3/CDK2/D/6 signature and immunotherapy response, we used the Tumor
Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci.harvard.edu, accessed on
15 February 2021) tools [39] to analyze the correlation between the expression of these
signatures and the therapy outcome in clinical studies of immune checkpoint blockade
in patients with brain cancer and melanoma. We obtained the transcriptomic and clinical
data with the response to anti-PD1 ICB [43] or anti-CTL4A [44] treatments in melanoma
patients and anti-PD1 ICB treatment in brain cancer [45] patients. We divided these patients
into high-STAT3/CDK2/D/6 expression and low- STAT3/CDK2/D/6 expression groups
according to the median expression of these genes, respectively, and assessed the OS of
patients by using a Kaplan-Meier survival plot.

2.7. Statistical Analysis

Spearman’s rank correlation was used to assess the correlations of CDK2/CDK4/CDK6/
STAT3 expressions with cancer-associated fibroblast and tumor immune infiltrations. The
statistical significance of differentially expressed genes was evaluated using the Wilcoxon
test. * p < 0.05; ** p < 0.01; *** p < 0.001. The Kaplan-Meier curve was employed to present
the patients’ survival from different cancer cohorts. Gene alteration co-occurrence was
calculated based on the cbioportal server instructions. The adjusted value < 0.05 was
considered statistically significant.

3. Results
3.1. Overexpression of STAT3/CDK2/4/6 Signaling Networks Is Associated with Poor Prognoses of
Multiple Cancers

Taking advantage of clinical data in The Cancer Genome Atlas (TCGA), we employed
the DiffExp module of the TIMER server to identify CDK2/4/6 and STAT3 expressions in
tumors and healthy cohorts across TCGA datasets. We found that CDK2, CDK4, CDK6, and
STAT3 expressions were higher in tumor cohorts compared to normal cohorts (Figure 1).
In particular, glioblastoma, breast cancer, colon cancer, melanoma, lung adenocarcinoma,

http://tide.dfci.harvard.edu
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head and neck cancer, pancreatic cancer, liver cancer, and prostate cancer cohorts showed
the most significantly (p < 0.001) elevated CDK2, CDK4, CDK6, and STAT3 expressions.
Correlation analyses also indicated that CDK4 expression was positively correlated with
expressions of CDK2 and CDK6 in liver cancer, lung cancer, prostate cancer, pancreatic
cancer, melanoma, head and neck cancer, glioblastoma, breast cancer, and cervical cancer
cohorts (r = 0.06~0.69). The only exception was the negative correlations of CDK4 and
CDK6 (r = −0.5) with prostate cancer (Figure 2). We carried out a survival analysis of
RNA expression data from 9736 tumor cohorts of TCGA and GTEx datasets on GEPIA
(http://gepia.cancer-pku.cn/index.html, accessed on 15 December 2020). Interestingly,
we found that higher RNA expression profiles of CDK2/CDK4/CDK6 (Figure 3A) and
STAT3 (Figure 3B) predicted significantly lower overall survival (OS) and disease-free
survival (DFS). Furthermore, our exploration of the Human Protein Atlas (HPA) database
for immunohistochemical (IHC) data of CDK2, CDK4, CDK6, and STAT3 expressions in
tumor cohorts (Figure 3C, Table 1) revealed high staining intensities of CDK2 (antibody;
CAB013115) in colorectal cancer (100%), head and neck cancer (100%), lung cancer (60.00%),
glioblastoma (63.63%), prostate cancer, and pancreatic cancer datasets (50.00%); of CDK4
(antibody; CAB013116) in lung cancer (100%), colorectal cancer (100%), head and neck
cancer (100%), breast cancer and glioblastoma (81.81%), prostate cancer (90.90%), pancreatic
cancer (63.63%), and liver cancer datasets (66.66%); and of CDK6 (antibody; HPA002637) in
lung cancer (36.36%), colorectal cancer (90.0%), head and neck cancer (100%), breast cancer
(25.0%), glioblastoma (91.66%), prostate cancer (20.0%), pancreatic cancer (63.63%), and
liver cancer datasets (75.00%); while STAT3 (antibody; HPA001671) was positively stained
in more than 50% of all tumor samples in the HPA (Figure 3C, Table 1).

Figure 1. STAT3/CDK2/4/6 are overexpressed in multiple cancers. Box plots showing differential
gene expression levels (Log2 TPM) of STAT3/CDK2/4/6 between tumor and adjacent normal tissues
across TCGA database. Blue labels indicate normal tissues, and red labels indicate tumor samples.
The statistical significance of differentially expressed genes was evaluated using the Wilcoxon test.
* p < 0.05; ** p < 0.01; *** p < 0.001.

http://gepia.cancer-pku.cn/index.html
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Figure 2. Expression scatterplots of CDK4 correlations with CDK2 and CDK6 in multiple cancer types.
CDK4 expression was positively correlated with expressions of CDK2 and CDK6 in liver cancer, lung
cancer, prostate cancer, pancreatic cancer, melanoma, head and neck cancer, glioblastomas, breast
cancer, and cervical cancer cohorts (r = 0.06~0.69). CDK4 was negatively correlated with CDK6
expression in prostate cancer (r = −0.5). The strength of correlations between the genes is reflected by
the purity-adjusted partial spearman’s rho value and estimated statistical significance, where a value
of r = 1 means a perfect positive correlation and a value of r = −1 means a perfect negative correlation.

3.2. STAT3/CDK2/4/6 Are Enriched in Cancer and Immune Associated Signaling Networks

The CDK2/4/6 clustering network of protein-protein interactions (PPIs) generated
a total of 33 nodes and 429 edges with an average local clustering coefficient of 0.877
and a PPI enrichment p-value of <10−16 (Figure 4A). However, CDK2, 4, and 6 directly
interacted with 20, 17 and 15 proteins with interactive scores ranging 0.453~0.99 (Supple-
mentary Table S1). As shown in Figure 4B, the top most enriched clinical phenotypes in
CDK2/4/6 PPI networks are head and neck cancer, leukemia, bladder carcinoma, vitrities,
and small cell lung cancer. The most enriched Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways included cell cycle, DNA replication, and activation pre-replicative
pathways (Figure 4C). while protein metabolism, signal transductions, cell communica-
tions regulations of the cell cycle, and DNA replication are the most enriched biological
process (Figure 4D). The STAT3 clustering network generated a total of 21 nodes and 161
edges with an average local clustering coefficient of 0.873 and a PPI enrichment p-value
of <10−16 (Figure 5A). The most interactive proteins with STAT3 were AKT, epidermal
growth factor receptor (EGFR), interleukin (IL)-6, IL-10, and Janus kinase 1/2/3 (JAK1/2/3)
(0.994~0.995) (Supplementary Table S2). The most enriched clinical phenotypes in STAT3
clustering networks were, Kaposi’s sarcoma-associated herpesvirus infection, pathways in
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oncology, and the B-cell defect (Figure 5B), while the top enriched KEGG were IL-4, PI3K,
TCPTP, EGFR, IFN-gamma, and mTOR-mediated signaling pathway, (Figure 5C), while
signal transductions, cell communications, and immune response were enriched biological
process (Figure 5D).

Figure 3. STAT3/CDK2/4/6 over expressions are associated with poor prognoses of cancer patients.
Kaplan-Meier curve of (A) overall survival (upper panel) and (B) disease-free survival (lower panel)
of cancer patients with low and high CDK2/4/6 and (C) STAT3 expressions across TCGA and
GTEx datasets. Higher RNA expression profiles of STAT3/CDK2/4/6 correlated with low overall
survival and disease-free survival of cancer patients. (D) Representative immunohistochemistry of
STAT3/CDK2/4/6 staining across the Human Protein Atlas (HPA) database shows high intensities
of CDK2 (antibody: CAB013115), CDK4 (antibody: CAB013116), CDK6, (antibody: HPA002637) and
STAT3 (antibody: HPA001671) expressions in clinical samples.

Table 1. STAT3/CDK2/CDK4/CDK6 immunohistochemistry profile of cancer cohorts from human protein atlas database (HPA).

Cancer Types
Sample in HPA Patient Age Patient Gender Tumor-Histology

Total Sample High Antibody Detected Mean Age Male n (%) Female n (%) Patient Tumor-Histology (%)

CDK2 (Antibody: CAB013115)

Breast 11 6 (54.54%) 54.16 - 6 (100%) DCN (33.33%) and LCN (66.66%)
Head and Neck 4 4 (100 %) 56.75 2 (50.00%) 2 (50.00%) HN-SCC (50.00%) and HN-ADC (50.00%)

Glioma 11 7 (63.63%) 58.14 5 (83.33%) 3 (16.66%) HGG (57.14%), LGG (42.85%)
Colorectal 10 10 (100%) 69.90 6 (60.00%) 4 (40.00%) C-ADC (70.00%), R-ADC (20.00%)
Prostate 10 5 (50.00%) 59.44 5 (100%) - HG_PA (60.00%) and LG_PA (40.00%)

Lung 10 6 (60.00%) 58.83 3 (50.00%) 3 (50.00%) L-SSC (66.66%) and L-AND (33.33%)
Liver 11 4 (36.36%) 63.50 - 4 (100.00%) CCN (25.00%) and HCN (75.00%)

Pancreatic 12 6 (50.00%) 64.16 3 (50.00%) 3 (50.00%) PAC (100.00%)
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Table 1. Cont.

Cancer Types
Sample in HPA Patient Age Patient Gender Tumor-Histology

Total Sample High Antibody Detected Mean Age Male n (%) Female n (%) Patient Tumor-Histology (%)

CDK4 (Antibody: CAB013116)

Breast 11 9 (81.81%) 64.00 - 9 (100%) DCN (55.55%) and LCN (44.44%)
Head and Neck 4 4 (100%) 71.5 3 (75.0%) 1 (25.00%) HN-SCC (75.00%) and HN-ADC (35.00%)

Glioma 11 9 (81.81%) 48.11 5 55.55%) 4 (44.44%) HGG (55.55%) and LGG (44.44%)
Colorectal 12 12 (100%) 79.50 6 (50.00%) 6 (50.00%) C-ADC (66.66%) and R-ADC (33.33%)
Prostate 11 10 (90.90%) 58.80 10 (100%) - HG_PA (70.00%) and LG_PA (30.00%)

Lung 12 12 (100%) 67.58 7 (58.33%) 5 (41.66%) L-SSC (58.33%) and L-AND (41.66%)
Liver 12 8 (66.66%) 63.25 5 62.55%) 3 (37.5%) CCN (25.00%) and 6 HCN (75.00%)

Pancreatic 11 7 (63.63%) 63.71 4 (57.15%) 3 (42.85%) PAC (100.00%)

CDK6 (Antibody: HPA002637)

Breast 12 3 (25.00%) 54.00 - 3 (100%) DCN (75.00%) and LCN (25.00%)
Head and Neck 4 4 (100.00%) 58.25 1 (25%) 3 (75%) HN-SCC (50.00%) and HN-ADC (50.00%)

Glioma 12 11 (91.66%) 44.58 3 (100%) - HGG (63.63%) and LGG (36.36%)
Colorectal 10 9 (90.00%) 61.60 6 (66.6%) 3 (33.33%) C-ADC (66.66%) and R-ADC (6.33%)
Prostate 10 2 (20.00%) 66.00 2 (100%) - HG_PA (50.00%) and LG_PA (50.00%)

Lung 11 4 (36.36%) 61.00 2 (50%) 2 (50%) L-SSC (75.00%) and L-AND (25.00%)
Liver 12 9 (75.00%) 62.77 5 (55.55%) 4 (44.5%) CCN (66.66%) and HCN (33.33%)

Pancreatic 11 7 (63.63%) 62.00 3 (42.85%) 4 (57.1%) PAC (100.00%)

STAT3 (Antibody: HPA001671)

Breast 11 11 (100%) 63.18 - 11 (100%) DCN (72.72%) and LCN (27.27%)
Head and Neck 4 4 (100%) 70.50 3 (75.00%) 1 (25.00%) HN-SCC (75.00%) and HN-ADC (25.00%)

Glioma 12 5 (41.66%) 45.60 2 (40.00%) 3 (60.00%) HGG (80.00%) and LGG (20.00%)
Colorectal 12 12 (100%) 64.83 4 (33.33%) 8 (66.66%) C-ADC (75.00%) and R-ADC (25.00%)
Prostate 10 9 (90.00%) 67.44 10 (100%) - HG_PA (88.88%) and LG_PA (11.11%)

Lung 12 6 (50.00%) 69.50 4 (66.66%) 2 (33.33%) L-SSC (50.00%) and L-AND (50.00%)
Liver 11 4 (36.36%) 57.75 2 (50.00%) 2 (50.00%) CCN (5000%) and 6 HCN (50.00%)

Pancreatic 9 6 (66.66%) 63.71 3 (50.00%) 3 (50.00%) PAC (100.00%)

Key: DCN: duct carcinoma; LCN: lobular carcinoma; HN-SCC: head and neck squamous cell carcinoma; HN-ADC: head and neck
adenocarcinoma; HGG: high grade glioma; LGG: low grade glioma; C-ADC: colon adenocarcinoma; R-ADC: rectum adenocarcinoma;
HG_PA: high grade prostate adenocarcinoma; LG_PA: low grade prostate adenocarcinoma; L-SSC: lung squamous cell carcinoma; L-AND:
lung adeno carcinoma; CCN: cholangiocarcinoma; HCN: hepatocellular carcinoma; PAC: pancreatic adenocarcinoma.

Figure 4. CDK2/4/6 clustering network revealed multiple interactions with oncogenic proteins.
(A) The clustering network of CDK2/4/6 interactions generated a total of 33 nodes and 429 edges
with an average local clustering coefficient of 0.877 and protein-protein interaction (PPI) enrich-
ment p-value of <10−16. Enriched (B) clinical phenotypes, (C) KEGG pathways, and (D) biological
processes for CDK2/4/6 clustering networks.
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Figure 5. STAT3 clustering network revealed multiple interactions with oncogenic proteins. (A) Clustering network of
STAT3-associated protein interactions. STAT3-associated protein interactions generated a total of 21 nodes and 161 edges
with an average local clustering coefficient of 0.873 and protein-protein interaction (PPI) enrichment p-value of <10−16.
Interactions are depicted at the highest confidence limit (0.900). Enriched (B) clinical phenotypes, (C) KEGG pathways, and
(D) biological processes for STAT3 clustering networks.

3.3. STAT3/CDK2/4/6 Expressions Are Associated with Tumor Immune Infiltrations

Tissue immune infiltration is highly involved in immune reactions [46]; therefore,
considering the interactive networks and prognostic values of CDK2/4/6 and STAT3, we
reasoned that CDK2/4/6 and STAT3 would more likely be highly expressed in immune
cells and be correlated with tumor immune cell infiltration. Therefore, we explored asso-
ciations of CDK2/4/6/STAT3 expressions with infiltrating immune cells (CD4+ T cells,
B cells, CD8+ T cells, neutrophils, dendritic cells, and macrophages) in multiple cancers.
Our results revealed that STAT3 expression was positively correlated with infiltration of
macrophages, dendritic cells, CD4+ T cells, CD8+ T cells, neutrophils, and B cells (all
r > 0.06, p < 0.005) in all cancer types analyzed, with the exception of glioblastoma mul-
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tiforme (GBM). STAT3 expression was negatively correlated with B-cell and CD8+ T cell
infiltration in GBM. Furthermore, all tumor analyses showed negative STAT3 correlations
with tumor purity (Supplementary Figure S1, Table S2). CDK2/4/6 expressions were posi-
tively correlated with levels of different infiltrating immune cell types in multiple cancers
(Supplementary Figures S2–S4, Table S2). Specifically, CDK2 expression was positively cor-
related with macrophages (all r > 0.03284, p < 0.002), dendritic cells (all r ≥ 0.13, p < 0.0003),
CD4+ T cells (all r > 0.07, p < 0.002), CD8+ T cells (all r > 0.09, p < 0.004), neutrophils (all
r > 0.21, p < 0.001), and B cells (all r > 0.11, p < 0.000) in lung adenocarcinomas, liver hepato-
cellular carcinoma, head and neck cancers, and breast invasive carcinoma (Supplementary
Figure S2, Table 2). CDK4 expression was positively correlated with macrophages (all
r > 0.19, p < 2.47 × 10−5), CD4+ T cells (all r > 0.04, p < 0.019), CD8+ T cells (all r > 0.03,
p < 0.03), neutrophils (all r > 0.09, p < 0.0031), dendritic cells (all r ≥ 0.11, p < 0.0003), and
B cells (all r > 0.08, p < 0.006) (Supplementary Figure S3, Table 2). CDK6 expression was
positively correlated with macrophages only in breast cancer (BRCA), liver hepatocellu-
lar carcinoma (LIHC), and lung adenocarcinomas (LUADs) (Supplementary Figure S4,
Table 1). However, CDK2/CDK4 and CDK6 expressions were negatively correlated with
immune infiltration in glioblastomas and skin cutaneous melanomas. Furthermore, CDK6
was negatively correlated with tumor purity in BRCA (r = −0.31833, p = 7.21 × 10−25),
head and neck squamous cell carcinomas (HNSCs) (r = −0.06379, p = 0.157308), LIHC
(r = −0.11342, p = 0.034946), and LUADs (r = −0.16182, p = 0.000304). However, CDK2 and
CDK4 were positively correlated with tumor purity in skin cutaneous melanomas, LUADs,
LIHCs, head and neck cancers, glioblastomas, and breast invasive carcinoma. Altogether,
the above results indicate that STAT3/CDK2/4/6 genes are differentially expressed within
the TME and in tumor cells. They also exhibited varied and tumor-dependent correla-
tions with immune infiltration and thus may be involved in the immune response within
the TME.

Table 2. Purity-corrected partial Spearman’s rho value and statistical significance of the correlations of
STAT3/CDK2/CDK4/CDK6 expressions with immune infiltration level in diverse cancer types.

Cancer Types Variable
CDK2 CDK4 CDK6 STAT3

rho-Value p-Value rho-Value p-Value rho-Value p-Value rho-Value p-Value

BRCA

Purity 0.173772 3.46 × 10−8 0.093476 0.003164 −0.31833 7.21 × 10−25 −0.10635 0.000779
B Cell 0.122448 0.000125 0.08921 0.005264 0.240495 2.54 × 10−14 0.066812 0.036797

CD8+ T Cell 0.192216 1.41 × 10−9 0.032843 0.305355 0.391337 4.53 × 10−37 0.239179 3.65 × 10−14

CD4+ T Cell 0.140028 1.31 × 10−5 0.042232 0.190619 0.320767 1.85 × 10−24 0.233229 2.38 × 10−13

Macrophage 0.079207 0.012988 −0.01619 0.612245 0.257793 2.19 × 10−16 0.25456 5.28 × 10−16

Neutrophil 0.233463 3.07 × 10−13 0.096267 0.002962 0.391841 2.93 × 10−36 0.313132 4.44 × 10−23

Dendritic Cell 0.169013 1.58 × 10−7 0.113947 0.00043 0.384255 8.01 × 10−35 0.202448 2.97 × 10−10

GBM

Purity 0.286993 2.19 × 10−9 0.430653 2.39 × 10−20 0.192757 7.15 × 10−5 −0.16588 0.000652
B Cell −0.05908 0.228103 0.01657 0.73552 0.02255 0.645725 −0.00829 0.865847

CD8+ T Cell −0.03756 0.443695 −0.04642 0.343759 0.138459 0.004568 −0.14558 0.002851
CD4+ T Cell −0.05077 0.300396 −0.02841 0.562404 −0.0257 0.600353 0.277782 7.64 × 10−9

Macrophage −0.01146 0.815223 −0.02026 0.679627 −0.03727 0.447329 0.056771 0.246809
Neutrophil 0.089753 0.006772 0.052908 0.28049 −0.16547 0.000683 0.175587 0.00031

Dendritic Cell 0.200704 3.58 × 10−5 0.023584 0.630667 −0.12206 0.012513 0.43801 5.06 × 10−21

HNSC

Purity 0.229737 2.51 × 10−7 0.304761 4.69 × 10−12 −0.06379 0.157308 −0.01693 0.707708
B Cell 0.110468 0.015902 0.124189 0.00667 −0.21932 1.36 × 10−6 0.230367 3.75 × 10−7

CD8+ T Cell 0.092891 0.043236 0.07504 0.102739 −0.25071 3.16 × 10−8 0.235486 2.14 × 10−7

CD4+ T Cell 0.299532 2.09 × 10−11 0.140472 0.002036 0.189753 2.86 × 10−5 0.456441 4.47 × 10−26

Macrophage 0.146554 0.001238 0.190636 2.47 × 10−5 −0.013 0.775631 0.21852 1.24 × 10−6

Neutrophil 0.215968 1.84 × 10−6 0.021853 0.6333 0.082199 0.072281 0.346725 5.62 × 10−15

Dendritic Cell 0.253224 1.73 × 10−8 0.103755 0.00272 0.040238 0.378066 0.387553 1.01 × 10−18

LIHC

Purity 0.181946 0.000672 0.069596 0.196552 −0.11342 0.034946 −0.23257 1.24 × 10−5

B Cell 0.397861 1.70 × 10−14 0.446746 2.80 × 10−18 0.077473 0.151618 0.167119 0.001869
CD8+ T Cell 0.300309 1.47 × 10−8 0.327963 5.11 × 10−10 0.024258 0.654848 0.128993 0.016998
CD4+ T Cell 0.423424 2.13 × 10−16 0.379031 3.39 × 10−13 0.062486 0.247738 0.348425 2.97 × 10−11

Macrophage 0.476735 9.42 × 10−21 0.51059 4.90 × 10−24 0.097956 0.070829 0.359076 8.16 × 10−12

Neutrophil 0.477554 4.69 × 10−21 0.368888 1.46 × 10−12 0.076032 0.158794 0.448825 1.67 × 10−18

Dendritic Cell 0.480477 4.86 × 10−21 0.482455 3.18 × 10−21 0.052521 0.334277 0.285271 8.68 × 10−08
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Table 2. Cont.

Cancer Types Variable
CDK2 CDK4 CDK6 STAT3

rho-Value p-Value rho-Value p-Value rho-Value p-Value rho-Value p-Value

LUAD

Purity 0.06579 0.144252 0.060096 0.182364 −0.16182 0.000304 0.007492 0.868083
B Cell −0.04115 0.366308 −0.10408 0.022022 −0.03669 0.420564 0.119856 0.008302

CD8+ T Cell 0.146119 0.001222 0.006762 0.881683 0.275158 6.57 × 10−10 0.128065 0.004647
CD4+ T Cell 0.071922 0.001145 −0.09706 0.032783 0.146028 0.001275 0.167818 0.000208
Macrophage 0.03284 0.470574 −0.01899 0.67652 0.207622 4.01 × 10−6 0.158864 0.000445
Neutrophil 0.27285 1.08 × 10−9 0.078989 0.082887 0.345911 5.06 × 10−15 0.219087 1.16 × 10−6

Dendritic Cell 0.134315 0.002949 0.021403 0.637169 0.208912 3.25 × 10−6 0.179555 6.64 × 10−5

SKCM

Purity 0.134716 0.003873 0.33632 1.42 × 10−13 0.208989 6.48 × 10−6 −0.09559 0.040865
B Cell −0.04378 0.355269 0.035404 0.454766 0.092088 0.051436 0.190704 4.85 × 10−5

CD8+ T Cell −0.025 0.601752 −0.09342 0.050716 0.273715 5.76 × 10−9 0.325874 2.70 × 10−12

CD4+ T Cell −0.14917 0.001582 −0.05216 0.271664 0.151926 0.00129 0.276917 2.71 × 10−9

Macrophage −0.28478 6.72 × 10−10 −0.06167 0.190155 0.252014 5.42 × 10−8 0.32638 1.05 × 10−12

Neutrophil −0.18426 8.13 × 10−5 −0.0556 0.238103 0.455928 1.39 × 10−24 0.500159 5.51 × 10−30

Dendritic Cell −0.08306 0.079749 −0.00475 0.920327 0.188403 6.24 × 10−5 0.373995 2.97 × 10−16

Key: rho-value = purity-corrected partial Spearman’s rho value; p-value = statistical significance. SKCE: Skin cutaneous melanoma;
LUAD: Lung adenocarcinoma; LIHC: Liver hepatocellular carcinoma; HNSC: Head and neck cancer; GBM: glioblastoma; BRCA: Breast
invasive carcinoma.

Having established the negative correlation of tumor immune infiltration with CDK2/4/6
expression in GBM and melanoma, we wonder if there will be an association between
these genes alterations and immune infiltration, to this ends we analyzed the correlation
between different somatic copy number alterations of CDK2/4/6/STAT3 and immune cell
infiltration in glioblastoma and melanoma. The results showed that the arm−level gain
and high amplification of CDK2 in GBM was negatively (p < 0.05) associated with B-cell,
macrophages, CD4+ T cell dendritic cell infiltration (Supplementary Figure S5), while CDK4
SCNAs showed no or weak relationship with infiltration of the above six immune cell types.
Conversely, Arm level gain of CDK6 shows a positive (p < 0.05) correlation with increase
CD4+ T cell, CD4+ T cell, macrophages, and dendritic cell infiltration, while arm level dele-
tion shows a strong negative correlation (p < 0.001) with B-cell infiltrations in GBM patient.
Similarly, arms level gain of STAT3 shows was negatively associated with CD4+ T cell
and dendritic cell infiltration. We also found a negative association of CDK2/4/6/STAT3
SCNA with the various immune infiltration in melanoma (Supplementary Figure S5).

3.4. STAT3/CDK2/4/6 Are Associated with Cancer-Associated Fibroblast (CAF) Infiltration

We analyzed CAF correlations with expression profiles of STAT3/CDK2/4/6 and
found that out of the 40 TCGA cancer types analyzed via the TIMER server, CAF and
STAT3 expressions were correlated in cohorts of 36 cancers types, while CAF and CDK6
expressions were correlated in 34 cancer types. The strongest CAF-STAT3 association
(Partial cor = 1, p < 0.05) was observed in cholangiocarcinoma (CHOL), GBM, kidney
chromophobe (KICH), kidney renal papillary cell carcinoma (KIRP), low-grade glioma
(LGG), pancreatic adenocarcinoma (PAAD), thymoma (THYM), testicular germ cell tumor
(TGCT) and primary SKCM. However, no significant CAF-STAT3 association (p > 0.05)
was observed in cohorts of diffuse large B-cell lymphoma (DLBC), esophageal carcinoma
(ESCA), uterine corpus endometrial carcinoma (UCS), and basal breast invasive carcinoma
(BRCA) (Figure 6A). CAF-CDK6 association was highly correlated (Partial cor = 1, p < 0.05)
in cohorts of BRCA-Luma A, BRCA-Luma B, CESC, HNSC-HPV+, and TGCT. However,
expressions of CDK2 and that of CDK4 correlated with CAF infiltrations in cohorts of 14 can-
cer types. To evaluate the prognostic relevance of these associations, we classified all co-
horts into four groups; lowCAF + lowSTAT3/CDK2/4/6, lowCAF + highSTAT3/CDK2/4/6,
highCAF + lowSTAT3/CDK2/4/6, and highCAF + highSTAT3/ CDK2/4/6. Interestingly, we
found that the cohort in highCAF + highSTAT3/CDK2/4/6 group exhibited low cumulative
survival than cohorts of other groups (Figure 6B).
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Figure 6. STAT3/CDK2/4/6 expressions were associated with cancer-associated fibroblast (CAF) infiltration (A). Heat
map showing correlations of STAT3/CDK2/4/6 expressions and CAF infiltration in multiple cancer types. Out of the
40 cancer types presented in the heat map, patients of 36 cancer types exhibited correlations of CAF and STAT3 expressions,
while 34 exhibited correlations of CAF and CDK6 expressions. Patients of 14 cancer types exhibited correlations of CDK2
and CDK4 with CAFs (B). Kaplan-Meier curve of cumulative survival of cancer cohorts with CAF-STAT3/CDK2/4/6
associations. All cohorts were grouped into 4; lowCAF + lowSTAT3/CDK2/4/6, lowCAF + highSTAT3/CDK2/4/6, highCAF +
lowSTAT3/CDK2/4/6, and highCAF + highSTAT3/CDK2/4/6.

3.5. Genetic Alterations of STAT3/CDK2/4/6 Are Associated with Poor Prognosis

Among, 10953 patients/10967 samples of all type of human cancers publicly available
in the online cancer genomic database cBioPortal, genetic alterations of CDK2/4/6 and
STAT3 occurs in 825 (8%) patients, comprising 127 (1.2%) CDK2, 307 (2.8%) CDK4, 266
(2.4%) CDK6, and 220 (2%) STAT3 and (Figure 7A). The CDK2 alterations (127; 1.2%) occur
in 22 cancer types, mostly in endometrial carcinoma (4.1%), esophagogastric carcinoma
(3.11%), and ovarian epithelial tumor (2.91%). The most common alterations in CDK2 is
amplification (85 cases, 66.92%), mutation (35 cases, 27.55%), while deep deletion (four
cases, 3.14%), and multiple alterations (three cases, 2.36%) are the least occurred (Figure 7B).
The CDK4 alterations occur in 23 cancer types, mostly in sarcoma (17.65%), glioblastoma
(13.85), and adrenocortical carcinoma (6.59%). Amplification (246 cases, 79.15%), and
mutation (55 cases, 17.91%), are the most common CDK alterations while multiple alter-
ations (eight cases, 2.60%) and deep deletion (one case, 0.32%) are least occurred. CDK6
alterations occur in 26 cancer types, mostly in esophageal squamous cell carcinoma (95,
12.63%), esophagogastric adenocarcinoma (514 cases, 9.14%), and head and neck squamous
cell carcinoma (523 cases, 4.78%). The most common alterations in CDK6 is amplification
(199 cases, 74.81%), mutation (46 cases, 17.29%), deep deletion (13 cases, 4.88%) while
multiple alterations (seven cases, 2.63%) and fusion (one case, 0.37%) occurred the least.
The STAT3 alterations occur in 27 cancer types, comprising of mutation (136 cases, 61.81%),
amplification (48 cases, 21.81%), deep deletion (25 cases, 11.36%), fusion (seven cases,
3.18%), and multiple alterations (four cases, 1.81%) occurred the least (Figure 7B). Spe-
cific mutation profiling indicated that out of the total CDK2 mutation in the database,
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75.60% were missense, 19.51%, were truncating while 4.87% cases were fusion mutations
(Figure 7C). For CDK4 mutation, 52 (75.36%) were missense, 10 (14.49%) fusion, five (7.24%)
truncating while two (2.89) cases were inframe mutations). Of the total CDK6 mutation in
the database, 81.96%, 8.19%, and 9.83% were missense, truncating, and fusion, respectively
(Figure 7C).

1 
 

 
Figure 7. Genetic alterations of STAT3/CDK2/4/6 are associated with poor prognosis (A) Prevalence and distribu-
tion of STAT3/CDK2/4/6 genetic alterations in cancer patient across the cBioPortal for Cancer Genomics dataset.
(B) STAT3/CDK2/4/6 alteration frequency across cancer types. The types of alterations are color-coded as shown in
the legend above. (C) Lollipop plot STAT3/CDK2/4/6 mutation types in cancer patients across the cBioPortal for Cancer
Genomics dataset. Mutations are color-coded as missense, truncating, and inframe mutations. STAT_INT: STAT protein-
protein interaction domain, STAT_alpha: STAT all-alpha domain, STAT_bind: STAT DNA binding domain, SH2: SH2
domain. (D) Kaplan Meier curve of the overall survival, disease free survival and progressive free survival in CDK2, CDK4,
CDK6 altered and non-altered cancer cohorts.

We analyzed the prognostic relevance of CDK2, CDK4, and CDK6 genetic alterations
and found that CDK4 and CDK6 alterations are associated with low overall survival,
disease-free survival, and progression-free survival of cancer cohorts (p < 0.05). However,
genetic alteration in CDK2 was not associated (p > 0.05) with low overall survival, disease-
free survival, and progression-free survival of the cohorts (Figure 7D).

3.6. Enrichment of Genes Alteration Co-Occurrence in Cancer Cohorts with STAT3/CDK2/4/6 Alterations

We also analyzed the frequency of gene alteration co-occurrence with CDK2, CDK4,
CDK6, and STAT3 genetic alteration (Figure 8A,B), and found co-occurrence of genetic
alterations in a total of 19434 genes, enriched in CDK2/4/6 and STAT3 altered and non-
altered cohorts. The different frequencies of alterations in the co-occurred genes are
shown in Figure 8B. However, only, 12676, 9265, 14130, and 17416 altered genes were
significantly enriched in CDK2, CDK4, CDK6, and STAT3 altered cohorts respectively,
while no gene alteration was significantly (all p > 0.05) enriched in CDK2/4/6/STAT3
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unaltered cohorts (Figure 8A). The top 10 altered genes with significant enrichment in CDK2
(all p-value < 1 × 10−9), CDK4 (all p-value < 1 × 10−7), CDK6 (all p-value < 1 × 10−11) and
STAT3 (all p-value < 1 × 10−19) altered cohorts are presented in Table 3. However, TP53,
TTN, MUC16, and FLG were the most frequently mutated genes in all CDK2, CDK4, and
CDK6 altered and non-altered cohorts, while TTN, TP53, MUC16, SYNE1, RYR2, CSMD3,
HMCN1, LRP1B, ZFHXA, and FAT4 are the most frequently mutated genes in both STAT3
altered and non-altered cohorts (Figure 8C).

Figure 8. Enrichment frequencies of gene alteration co-occurrence in cancer cohorts with altered and those with non-altered
STAT3/CDK2/4/6. (A): Scatter plot of the significantly enriched co-occurred gene alterations in STAT3/CDK2/4/6 altered,
and non-altered cancer cohorts. (B) Scatter plot of the frequencies of all co-occurred gene alterations in STAT3/CDK2/4/6
altered, and non-altered cancer cohorts. (C) Bar plot showing the top 10 most frequently mutated genes in STAT3/CDK2/4/6
altered, and non-altered cancer cohorts.
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Table 3. Co-occurrence of gene alteration in cancer cohorts with STAT3/CDK2/2/4/6 genetic alteration.

S/N Genes ID Cytoband Altered Group Unaltered Group Log Ratio p-Value q-Value Enriched in

Cyclin Dependent Kinase 2

1 FGD5 3p25.1 19 (15.32%) 226 (2.19%) 2.81 6.99 × 10−11 7.60 × 10−7 Altered group
2 MMS22L 6q16.1 17 (13.71%) 178 (1.73%) 2.99 1.23 × 10−10 7.60 × 10−7 Altered group
3 LRP5 11q13.2 19 (15.32%) 237 (2.30%) 2.74 1.49 × 10−10 7.60 × 10−7 Altered group

4 PALM2-
AKAP2 9q31.3 17 (13.71%) 181 (1.76%) 2.97 1.56 × 10−10 7.60 × 10−7 Altered group

5 GTF3C2 2p23.3 15 (12.10%) 135 (1.31%) 3.21 2.37 × 10−10 7.67 × 10−7 Altered group
6 PAX8 2q14.1 12 (9.68%) 72 (0.70%) 3.79 2.53 × 10−10 7.67 × 10−7 Altered group
7 MFHAS1 8p23.1 13 (10.48%) 93 (0.90%) 3.54 3.11 × 10−10 7.67 × 10−7 Altered group
8 SENP5 3q29 13 (10.48%) 94 (0.91%) 3.52 3.51 × 10−10 7.67 × 10−7 Altered group
9 PRDM9 5p14.2 25 (20.16%) 461 (4.47%) 2.17 3.86 × 10−10 7.67 × 10−7 Altered group
10 LRRFIP2 3p22.2 13 (10.48%) 95 (0.92%) 3.51 3.95 × 10−10 7.67 × 10−7 Altered group

Cyclin Dependent Kinase 4

1 EGFR 7p11.2 39 (13.68%) 357 (3.52%) 1.96 2.25 × 10−12 4.38 × 10−8 Altered group
2 ZNF19 16q22.2 18 (6.32%) 73 (0.72%) 3.13 3.28 × 10−11 3.19 × 10−7 Altered group
3 NUP107 12q15 19 (6.67%) 128 (1.26%) 2.4 1.69 × 10−8 5.45 × 10−5 Altered group
4 KLHL9 9p21.3 15 (5.26%) 75 (0.74%) 2.83 1.76× 10−8 5.45 × 10−5 Altered group
5 ATP13A5 3q29 25 (8.77%) 227 (2.24%) 1.97 2.23× 10−8 5.45 × 10−5 Altered group
6 TENM2 5q34 35 (12.28%) 418 (4.12%) 1.58 2.27× 10−8 5.45 × 10−5 Altered group
7 MYPN 10q21.3 26 (9.12%) 247 (2.43%) 1.91 2.68× 10−8 5.45 × 10−5 Altered group
8 B4GALNT1 12q13.3 15 (5.26%) 78 (0.77%) 2.78 2.79× 10−08 5.45 × 10−05 Altered group
9 PTPRH 19q13.42 24 (8.42%) 214 (2.11%) 2 3.15× 10−08 5.45 × 10−05 Altered group

10 NEMF 14q21.3 18 (6.32%) 120 (1.18%) 2.42 3.53× 10−08 5.45 × 10−05 Altered group

Cyclin Dependent Kinase 6

1 TP53 17p13.1 159 (62.6%) 3680 (36.14%) 0.79 2.75 × 10−17 5.35 × 10−13 Altered group
2 CFAP47 Xp21.1 43 (16.93%) 399 (3.92%) 2.11 3.41 × 10−15 3.31 × 10−11 Altered group
3 CUBN 10p13 51 (20.08%) 625 (6.14%) 1.71 2.03 × 10−13 1.31 × 10−9 Altered group
4 KBTBD7 13q14.11 20 (7.87%) 81 (0.80%) 3.31 2.90 × 10−13 1.41 × 10−9 Altered group
5 EYS 6q12 39 (15.35%) 385 (3.78%) 2.02 4.73 × 10−13 1.84 × 10−9 Altered group
6 FAT3 11q14.3 59 (23.23%) 839 (8.24%) 1.5 7.48 × 10−13 2.23 × 10−9 Altered group
7 SPTBN4 19q13.2 34 (13.39%) 298 (2.93%) 2.19 8.39 × 10−13 2.23 × 10−9 Altered group
8 TCERG1L 10q26.3 21 (8.27%) 99 (0.97%) 3.09 9.29 × 10−13 2.23 × 10−9 Altered group
9 ATP2B1 12q21.33 25 (9.84%) 153 (1.50%) 2.71 1.03 × 10−12 2.23 × 10−9 Altered group
10 UBA6 4q13.2 24 (9.45%) 141 (1.38%) 2.77 1.38 × 10−12 2.68 × 10−9 Altered group

Signal Transducer and Activator of Transcription 3

1 NEURL4 17p13.1 39 (17.89%) 177 (1.73%) 3.37 5.90 × 10−26 1.15 × 10−21 Altered group
2 ARHGAP5 14q12 38 (17.43%) 202 (1.98%) 3.14 3.78 × 10−23 3.67 × 10−19 Altered group
3 DSG1 18q12.1 38 (17.43%) 208 (2.04%) 3.1 9.42 × 10−23 6.10 × 10−19 Altered group
4 PCDHGB6 5q31.3 34 (15.60%) 157 (1.54%) 3.34 1.81 × 10−22 8.80 × 10−19 Altered group
5 CEP350 1q25.2 44 (20.18%) 318 (3.11%) 2.7 5.68 × 10−22 2.21 × 10−18 Altered group
6 MED13 17q23.2 40 (18.35%) 255 (2.50%) 2.88 9.18 × 10−22 2.97 × 10−18 Altered group
7 HMCN1 1q25.3 67 (30.73%) 846 (8.28%) 1.89 5.92 × 10−21 1.64 × 10−17 Altered group
8 DOCK8 9p24.3 39 (17.89%) 255 (2.50%) 2.84 7.08 × 10−21 1.72 × 10−17 Altered group
9 DNMBP 10q24.2 34 (15.60%) 180 (1.76%) 3.15 8.24 × 10−21 1.78 × 10−17 Altered group
10 MAP1B 5q13.2 40 (18.35%) 277 (2.71%) 2.76 1.37 × 10−20 2.65 × 10−17 Altered group

3.7. DNA Methylation and Copy Number Alterations of STAT3/CDK2/4/6 Are Associated with
Dysfunctional T-Cell Phenotypes and Are of Prognostic Relevance in Multiple Cancers

Analysis of the promoter DNA methylation indicated that among 30 TCGA cancer type
hypo-methylation of CDK2 are significantly associated with T cell dysfunctional phenotype
high death risk and shorter survival durations in melanoma, kidney, and brain cancer only
(Figure 9A). Similarly, hypo-methylation of CDK2 is associated with T cell dysfunctional
phenotype and worse prognosis of the brain, melanoma, metastatic melanoma, liver, and
sarcoma patient while in colorectal cancer patients, it shows a negative association with
dysfunctional T cells and predicts a good prognosis of the cohorts (Figure 9A). Hypo-
methylation of CDK6 is associated with T cell dysfunctional phenotype high death risk
and low survival duration in lymphoma, cervical, and brain cancer patients (Figure
9A,B). Hyper methylation of STAT3, on the other hand, predicted high death risk and
poor survival of melanoma, metastatic melanoma, endometrial, head and neck cancer,
and lung cancer patients while predicting low death risk and longer survival duration
in the brain, breast, and uveal cancers (Figure 9B). Copy number alteration of CDK2 is
associated with dysfunctional T-cell phenotype, high death risk, and shorter survival of
lymphoma, leukemia, and breast cancer patients while CDK4 predicted a worse prognosis
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of the brain, lymphoma, and breast cancer patients. CNA of CDK6 on the other hand
predicted a worse prognosis in the brain and a good prognosis of breast cancer cohorts.
STAT3 CNA predicted dysfunctional T cell phenotype and worse prognosis in stomach
and lymphoma cancers while predicting a good prognosis of endometrial and brain cancer
(Supplementary Figure S6).

Figure 9. DNA methylation of STAT3/CDK2/4/6 are associated with dysfunctional T-cell phenotypes and are of prog-
nostic relevance in multiple cancers. (A) Graphical data representation of the effect of STAT3/CDK2/4/6 DNA methy-
lation on cytotoxic lymphocyte infiltrations, dysfunctional T-cell phenotypes and risk factor in different TCGA cancer
types and subtypes. The deeper the red color and higher positive value indicate poor prognosis with respect to hyper-
methylation of STAT3/CDK2/4/6 while the blue to green color indicate poor prognosis with respect to hypo-methylation
of STAT3/CDK2/4/6. (B) Kaplan Meier curve of the overall survival difference between cancer cohorts with hyper-DNA
methylation and hypo-DNA methylation of STAT3/CDK2/4/6.

3.8. STAT3/CDK2/4/6 Overexpression Predicts Poor Clinical Benefit to Immune Checkpoint
Blockade Therapy

We used the transcriptomic and clinical data from melanoma and glioblastoma patients
of anti-PD1 or anti-CTLA4 therapy to predict the immunotherapy response of cohorts
with different STAT3/CDK2/4/6 expression. In agreement with our earlier observation,
we found that the expression of CDK2/4/6 shows a negative correlation with cytotoxic
lymphocyte infiltration (CTL) in both GBM and melanoma, while STAT3 shows a negative
correlation with CTL infiltrations in GBM but a positive correlation in melanoma. In
addition, patients with higher expression of STAT3/CDK2/4/6 signature exhibited a poor
response to anti-PD1 or anti-CTLA4 therapy and exhibited shorter survival than patients
with low expression profiles (Figure 10).
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Figure 10. Effect of STAT3/CDK2/4/6 expression on therapy outcome in clinical studies of immune checkpoint blockade.
Scatter plot of Spearman’s rank correlation and Kaplan Meier curve of the overall survival of cancer cohorts with up-
expressed and down expressed STAT3/CDK2/4/6 status treated with anti-PD1 or anti-CTLA4 therapy.

4. Discussion

Despite advances in treatment modalities, cancer survival ratios are still disappointing;
thus, improving survival rates in cancer patients remains a global research focus [47–51].
Identifying prognostic markers for immune response and poor survival rates in cancer is
an important preceding aspect for developing adequate therapeutic interventions. In the
present study, we identified the frequencies of genetic alterations of STAT3/CDK2/4/6
in multiple cancer types, identified the gene signature as oncogenic prognosticators of
CAFs and tumor immune infiltration, and poor prognoses of clinical cancer cohorts. Our
results demonstrated that the expression of CDK2/4/6 was altered in various cancers and
is associated with both shorter OS and DFS of the cancer patients. We found CDK2/4/6
expression was particularly up-regulated in melanoma, glioblastoma, breast, colon, lung
adenocarcinoma, head and neck, pancreatic, liver, and prostate cancer cohorts, compared
to the adjacent normal tissues. Aberrant CDK2/4/6 expression may enhance cancer
progression, in part, through influence on mechanisms that maintain cell cycle progression.
Furthermore, it is worth noting that genetic alterations in CDK2/4/6 are associated with
a poorer prognosis of the cancer cohorts. Indeed, we found that genetic alterations in
CDK2/4/6 co-occurred with a number of other genetic alterations in the cancer cohorts.
While we have yet to establish a cause of the co-occurrence relationship here, the genetic
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alterations in CDK2/4/6 could conceivably synergize with the observed gene alteration co-
occurrence to promote tumor progression and hence could be responsible for the observed
poorer survival of the CDK2/4/6 altered cohorts than the non-altered cohorts. This result is
consistent with our previous study which suggested that targeting STAT3 and CDK2/4/6
is an attractive strategy for arresting cell growth in multiple cancers [52].

Evaluation of PPI networks is very useful for predicting biological processes associated
with gene signatures and disease development [53]. The PPI network analysis in this study,
suggest CDK2/4/6/STAT3 may directly interact with factors that promote tumorigenesis
and immune response, such as AKT, EGFR, IL-6, IL-10, JAK1/2/3, CKS1B, CDT1, RB1,
PLK1, ESP ORC2/3/4/5/6 (Supplementary Tables S1 and S2). The functions of these
genes are found to be primarily related to cell cycle progressions, cancer development,
and inflammatory and immune response [54]. The previous study has implicated the
origin recognition complex (ORC) in the development of multiple cancers [55]. In addition,
our KEGG pathways and gene ontologies studies showed that the CDK2/4/6 and STAT3
clustering PPI network were associated with pathways and processes involved in the
cell cycle, DNA replication, cell communications, immune response, and cancers. Our
findings are supported by a preclinical study that reported that increased expression of
STAT3 led to concurrent increases in expressions of cytokines and growth factors (IL-
6, IL-10, transforming growth factor (TGF)-β, and VEGF) [56]. Taking together, these
results not only pointed out the potential roles of aberrant CDK2/4/6 expression in the
initiation and development of multiple cancer but also suggest that STAT3 and CDK2/4/6
expression may alter tumor immune microenvironment and hence involved in cancer
immune responses.

Tumor immune/inflammatory cell infiltrations are indicators of host immune re-
sponses to cancer cells [57,58]. We reasoned that since CDK2/4/6 and STAT3 clustering
networks were enriched in cancer and inflammatory/immune-related pathways, then
their hyper-expression levels in multiple cancers may be correlated with tumor immune
infiltration. To this end, we investigated associations of STAT3/CDK2/4/6 expressions
with tumor-immune infiltration across the TCGA dataset. We found that infiltration of
macrophages, dendritic cells, CD4+ T cells, CD8+ T cells, neutrophils, and B cells were
positively correlated with STAT3/CDK2/4/6 expressions in lung adenocarcinoma, liver
hepatocellular carcinoma, head and neck cancer, and breast invasive carcinoma cohorts,
suggesting that CDK2/4/6/STAT3 may also reflect the immune status besides the disease
prognosis. This observation is in concordance with our observations in the pathway en-
richment analysis of the PPI clustering network. These findings, therefore, suggest that
STAT3/CDK2/4/6 participates in the immune invasion of the above-mentioned cancers,
thus providing a new window for monitoring the tumor immune microenvironment and
may serve as a potential prognostic biomarker of an immune response in those cancer [57].
Our result is supported by preclinical studies which revealed that aberrant STAT3 expres-
sion mediates immunosuppression of tumor cells [59,60]. Findings from the present study
may therefore be clinically useful in prognosis assessment and follow-up management of
immunotherapy. In addition, targeting the STAT3/CDK2/4/6 signaling axis may provide
a dual role of oncogene suppression and immunotherapeutic responses in multiple cancers.

Having established the negative correlation of tumor immune infiltration with CDK2/4/6
expression in GBM and melanoma, we wonder if there will be an association between
these genes alterations and immune infiltration, to this ends we queried the correlation
between different somatic copy number alterations of CDK2/4/6/STAT3 and immune cell
infiltration in glioblastoma and melanoma. The results revealed a similar trend of the nega-
tive association of various immune cell infiltrations with CDK2, CDK4, and STAT3 SCNA
in GBM and CDK2/4/6/STAT3 SCNA in melanoma. Collectively this study suggested
that the immune cell infiltrations of GBM and melanoma are inversely associated with
CDK2/4/6 and STAT3 expression or genetic alterations.

Two distinct mechanisms of tumor immune evasion have been revealed, indicating
that some tumors have a high level of infiltration by cytotoxic T cells, but these T cells



Cancers 2021, 13, 954 19 of 23

tend to be in a dysfunctional state and could not control tumor growth, while in other
tumors immunosuppressive factors may prevent T cells from infiltrating tumors [9,61,62].
DNA methylation is a key epigenetic modification in the mammalian genomes which
plays an important role in the regulation of gene expression and therefore can serve as
a non-invasive biomarker for cancer diagnosis and prognosis [63]. Consequently, we
found that differential-methylation and copy number alterations of STAT3/CDK2/4/6
are associated with dysfunctional T-cell phenotypes, high death risk, and short survival
duration of multiple cancer cohorts, hence providing preliminary evidence for the use of
STAT3/CDK2/4/6 signature for DNA methylation-based biomarkers of dysfunctional
T-cell phenotypes.

Because of that, the tumor immune infiltration of T cell is closely associated with the
efficiency of the immune checkpoint inhibitor therapy [64]; thus, we evaluated the impact
of the expression of STAT3/CDK2/4/6 on the therapeutic outcome of immune checkpoint
blockade. We found that patients with high expression of STAT3, CDK2, CDK4, or CDK6
yield poor clinical benefit to anti-PD1 or anti-CTLA4 therapy and had shorter survival time
than those patients with low expression profiles. Glioblastoma is one of the most aggressive
cancers, although data are not yet mature, preliminary studies do not show a clear-cut ben-
efit of immunotherapy in glioblastoma [65], while clinical studies have demonstrated that
CDK4/6 inhibitor alone was not an effective treatment for recurrent glioblastoma [66,67].
Thus, our study showed that the STAT3/CDK2/4/6 signature not only regulates immune
cell infiltration but also affects the benefit for cancer patients of immune checkpoint block-
ade and provides a rationale for the combination of STAT3/CDK2/4/6 antagonist and
immunological checkpoint inhibitors. In line with this rationale, a combined preclinical
and clinical study [68] have reported that PD-L1 protein abundance and tumor-infiltrating
lymphocyte is regulated by cell cycle kinases and that the Inhibition of CDK4/6 increases
PD-L1 protein and reduced the numbers of tumor-infiltrating lymphocytes in mouse and in
human cancer specimens. Intriguingly, they found that a combination of CDK4/6 inhibitor
with anti-PD-1 immunotherapy enhances tumor regression and markedly improves overall
survival rates in mouse tumor models [68]. In addition, there are several ongoing trials
testing combinations of CDK4/6 inhibitors with immunotherapy, including avelumab and
pembrolizumab (e.g., NCT02778685; NCT02779751; and NCT03147287) [69].

The TME is a complex and heterogeneous ecosystem consisting of signaling molecules,
tumor-infiltrating immune cells, extracellular matrix (ECM), CAFs, and tumor cells [70–72].
Genes that are highly expressed in the microenvironment are negatively associated with tu-
mor purity [73]; therefore, our observation that STAT3 expression was negatively correlated
with tumor purity in all tumor samples analyzed (Table 2) suggests its high expression in
TMEs and justifies its positive correlation with tumor immune infiltration. In addition, we
also found significant associations between STAT3/CDK2/4/6 expression profile and CAF
infiltrations in multiple cancers (Figure 6A), and these positive correlations between CAF
and STAT3/CDK2/4/6 expressions were also found to be associated with low cumulative
survival of the cohorts (Figure 6B). CAFs are apoptotic-resistant and known to inhibit T-cell
expansion, by secreting factors that upregulate the expression of checkpoint molecules in
the TME, thus, hampering an effective anti-tumor response [74]. They promote tumori-
genic and metastatic properties by secreting cytokines and remodeling the ECM [75,76].
Collectively, our study suggested that STAT3/CDK2/4/6 are important onco-immune
signatures that play central roles in tumor progression, tumor immune invasion, poor prog-
noses, and it’s associated with poor response to immunotherapy; thus, concurrent targeting
of this onco-immune signature together with immunotherapy may open up new win-
dows for long-lasting, multilayer tumor control. This study may also provide background
immunization details to assist in the design and follow-up of immunotherapies.
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5. Conclusions

In conclusion, this study identified STAT3/CDK2/4/6 as an oncogenic prognosticator
of cancer-associated fibroblasts and tumor immune infiltrations, and poor prognosis of
multiple cancer cohorts. In addition, it’s associated with poor response to immunotherapy
Genetic alteration of STAT3/CDK2/4/6 co-occurred with other gene alteration and are
associated with poorer prognosis of the cohorts. This finding may therefore be clinically
useful in designing appropriate therapeutic strategies, prognosis assessment, and follow-up
management of immunotherapy in multiple cancer excepting melanoma and glioblastoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/5/954/s1, Table S1: Proteins directly interacting with CDK2/4/6. Table S2: Proteins di-
rectly interacting with STAT3. Figure S1: Scatterplots showing the correlation of STAT3 expression
with immune infiltration level in diverse cancer types. SKCE; Skin cutaneous melanoma, LUAD;
Lung adenocarcinoma; LIHC; Liver hepatocellular carcinoma; HNSC; Head and neck cancer, GBM;
glioblastoma, BRCA; Breast invasive carcinoma. Figure S2: Scatterplots showing the correlation
of CDK2 expression with immune infiltration level in diverse cancer types. SKCE; Skin cutaneous
melanoma, LUAD; Lung adenocarcinoma; LIHC; Liver hepatocellular carcinoma; HNSC; Head and
neck cancer, GBM; glioblastoma, BRCA; Breast invasive carcinoma. Figure S3: Scatterplots showing
the correlation of CDK4 expression with immune infiltration level in diverse cancer types. SKCE; Skin
cutaneous melanoma, LUAD; Lung adenocarcinoma; LIHC; Liver hepatocellular carcinoma; HNSC;
Head and neck cancer, GBM; glioblastoma, BRCA; Breast invasive carcinoma. Figure S4: Scatterplots
showing the correlation of CDK6 expression with immune infiltration level in diverse cancer types.
SKCE; Skin cutaneous melanoma, LUAD; Lung adenocarcinoma; LIHC; Liver hepatocellular carci-
noma; HNSC; Head and neck cancer, GBM; glioblastoma, BRCA; Breast invasive carcinoma. Figure
S5: Box plots showing tumor immune infiltration levels in GBM patients with different somatic copy
number alterations for CDK2/CDK4/CDK6/STAT3. The infiltration abundance in every SCNA
category was compared to the diploid/normal. * p < 0.05; ** p < 0.01; *** p < 0.001. Figure S6:
Graphical data representation of association between CNA of STAT3/CDK2/4/6 and dysfunctional
T-cell phenotypes and prognostic relevance in multiple cancers.
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