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Simple Summary: Tumor suppressor 53 (p53) is a multifunctional protein that regulates cell cycle,
DNA repair, apoptosis and metabolic pathways. In colorectal cancer (CRC), mutations of the
gene occur in 60% of patients and are associated with a more aggressive tumor phenotype and
resistance to anti-cancer therapy. In addition, inhibitor of apoptosis (IAP) proteins are distinguished
biomarkers overexpressed in CRC that impact on a diverse set of signaling pathways associated
with the regulation of apoptosis/autophagy, cell migration, cell cycle and DNA damage response.
As these mechanisms are further firmly controlled by p53, a transcriptional and post-translational
regulation of IAPs by p53 is expected to occur in cancer cells. Here, we aim to review the molecular
regulatory mechanisms between IAPs and p53 and discuss the therapeutic potential of targeting their
interrelationship by multimodal treatment options.

Abstract: Despite recent advances in the treatment of colorectal cancer (CRC), patient’s individual
response and clinical follow-up vary considerably with tumor intrinsic factors to contribute to an
enhanced malignancy and therapy resistance. Among these markers, upregulation of members of
the inhibitor of apoptosis protein (IAP) family effects on tumorigenesis and radiation- and chemo-
resistance by multiple pathways, covering a hampered induction of apoptosis/autophagy, regulation
of cell cycle progression and DNA damage response. These mechanisms are tightly controlled by
the tumor suppressor p53 and thus transcriptional and post-translational regulation of IAPs by p53
is expected to occur in malignant cells. By this, cellular IAP1/2, X-linked IAP, Survivin, BRUCE
and LIVIN expression/activity, as well as their intracellular localization is controlled by p53 in a
direct or indirect manner via modulating a multitude of mechanisms. These cover, among others,
transcriptional repression and the signal transducer and activator of transcription (STAT)3 pathway.
In addition, p53 mutations contribute to deregulated IAP expression and resistance to therapy. This
review aims at highlighting the mechanistic and clinical importance of IAP regulation by p53 in CRC
and describing potential therapeutic strategies based on this interrelationship.

Keywords: cIAP1/2; colorectal carcinoma; inhibitor of apoptosis protein family; Survivin; TP53;
XIAP; BRUCE; LIVIN

1. Introduction

Colorectal cancer (CRC) accounts for around 10% (more than 1.2 million cases) of
annually diagnosed malignancies in the world. It is the fourth most mortal cancer with
about 900,000 deaths per year and the incidence is predicted to increase approximately to
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2.5 million new cases by 2035 [1]. CRC development is characterized by a multistep process
involving a series of histological and morphological changes triggered by a sequential
accumulation of specific genomic alterations [2]. Adenomatous polyposis coli (APC) gene
mutations occurring in normal colon epithelial cells are among the early incidents of a
complex tumorigenesis, resulting in abnormally growing benign precancerous polyps (ade-
nomas and sessile serrated polyps) that, over time acquire the ability to invade the bowel
wall and trigger low-grade dysplasia. Successively, promoted by Kirsten rat sarcoma virus
(KRAS) oncogene activation and serine/threonine-protein kinase B-Raf (BRAF) mutations
along with chromosomal (microsatellite) instabilities, high-grade dysplasia will develop
that accelerate transformation to malignant progression and invasive carcinoma by further
accumulating p53 mutations. Finally, these local malignancies may acquire the potential to
metastasize to local lymph nodes and distant organs [1,3]. TP53 gene mutation frequency is
60% in colorectal cancers with the vast majority of mutations located in the DNA-binding
domain of the protein. About 60% of TP53 mutations result in an abrogated function of one
allele (loss of heterozygosity); however, this can have a dominant negative effect (DNE) and
repress wild-type (wt)-p53 functions. By contrast, gain of function (GOF) mutations may
induce tumor initiation and progression as well as cancer stemness, invasion, migration
and therapy resistance [4–6].

In dependence of tumor stage, location and lymph node status, CRC is treated by
surgery, neoadjuvant (before surgery) or adjuvant chemotherapy (after surgery) with or
without concurrent irradiation. By this, treatment of rectal adenocarcinoma represents
a particularly good example for a successful implementation of multimodal concepts in
cancer management. The establishment of neoadjuvant therapy based on chemoradiation
(CRT) prior to surgical resection was a turning point in the treatment of this entity resulting
in substantially reduced local recurrence rates and improved survival by the inclusion
of oxaliplatin [7,8]. However, despite identical tumor histology and comparable tumor
stages, patient’s response to neoadjuvant CRT ranges from a clinically and pathologically
confirmed complete remission in 10–30% of cases to progression under treatment [9]. This
variable tumor response further displays a strong prognostic impact and significantly
correlates with disease-free (DFS) and overall survival (OS) [10,11], while a comprehensive
understanding of the molecular basis that defines the individual therapy response is still
at its early stage. Among the molecular tumor determinants associated with carcinogen-
esis, enhanced proliferation, invasion, migration and resistance to anticancer treatment,
members of the inhibitor of apoptosis (IAP) family proteins, most pronounced cellular IAP
(cIAP1, cIAP2), X chromosome linked IAP (XIAP) and Survivin, have gained increasing
interest [12]. In this review, we aim to illustrate a mechanistic interrelationship between
IAPs and p53 that may pave the way to develop new combinational therapies to overcome
mutant p53 and IAPs based therapy resistance in CRC.

2. Biology and Functions of p53, a Brief Introduction

The p53 protein and poly(ADP-ribose) polymerases (PARPs) are considered to be
the “guardians of the genome” due to their role in conserving genetic stability by pre-
venting mutations and mediating tumor suppression via a tightly regulated network in
response to stress signals, which results in either cell death or survival [4]. PARP-1, by
a direct poly(ADP-ribosyl)ation of the p53 protein results in a nuclear accumulation and
transcriptional activation of p21 [13] or is required for ATM-mediated p53 activation and
gene expression [14]. In addition, epigenetic repression (p53) and activation (PARP-1) of
DNA (cytosine-5)-methyltransferase 1 (DNMT1) activity, a key enzyme implicated in the
silencing of DNA repair genes, may represent an indirect interrelationship between both
proteins [15].

The major structural part of the p53 protein covers a central DNA-binding domain
(DBD), which is connected to the tetramerization domain by a linker region. The regulatory
domain is located adjacent to the homo-oligomerization (OD) domain at the protein’s
carboxy-terminal end. The vast majority of p53 mutations are located in the DNA-binding
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region [16]. Transcriptional functions of p53 are mediated by binding to variable consensus
sequences in responsive elements in the promoter of target genes. Moreover, p53 also
regulates genes partially or completely lacking these consensus sequences dependent on
their secondary structure [17]. In addition, p53 directly binds and regulates proteins such
as ataxia telangiectasia mutated (ATM) kinase and transcription factors such as Y-box-
binding protein (YB-1) [18]. This diversity enables multiple regulatory functions in cellular
pathways but needs to be tightly controlled. In that context, a negative feedback loop via
murine double minute 2 homologue (MDM2) and MDM4 controls p53-mediated transcrip-
tional and post-transcriptional activity and keeps p53 at low levels under physiological
conditions [19,20]. Following DNA damage, p53 is activated by post-translational modifica-
tions, e.g., phosphorylation by phosphatidylinositol 3-kinase-related kinase (PIKK)-family
members ATM, ataxia telangiectasia and Rad3-related (ATR) and DNA-dependent protein
kinase catalytic subunit (DNA-PKcs) or indirect phosphorylation by ATM/ATR/DNA-
PKcs substrates checkpoint kinases 1 (CHK1) and CHK2 [19,21]. These modifications
result in p53 stabilization, activation and nuclear translocation, followed by p53-mediated
transcription of a plethora of target genes, involved in cell cycle regulation, DNA damage
repair and apoptosis [22].

3. Structure and Function of the Inhibitor of Apoptosis Protein Family (IAP)

The IAP family was first described in 1993 as a class of baculoviral proteins character-
ized by a functional baculovirus IAP repeat (BIR) domain [23] that prevented apoptosis
of insect cells during viral infection [24]. Since their discovery, BIR containing (BIRC)
proteins were reported in yeast, insects and mammalians. The human IAP family currently
covers eight members, including neuronal apoptosis inhibitory protein (NAIP/BIRC1),
cellular IAP1 (cIAP1/BIRC2), cellular IAP2 (cIAP2/BIRC3), X-chromosome-linked IAP
(XIAP/BIRC4), Survivin (BIRC5), BIR repeat-containing ubiquitin-conjugating enzyme
(BRUCE/Apollon/BIRC6), LIVIN (BIRC7) and human IAP-like 2 (hILP2/BIRC8) [25,26].
The family members differ substantially in protein size and functional domains but share
at least one of the family-defining BIR domain facilitating protein-protein interactions with
other factors. Additional functional domains include a centrally located ubiquitin associ-
ated (UBA) domain present in cIAP1 cIAP2, XIAP and hILP2 to allow these proteins to bind
to poly-ubiquitin chains, or a carboxy-terminal localized really interesting new gene (RING)
domain conferring ubiquitin ligase activity and mediating signal transduction, protein-
protein interactions, and transcription [25]. Further, a caspase activation and recruitment
domain (CARD), unique to cIAP1/2, helps to control their ubiquitin ligase activity and
stability. In addition, NAIP includes a NAIP-C2TA-HETE-TEP1 nucleotide-binding and
oligomerization domain (NACHT) which functions in apoptosis inhibition and major his-
tocompatibility complex (MHC) class II transcriptional activation and a leucine-rich repeat
(LRR) domain with a role in signaling pathways of innate immunity and host-pathogen
recognition [27]. Finally, Survivin carries an amphipathic α-helical coiled-coil domain at
the C-terminus, common in microtubule-associated proteins [28].

Although IAPs are primarily considered as sole inhibitors of apoptosis, growing
evidence evolves regarding their vital impact as transduction intermediates in a diverse
set of signaling pathways associated with the regulation of cell migration, cell cycle and
DNA damage response. Some of these functions will briefly be described below and are
summarized in Figure 1.
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Figure 1. Inhibitor of apoptosis proteins (IAPs) are multifunctional proteins that regulate a variety
of key cellular mechanisms such as apoptosis, cell division, invasion and metastasis, autophagy,
DNA double-strand break (DSB) repair, cancer progression, immune response and inflammasome
formation. Moreover, IAPs are associated with radiation and chemotherapy resistance and are
considered to be valuable prognostic and predictive biomarkers in colorectal cancer (CRC). Please see
the text for a more detailed discussion. Abbreviations: DNA-PKcs, DNA-dependent protein kinase,
catalytic subunit; NF-κB, nuclear factor kappa B; SMAC, second mitochondrial activator of caspases.

3.1. cIAP1 and cIAP2

Primarily, cIAP1 was discovered by its involvement in inflammation/apoptosis sig-
naling interacting with tumor necrosis factor receptor-2 associated factors (TNFR2-TRAFs)
via its N-terminal BIR domain [29]. The major biological activities of cIAP1 cover a positive
regulation of the canonical transcription factor nuclear factor kappaB (NF-κB) activation
pathways. By this, cIAP1 complexes with TRAF2, Src homology 2 domain-containing
protein tyrosine phosphatase 1 (SHP1), Src and myeloid differentiation primary response
88 (MyD88) to promote canonical activation of NF-κB [30]. Briefly, in the TNFR1 com-
plex, cIAP1/2 serve as ubiquitin ligases for receptor-interacting serine/threonine-protein
kinase 1 (RIPK1), which is needed for TNF-α mediated NF-κB and mitogen-activated
protein kinase (MAPK) signaling, gene expression, differentiation, mitosis and inhibition
of both, caspase-dependent and -independent cell death. In addition, cIAP1/2 limit the
non-canonical NF-κB activation pathway. Here, cIAP1/2 act as ubiquitin ligases that target
NF-κB-inducing kinase (NIK) for degradation. Further, upon viral infection, cIAP1/2 ubiq-
uitinate TRAF3/6 which is an essential factor for NF-κB deregulation, while attenuation of
cIAP1/2 impedes an antiviral response via inhibition of the virus-triggered activation of
NF-κB, interferon regulatory factor 3 (IRF3) and interferon-beta (IFN-β) induction [31].

The expression level of cIAP1 is regulated by a variety of transcriptional and post-
translational mechanisms including microRNAs (miRNAs) and proteasomal degradation.
For instance, microRNA-29c (miR-29c) binds to the 3′-UTR of cIAP1 effectively downregu-
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lating its mRNA and protein levels [32]. Further, downregulation of ubiquitin thioesterase
OTU domain ubiquitin aldehyde binding 1 (OTUB1) enhances the degradation of cIAP1
and inhibits the TNF-related weak inducer of apoptosis (TWEAK)-induced MAPK and
NF-κB pathway [33]. Upon genotoxic stress, a bilateral cell death regulation involving the
ripoptosome (RIP1/3-FADD-Caspase-8-c-FLIP) complex is reported: cIAP1 and cIAP2 di-
rectly ubiquitinate RIP1 which associates with the pro-survival transforming growth factor
beta-activated kinase 1 (TAK1) and triggers proteolytic degradation of the ripoptosome
complex while attenuation of IAPs allows the proper formation of the complex [34].

Beside its function in concert with cIAP1, cIAP2 is involved in response to metal stress,
DNA repair and together with XIAP and Survivin in exosomal secretion [35–37]. The latter
may not only serve as warning signals, but may also play a role in providing protection to
the cancer cells against potential dangers in the tumor microenvironment [38].

As a response to histone deacetylase (HDAC) inhibitor Panobinostat treatment, cIAP2
exhibits the highest upregulation in line with a decreased level of DNA double-strand
break (DSB) repair protein meiotic recombination 11 homolog (MRE11). Moreover, cIAP2
directly interacts with MRE11, promotes its ubiquitination and directs it to degradation
that in turn delays DNA DSB repair resulting in increased radiation sensitivity [35].

3.2. XIAP

Human XIAP was initially discovered as an IAP-like apoptosis inhibitor protein by its
homology to baculovirus IAP genes [39]. XIAP is an archetypical IAP protein that, in con-
trast to other family members, inhibits the active catalytic sites of caspases-3 and caspases-7
in a direct manner and interferes with the dimerization and activation of caspase-9. This
prevents their downstream effector functions, including the release of mitochondrial IAP
antagonists such as second mitochondrial activator of caspases (SMAC/Diablo) and the
serine peptidase HtrA2/Omi, that bind XIAP’s BIR domains, releasing active caspases
into the cytosol [40]. In addition, recent studies presented XIAP as a multifunctional
protein involved in cellular and metabolic regulatory circuits such as invasion, migration,
necroptosis, oxidative stress, inflammasome formation and autophagy [41–50]. XIAP′s
BIR domain 1 mediates activation of stress-responsive signaling pathways, such as Jun
Kinase (JNK) [51] and MAPK phosphorylation cascade that in turn activate NF-κB. XIAP
also activates NF-κB by promoting the translocation of the p65 subunit to the nucleus and
by degradation of the NF-κB inhibitor IκB [52]. XIAP empowers interleukin-17 mediated
NF-κB activation and caspase-3 inhibition that drives colon tumor formation [44]. In line
with Survivin, XIAP represents a radiation resistance factor and attenuation of the protein
triggers radiation response in CRC cancer cell lines [53,54].

3.3. Survivin

Survivin is among the most studied members of the IAP family. The protein was
discovered in the late nineties as its smallest member involved in fetal development and
cancer progression. Survivin is downregulated in most terminally differentiated cells
and re-expressed in the majority of solid and liquid human tumors investigated [55,56].
Survivin is a prime example of a multifunctional protein involved in a variety of regulatory
circuits in tumor cells [37,57]. By this, a present conception is that most IAPs, except
for XIAP, block apoptosis by mechanisms other than direct caspase inhibition [58], but
via cooperative interactions with other partners. Thus, an association of Survivin with
hepatitis B X-interacting protein (HBXIP) and/or XIAP inhibits caspases, while binding
to SMAC/Diablo counteracts this activity. Moreover, Survivin is expressed in a cell cycle
regulated manner participating in cell division as an interactor of chromosomal passenger
complex (CPC) proteins INCENP, Borealin and Aurora-B [59,60]. In malignant cells, how-
ever, Survivin is regulated independently of mitosis by a variety of oncogenic pathways.
Further, Survivin is a predominantly nucleocytoplasmic protein; however, shuttling to or
from other compartments like the nucleus is mediated by Exportin-1, irradiation and post-
translational regulations such as homodimerization and acetylation of residue K129 [61,62].
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Survivin is subjected to multiple post-translational modifications that mostly are decision-
makers on its functions and fate of the host. For instance, phosphorylation of residue
T34 by p34(cdc2)-cyclin B1 facilitates proper Survivin-caspase-9 interaction that results in
inhibition of apoptosis [63]. In addition, Survivin is a radiation-inducible factor mediating
the cellular radiation response in a multitude of tumors including colorectal cancer [64–66].
By this, Survivin accumulates in the nucleus and interacts with a prime non-homologous
end joining repair factor DNA-dependent protein kinase (DNA-PKcs) [67,68]. Survivin
forms a heterotetramer complex with DNA-PKcs that results in a conformational change
on the DNA-PKcs phosphoinositide 3-kinase domain with enhanced enzymatic activity
and detection of differentially abundant phosphopeptides and proteins implicated in the
DNA damage response [69].

3.4. BRUCE/Apollon

With a molecular weight of 528 kDa, BRUCE/Apollon is a huge E3 ubiquitin trans-
ferase whose mutation causes embryonic lethality [70,71]. In concert with other IAPs, one
of the main functions of BRUCE is inhibition of apoptosis [70]. BRUCE binds and ubiquiti-
nates SMAC/Diablo, caspase-9 and mitochondrial serine peptidase HtrA2/Omi to prevent
apoptosis by facilitating their proteasomal degradation [72,73]. Early in mitosis, BRUCE
binds the anaphase-promoting complex/cyclosome (APC/C) and enables the degradation
of Cyclin A by ubiquitination independent of cyclin-dependent kinases (CDKs) [74]. How-
ever, in the late phase of cytokinesis, BRUCE is an essential component of the midbody ring
and the tubular recycling system under the regulation of mitotic kinesin-like protein-1 to
regulate cytokinetic abscission [75]. Upon DNA damage, BRUCE acts as a scaffold to form
a complex with ubiquitin-specific peptidase 8 (USP8) and breast cancer susceptibility gene
C terminus-repeat inhibitor of human telomerase repeat transcriptase expression-1 (BRIT1)
at the DSBs, which is vital for the formation of BRIT1 DNA damage foci [76]. BRUCE
further regulates ATR-directed signaling pathways in DNA replication stress via interaction
with pre-mRNA-processing factor 19, while depletion of BRUCE causes a stalled DNA
replication, prevents the activation of ATR and inhibits the phosphorylation of CHK1 and
replication protein A [77].

3.5. LIVIN

LIVIN (37/39 kDa) plays a key role in a multitude of cellular mechanisms and stress re-
sponses including radiation response, invasion, hypoxia-resistance and autophagy [78–82].
LIVIN inhibits apoptosis by binding both, caspase-3/7 as well as TNFα-induced DEVD-like
caspase. In addition, LIVIN indirectly inhibits caspase-9 via apoptotic protease activating
factor-1 (Apaf-1) [83]. However, reports on a bidirectional regulation between caspases
and LIVIN revealed that the truncation of LIVIN (28/30 kDa) by caspase-3/7 transforms it
to a pro-apoptotic protein [84,85]. Chemosensitivity studies in colon cancer cells further
revealed LIVIN as a drug resistance gene against etoposide (VP-16) and 5-fluorouracil
(5-FU) [86], while attenuation of the protein significantly decreases the size of colon can-
cer xenograft tumors [86,87]. Upon irradiation, LIVIN overexpression is associated with
cellular radioresistance, whereas attenuation of LIVIN decreases radiation-induced cell
invasion ability and enhances radiation response [78,79].

3.6. NAIP and hILP-2

NAIP was first discovered as spinal muscular atrophy (SMA) related gene whose
deletion or mutation was restricted to SMA patients [88]. However, comprehensive studies
over the last years indicate the relevance of NAIP in a variety of different molecular
mechanisms and diseases such as cytokinesis, inflammasome formation, amyloid-β toxicity,
amyotrophic lateral sclerosis (ALS) and Parkinson’s disease [89–93]. The least-studied
member of IAP family, hILP-2 is discovered as a protein owing a high sequence homology
to XIAP but no inhibitory effect on TNF-mediated apoptosis. Nevertheless, it can inhibit
Bcl-2-associated X protein (Bax) or caspase-9 and Apaf-1 triggered apoptosis. Moreover,
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hILP-2 directly interacts with cleaved caspase-9 [94] and attenuation of hILP-2 triggers
apoptosis and inhibits migration [95].

4. Prognostic Relevance of IAP Expression in CRC

By using a tissue microarray technology, immunoexpression of cIAP1, cIAP2, XIAP,
Survivin and their antagonist SMAC/Diablo were evaluated in the treatment of naive
colorectal carcinoma and expression levels were correlated with the levels of apoptosis,
cellular proliferation and patient’s prognosis [96]. Particularly, a low cIAP1 immunode-
tection in malignant tissue was correlated with a significantly lowered patient survival.
According to a report by Krajewska et al., an elevated expression of cIAP2 in stage II
CRC cases significantly correlated with an impaired overall survival (OS) in both uni- and
multivariate analyses [97] and is considered to be a predictive marker for the sensitivity to
the chemotherapeutic drug 5-fluorouracil [98]. Furthermore, other studies indicate higher
levels of XIAP expression to correlate with venous invasion, Duke’s staging, tumor differ-
entiation and multivariate analysis further proving XIAP to be an independent prognostic
factor for an impaired DFS and OS [97,99].

In addition, Survivin has consistently been demonstrated to be overexpressed in
solid human tumors and significantly correlates with tumor onset, more aggressive and
advanced pathologic features, metastasis and worse prognosis as well as impaired pa-
tient’s survival [25,100,101]. In line with that, Survivin is involved in early development
of colorectal cancer [102]. In detail, transcription factors of the T-cell factor (TCF)/beta-
catenin family-mediated increased Survivin expression imposes a stem cell-like phenotype
in colonic crypt epithelial cells coupling enhanced cell proliferation with resistance to
apoptosis and the molecular pathogenesis of colorectal cancer. In addition, activated signal
transducer and activator of transcription 3 (STAT3) participates in early stage of colon can-
cer progression by upregulation of the stem cell marker CD133 that in turn induces Survivin
expression [103]. Moreover, Survivin expression increases during the adenoma-carcinoma
sequence and is maintained throughout the progression of disease [104]. Survivin over-
expression is significantly associated with primary tumor sites, lymph node metastasis
and advanced III/IV stages and is an independent prognostic factor for both DFS and OS
in multivariate analysis [105]. Notably, a meta-analysis on a total of 1784 patients from
14 studies confirmed Survivin overexpression in patients with CRC to be significantly
associated with poor DFS and OS [106]. Concerning a predictive relevance, a failure of
downregulation of Survivin from pretreatment biopsies to corresponding posttreatment
resection specimens after neoadjuvant radiochemotherapy in rectal cancer was associ-
ated with development of distant metastases and correlated significantly with DFS and
cancer-specific survival [107,108]. These findings may be explained on a molecular level
as Survivin orchestrates NF-κB dependent expression of fibronectin, integrin signaling,
activation of focal adhesion kinase (FAK) and Src, and upregulation of v-akt murine
thymoma viral oncogene homolog (AKT) pathway to mediate tumor cell migration and
metastatic dissemination [109]. Finally, a high cytokeratin-20 and Survivin expression
in blood circulating tumor cells predict inferior OS in metastatic CRC patients receiving
various chemotherapy regimens [110].

As reported before for XIAP and Survivin, compared to normal mucosa and non-
metastatic lymph node tissues, LIVIN expression is also significantly overexpressed in
CRC and correlates with poor patient survival [111], tumor stage, lymphovascular invasion
and lymph node metastasis [112] that may originate from triggering NF-κB activation and
its downstream targets fibronectin and chemokine (C-X-C motif) receptor 4 (CXCR4) as
reported for prostate cancer invasion [80]. Finally, BRUCE overexpression is a prognostic
marker for colorectal cancer, which correlated with tumor size and invasion depth and was
significantly associated with worse OS and shorter DFS in a cohort of 126 patients [113,114].
Concordantly, a large-scale proteomics study of colon spheres enriched with colon cancer
stem cells identifies BRUCE as a highly upregulated therapeutic target [115].
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In summary, due to their prognostic and predictive relevance along with a prominent
role at disparate cellular networks on tumor cell apoptosis, invasion and metastases, IAPs
are considered to represent valuable oncotherapeutic targets with the inhibitory approaches
(e.g., antisense oligonucleotides, small molecules and immunotargeting) about to enter
clinical evaluation [116].

5. Molecular Regulation of IAPs by p53

The first report on a putative functional interrelationship between IAPs and p53 arises
from an inverse immunohistochemical correlation signature of Survivin and p53 expres-
sion in gastric carcinoma [117]. An inverse correlation was subsequently confirmed in vivo
and in vitro in additional tumor entities including breast, ovarian and lung carcinoma
cell lines [118–120]. More recent findings further strengthen the clinical relevance of an
IAP-p53 interrelationship. For instance, a clinical study assessing the gene expression
levels in tumor biopsies of colon cancer patients revealed a significant correlation between
the gene expression levels of LIVIN and p53. The correlation covers the upregulation
of LIVIN and downregulation of p53 which is highly associated with aggressive tumor
growth and metastatic spread [121]. P53’s main physiological function is to regulate the
genes that control apoptosis [19]. Functionally, Survivin is an inhibitor of apoptosis pro-
tein, thus the repression of Survivin by p53 constitutes a mechanism that enables tumor
cells to execute apoptosis upon induction by apoptotic stimuli. Indeed, Mirza et al. were
the first to report a direct link between Survivin and wt-p53 that contributes to cancer
progression [119]. On a functional level, transcriptional repression of Survivin expression
is mediated by wt-p53 binding to the promoter region, while transcription factor E2F
binds to a comparable promoter binding region and transactivates Survivin expression
in the absence of p53 [120,122]. The mechanisms of the transcriptional repression are not
fully elucidated to date and may further include DNA methylation and modification of
chromatin structure accessibility within the Survivin promoter region [119]. Accordingly,
the recruitment of histone deacetylase (HDAC) by p53 to the Survivin promoter is involved
in the inhibition of gene transcription [120]. In concordance with the previous finding,
inhibition of HDAC2 by siRNA or treatment with deacetylase inhibitor suberoylanilide
hydroxamic acid (SAHA) triggers the proteasomal degradation of MDM2 that upregu-
lates p53 and results in a suppression of Survivin [123]. Further, the Survivin promoter
contains a canonical CpG island and is hypermethylated in malignant cells that prevents
p53 binding and results in a high Survivin expression, while Decitabine-induced DNA
demethylation promotes a p53-dependent downregulation of Survivin [124]. Moreover,
Zhu et al. identified a regulatory pathway for the expression of Survivin under the control
of Kruppel-like factor 5 (KLF5) and p53. KLF5 directly binds to multiple GT-boxes in the
core Survivin promoter to strongly induce its transcriptional expression; likewise, KLF5
binds to p53 that abrogates the repression of Survivin [125]. Other investigations, however,
did not confirm that p53 could physically interact with the Survivin promoter and indi-
cated an indirect interrelationship. For instance, adenovirus E1B-55K protein is involved in
indirect p53-mediated repression of Survivin by interfering with the Sin3 core repressor
complex [119,126]. More recent reports support indirect repression mechanisms, including
p53-dependent upregulation of miRNAs in CRC cells [127,128]. P53 interacts with Drosha
miRNA processing complex and DEAD-box RNA helicase p68 (DDX5) and modulates
miRNA biogenesis. In response to DNA damage, p53 regulates the post-transcriptional
maturation of several miRNAs including miR-15a and miR-16. According to an in vitro
study, overexpression of miR-16 significantly enhances apoptosis in HCT116 cells [127].
Notably, high expression of both miR-15a and miR-16 correlated with better DFS and OS
in colorectal cancer patients [129,130]. Furthermore, DNA damaging agent Bleomycin
induces p53 expression and induction of miR-15a which in turn targets NAIP and de-
creases its mRNA and protein expression levels [131]. Upon 5-FU treatment of colorectal
cancer cells, miR-96 gets upregulated which triggers the downregulation of XIAP and p53
stability regulator ubiquitin conjugating enzyme E2N (UBE2N) resulting in the stimulation
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of apoptosis [132]. Finally, miR-192-5p and miR-215 constitute p53-responsive miRNAs.
Upon knockdown of p53, expression of both miRNAs was abrogated in non-small cell lung
cancer and target analysis revealed XIAP as a transcriptional target [133].

P53 is an upstream transcriptional regulator of cyclin-dependent kinase inhibitor
p21 (WAF1/CIP1). Survivin acts as a transcriptional repressor/cofactor of p21 mRNA
and protein expression via directly interacting with p53 on the p53-binding sites of the
p21 promotor, while C84A mutation or knockdown of Survivin reversed this regulatory
pathway [134]. Moreover, Survivin ablation has a feedback regulatory function on p53
which stimulates its transcriptional activation and enables the expression of p21 [135].
Glycogen synthase kinase-3beta (GSK-3β) induces nuclear accumulation of Survivin [136],
while a GSK-3β dominant-negative mutant or siRNA mediated silencing induces stability
and activation of p53 that triggers p21 expression and results in the repression of Sur-
vivin [137]. On a molecular level, p53-dependent gene repression by p21 is mediated by a
promoter binding of transcription factor Myb-related protein B (B-MYB) mediated switch
to binding transcription factor E2F4 and p130 to the dimerization partner, RB-like, E2F and
multi-vulval class B (DREAM) complex onto the Survivin promoter [138,139]

Stimulation of IAPs-p53 signaling pathways is mediated by a wide range of exter-
nal/internal sources, including elevated temperature, metal stress, viral infection and DNA
damaging stress such as treatment with chemotherapeutic drugs and ionizing
irradiation [140–147]. In Etoposide-dependent induction of apoptosis, p53 induces the expres-
sion of HtrA2/Omi which cleaves and inactivates cIAP1. The cleavage process of cIAP1 is
caspase-independent while the serine protease inhibitor 4-(2-Aminoethyl)benzolsulfonylfluoride
(AEBSF) inhibits this apoptosis induction [140].

The cellular stress response is highly related with and coordinated by autophagy
which is a mechanism of cellular homeostasis that regulates the starvation response and
degradation of damaged molecules and organelles via autophagosome formation. How-
ever, autophagy dysfunction causes tumorigenesis and promotes metastasis. Essential
autophagy genes such as microtubule-associated protein 1A/1B-light chain 3, Beclin-1,
and autophagy protein-5 are considered as markers for staging and survival prognosis in
colorectal cancers [148]. P53 is a well-recognized negative regulator of autophagy [149]. In
HCT116 colorectal cancer cells, XIAP knockdown/knockout markedly promotes MDM2
levels that induces the degradation of p53 while phospho-S87 XIAP interacts and facilities
the degradation of MDM2 that maintain high levels of cytosolic p53. In concordance,
S87A mutation of XIAP hampers its anti-autophagy activity [49]. Nevertheless, in stressed
conditions, inhibition of the PI3K/Akt pathway results in a dephosphorylation of S87 of
XIAP and hampers the XIAP-mediated MDM2 degradation which results in a predominant
nuclear p53 accumulation and proper facilitation of autophagy [49]. Notably, the severity
of cellular stress further initiates opposite IAP-p53 regulatory mechanisms. Arsenite treat-
ment with low concentrations of the drug upregulates a cascade including activation of
extracellular signal-regulated kinases (ERKs) which in turn trigger NF-κB activation. Upon
NF-κB activation mitochondrial 70 kDa heat shock protein family A (Hsp70) member 9
(HSPA9) gets upregulated and hereby downregulates p53 that triggers the upregulation
of Survivin and induction of cell proliferation. By contrast, upon treatment with high
concentrations of arsenite, c-Jun N-terminal kinases (JNKs) get activated which inhibits
the degradation of p53 by MDM2. Upon p53 stabilization, Survivin is downregulated,
resulting in the execution of apoptosis [147]. For a further bidirectional regulation between
IAPs and p53, E2/E3 ubiquitin ligase BRUCE has been identified as an upstream regulator
of p53. Mechanistic studies revealed that BRUCE directly binds to p53 and facilitates
its proteosomal degradation [114]. Antisense attenuation or C-terminal deletion (∆UBC
domain) of BRUCE stabilizes the p53 protein and directs it to the nucleus that results in a
transcriptional upregulation of pro-apoptotic genes BAX, Bcl2-antagonist/killer 1 (BAK)
and p53-inducible protein with a death domain (PIDD) and activation of caspase-3 that
ends up in a G1/S arrest and stimulation of mitochondrial apoptosis [114,150,151]. In
addition, Zinc oxide nanoparticle and copper complex-induced stress triggers stability and
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activation of p53 via phosphorylation on residues S15, S46 and S392 which decreases the
expression of Survivin, XIAP, cIAP1 and LIVIN [145,152]. Furthermore, heat stress at 42 ◦C
directs p53 predominantly to the nucleus and activates the protein via S15 phosphoryla-
tion. Activation of p53 induces the upregulation of pro-apoptotic genes such as BAX, p53
upregulated modulator of apoptosis (PUMA) and p21 as well as downregulation of XIAP
that promotes mitochondrial SMAC release and induction of caspase-3 expression [153].

Topoisomerase I (Topo I) is an essential enzyme involved in DNA replication and
transcription which relaxes supercoiled DNA by nicking one strand of double-stranded
(ds)-DNA. DNA nicking generates reversible cleavage complexes, however, they may cause
irreversible DNA lesions including mismatches and breaks that trigger DNA damage re-
sponse mechanisms [154]. DNA damage caused by the combined treatment of proteasome
inhibitor PS-341 and Topo I inhibitor SN-38 stabilizes p53 and downregulates Survivin,
triggering p53-dependent apoptosis [155]. Likewise, the combination of Topo I inhibitor
Irinotecan and Survivin dimerization inhibitor LLP3 results in an upregulation of X-linked
inhibitor of apoptosis factor 1 (XAF-1) and downregulation of Survivin in p53-mutated
CRC cell lines [156]. In line with that, a recent study exploring mechanisms to overcome
drug resistance by applying a combination of Irinotecan and IAP small molecule antagonist
BV6 revealed a chemosensitization by cIAP1/2 degradation and caspase-8/9 activation in
mismatch repair (MMR)-proficient but not in MMR-deficient p53 mutated colorectal cancer
cells and organoids [157].

Retinoblastoma protein (RB) is reported to downregulate the expression of cIAP1 and
cIAP2 in p53-deficient conditions while attenuation of p53 and RB initiates transcription
factor E2F mediated transactivation of cIAP1 and cIAP2 genes [158]. On the contrary, cIAP2
knockdown triggers an alternative NF-κB pathway (Inhibitor of nuclear factor kappa-B
kinase subunit alpha (IKKα)-mediated) which activates MDM2 via SUMOylation and
S166 phosphorylation that results in MDM2-dependent degradation of p53. IKKα forms
a complex with the SUMO-E3 ligase protein inhibitor of activated STAT 1 (PIAS1) that
holds the ligase in an inactive state. Upon cIAP2 knockdown, activated IKKα phosphory-
lates S90 residue of PIAS1 and disrupts this complex. Released PIAS1 then SUMOylates
MDM2 [159].

STAT3 is a multifunctional transcription factor with an essential role in colon cancer
progression and inflammation. By this, activated STAT3 may participate in tumor pro-
gression through increasing CD133/Survivin expression in early stage of colon cancer
development [160]. Upon irradiation, increased expression of cyclooxygenase-2 (COX2)
induces prostaglandin receptor E2 (PGE2) expression that induces STAT3 pathway and
results in an upregulation of Survivin [161,162]. Attenuation of the STAT3 pathway in
HCT116 and SW480 colorectal cancer cells, by contrast, downregulates Survivin and up-
regulates p53 and caspase-3 [160]. Further, ionizing radiation has an acute proteome
acetylation effect [163], which triggers the CREB-binding protein (CBP)-dependent acetyla-
tion of Survivin on lysine 129 and directs its nuclear localization [61]. Notably, acetylated
nuclear Survivin directly binds to the N-terminal transcriptional activation domain of
STAT3 and represses transactivation of target gene promoters [61]. IAP-p53 interacting
pathways are schematically summarized in Figure 2.
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Figure 2. The IAP-p53 axis is an essential regulator of a multitude of cellular pathways. P53 is a key transcriptional
suppressor of Survivin expression. Upon varying levels of different stress sources such as DNA damage agents, arsenite,
heat and metal stress, activated p53 triggers caspase induction and apoptosis initiation via p21 expression and IAP-targeting
of micro(mi)RNA biogenesis. Murine double minute 2 homologue (MDM2) as well as BRUCE function as upstream
regulators of p53, whose binding arrests and directs it to targeted degradation. In addition, the IAP-p53 axis is also
involved in the mediation of autophagy, epidermal growth factor receptor (EGFR)/ signal transducer and activator of
transcription 3 (STAT3) pathway, NF-κB and alternative NF-κB pathways (Inhibitor of nuclear factor kappa-B kinase subunit
alpha (IKKα)-mediated) under the regulation of MDM2 and histone deacetylase 2 (HDAC2). Details are given in the
text. Abbreviations: BIRC5, BIR containing 5; cIAP1, cellular IAP1; cIAP2, cellular IAP2; Cox-2, cyclooxygenase-2; ERK,
extracellular signal-regulated kinase; E2F, transcription factor E2F; HSPa9, heat shock protein family A (Hsp70) member 9;
JNK, Jun kinase; KLF5, Kruppel-like factor 5; mut-P53, mutated p53; NAIP, neuronal apoptosis inhibitory protein; PGE2,
prostaglandin receptor E2; PIAS1, protein inhibitor of activated STAT 1; Rb, Retinoblastoma protein; TF, transcription factor;
Topo I, topoisomerase I; XAF1, X-linked inhibitor of apoptosis factor 1; XIAP, X-linked inhibitor of apoptosis protein.

6. Clinical Treatment Potential by IAPs and p53

As reviewed above, interfering with the multifaceted interrelationship between IAPs
and p53 holds a promise to overcome treatment resistance and sensitize cancer cells
with particularly p53 mutant phenotypes to apoptosis. Indeed, there are some recent
preclinical and clinical approaches to target IAPSs alone or in combination with p53.
Strategies to target IAPs comprise an impressive spectrum of antagonists covering SMAC
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mimetics, [164–168], RNA interference (small interfering RNA, siRNA) [112,169–172],
small molecule transcriptional inhibitors (YM155) [173], Survivin-T43A mutant RNA ther-
apy [174], peptides targeting Survivin-XIAP complexes (Sur-X) [175] and Survivin dimeriza-
tion modulators (LLP3) [156]. As depicted in more detail in Table 1, the modes of action of
these inhibitors include activation of intrinsic and extrinsic (TNF-α, Tumor necrosis factor-
related apoptosis-inducing ligand, Trail) apoptosis, suppression of tumor cell migration
and invasion, inhibition of proliferation and sensitization to radiation and chemotherapy.

Table 1. Recent preclinical studies targeting inhibitor of apoptosis proteins (IAPs) in colorectal cancer (CRC).

Target Inhibitor Mode of Action Reference
Targeting IAPs

cIAP1/2
XIAP

SMAC mimetics:
BV6, Birinapant

AT-406, Tolinapant

BV6 enhances the cellular radiosensitivity and the number
of radiation-induced DNA damage foci in CRC cells.
Birinapant alone or in combination with AT-406 increases
apoptosis upon oxaliplatin/5-FU treatment. Tolinapant
facilitates the activation of extrinsic apoptosis pathway by
stimulating TNF-α and TRAIL and caspase activation

[164–167]

cIAP1/2 siRNA cIAP1/2 silencing chemosensitizes colorectal cancer cells
and triggers caspase-8 activation and apoptosis [169]

XIAP Sur-X peptide inhibitor,
siRNA, BV6, Mithramycin-A

Sur-X peptide inhibitor prevents the Survivin-XIAP
interaction and inhibits their antiapoptotic and
prometastatic activities; attenuation of XIAP by siRNA,
Mithramycin-A or BV6 overcomes TRAIL-dependent
apoptosis resistance in CRC cells

[168,172,175]

Survivin

YM155, LLP3 protein inhibitor,
Sur-X peptide inhibitor,

Survivin-T34A gene therapy,
EpCAM-aptamer-guided

survivin RNAi

YM155 treatment induces apoptosis by modulating
ER-stress mediated apoptosis signaling. LLP3 drives the
proteolytic degradation of Survivin and sensitizes CRC
cells when combined with irinotecan (Topoisomerase
inhibitor). Survivin-T34A mRNA encapsulated with a
liposome-protamine lipoplex exhibits superior antitumor
effect in a CRC mouse model. The aptamer-guided
survivin RNAi enhances chemosensitivity, increases
apoptosis, inhibits tumor growth in CRC stem cells and
improves survival in xenograft mice

[156,171,173–175]

Livin siRNA

Silencing of Livin enhances chemosensitivity to 5-FU in
CRC cells, regulates crosstalk between apoptosis and
autophagy and supresses tumor cell migration and
invasion

[112,170]

Targeting IAPs and p53

MDM2
XIAP

MX69 (dual MDM2 protein
and XIAP RNA inhibitor)

MX69 triggers the downregulation of XIAP and
degradation of MDM2 enabling activation of p53,
induction of apoptosis and inhibition of cell proliferation
in vivo

[176]

MDM2
XIAP

Nutlin-3 and XIAP antisense
oligo- nucleotides

Nutlin-3 induces MDM2 degradation and activation of
p53 that results in apoptosis induction in synergy with
XIAP attenuation by antisense oligonucleotides

[177]

Survivin-p53
axis

Lovastatin (statin)
CT-1042 (small molecule),

Phoyunnanin-E

Lovastatin, CT-1042 and Phoyunnanin-E are involved in
suppression of Survivin, activation of p53 and
sensitization of cancer cells to apoptosis

[178–180]

Abbreviations: MDM2, Murine double minute 2 homologue; RNAi, RNA interference; siRNA, small interfering RNA; Trail, Tumor necrosis
factor-related apoptosis-inducing ligand.

MX69 is a recently established inhibitor of MDM2 protein-XIAP RNA interaction
mediating MDM2 degradation and activation of wt-p53 fostering apoptosis in vitro and
inhibition of cancer cell proliferation in a mouse xenograft model [176]. Another approach
combining MDM2 inhibition via Nutlin-3a and XIAP inhibition by small molecule antago-
nists synergistically resulted in an elevated level of apoptosis compared to single targeting
in acute myeloid leukemia OCI-AML3 and MOLM13 cancer cells [177]. Other preclinical
approaches are mainly concentrating on targeting the p53/Survivin axis. For that purpose,
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several drugs including statin Lovastatin, small molecular compound CT-1042 and natural
compound Phoyunnanin-E show promising findings particularly on the transcriptional
suppression of Survivin, activation of p53 and sensitization of treatment resistant cancer
cells to apoptosis [178–180] (Table 1).

Clinical phase I/phase II trials currently recruiting, at least in part, patients with CRC
include Survivin epitope peptide vaccines (www.clinicaltrials.gov (accessed on 5 January
2021); NCT00108875), combinations of SMAC mimetics and checkpoint (PD-1) inhibitor
Pembrolizumab (NCT02587962, NCT03871959) or standard regimes of chemotherapy
(NCT01188499). In addition, there are two approaches completed in phase I and II clinical
trials via autologous dendritic cells pulsed with human Survivin, telomerase (hTERT) and
p53-derived peptides to induce an anti-tumor immune response in patients with HLA-
A2 positive metastatic breast cancer and melanoma (NCT00197912 and NCT00978913).
Further, the six-month survival was increased when dendritic cell (DC) therapy was com-
bined with a nonsteroidal anti-inflammatory COX-2 inhibitor and immune suppressor
Cyclophosphamide [181]. Interestingly, COX-2 inhibition indirectly suppresses the ex-
pression of Survivin via modulating the epidermal growth factor receptor (EGFR)/STAT3
pathway [162]. Published data further indicate a clinical improvement and enhanced
levels of peptide-specific cytotoxic T lymphocytes following combined HLA-A24-restricted
antigenic peptide Survivin-2B80-88 vaccine and incomplete Freund’s adjuvant and inter-
feron (IFN)alpha treatment [182]. Clinical studies targeting IAPs and p53 and therapeutic
treatment strategies targeting IAPs are summarized in Table 2 and Figure 3, respectively.

Table 2. Clinical studies targeting IAPs and p53.

Identifier Disease Treatment Purpose Outcome Measures

NCT00108875 melanoma, pancreatic and
cervical cancer, CRC

Survivin epitope peptide
vaccine

to evaluate the safety,
immunological response

and clinical outcome

PFS, OS, best response,
immunological response

NCT02587962
Phase 1:

solid tumors Phase 2:
ovarian and cervical cancer,

CRC

Birinapant
(SMAC-mimetic),
Pembrolizumab
(PD-1 inhibitor)

to evaluate the safety,
tolerability,

pharmaco-dynamics and
efficacy of combined
modality treatment

Blood pressure, electro-
cardiogram, enzymes,

hemoglobin, physical exam,
overall response

NCT03871959
non-MSI-high advanced or
metastatic pancreatic, colon

and rectum cancer

DEBIO1143
(SMAC-mimetic)
Pembrolizumab

to determine the MTD, the
recomm. dose for a phase 2
trial and to evaluate efficacy

MTD and the dose for phase 2 of
Debio1143 when combined with
a fixed dose of Pembrolizumab,

duration of response, clinical
benefit, tumor response efficacy,

PFS

NCT01188499 advanced or metastatic
tumors including CRC

Birinapant TL32711
(SMAC-mimetic)

combined with standard
regimes of chemotherapy

to evaluate dose escalation
safety

Number of adverse events as a
measure of safety and

tolerability, anti tumor effect
according to RECIST criteria

[182] advanced or recurrent CRC

HLA-A24-restricted
antigenic peptide,

Survivin-2B80-88 vaccine,
IFA and type 1 interferon

(IFNalpha)

to assess whether
immunogenicity of the

Survivin-peptide could be
enhanced with other
vaccination protocols

Survivin-2B80-88 plus IFA and
IFNalpha resulted in clinical
improvement and enhanced

levels of peptide-specific
cytotoxic T lymphocytes

NCT02890069
CRC, non-small cell lung,

renal cancer, triple negative
breast cancer

PDR001 (anti-PD1
antibody), LCL161
(SMAC-mimetic),

everolimus (mTOR inhib.),
Panobinostat (histone

deacetylase inhib.),
QBM076 (CXCR2

antagonist), HDM201
(p53-MDM2 interaction

inhib.)

to identify the doses and
schedule for combination
therapy and to assess the

safety, tolerability,
pharmacological and clinical

activity of combinations

Dose limiting toxicities,
frequency of dose interruptions

and reductions, adverse and
serious adverse events, changes
in laboratory parameters, PFS

NCT00197912
NCT00978913

HLA-A2 positive, advanced
melanoma and breast cancer

p53, Survivin and human
telomerase peptide-pulsed

dendritic cells

to show if autologous
dendritic cells pulsed with
peptides or tumor lysates

can induce an immune
response and clinical effects

Tolerability and safety,
evaluation of treatment induced

immune response and clinical
tumor response/duration

Abbreviations: CRC, colorectal cancer; HLA, human leukocyte antigen; HLA-A2, Human leukocyte antigen serotype α2 domain; IFA,
incomplete Freund’s adjuvant; MTD, maximal tolerable dose; OS, overall survival; PFS, progression–free survival; RECIST, Response
Evaluation Criteria in Solid Tumors.

www.clinicaltrials.gov
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Figure 3. Therapeutic strategies that target IAPs in CRC. Current approaches include pep-
tide vaccines, IAP antagonists and combinatorial treatment strategies further empowering with
immuno-/chemotherapeutics such as anti-PD1 antibodies. Further details are given in the text and
in Table 2.

Challenges for interfering with IAPs in therapeutic approaches mainly comprise the
stratification of patients according to their responsiveness, requiring the identification of
predictive biomarkers. The increase of apoptotic and necroptotic markers, e.g., caspase-3,
caspase-7 or TNF, which has been shown to be important for the activity of IAP antagonists,
might serve as such markers [183,184]. Further, since inhibition of IAPs in combination
with chemotherapeutics, kinase inhibitors, radiotherapy or immunotherapy seems to be
far more promising, it will be of importance to carefully explore the mode of action of
these multimodal options to optimize the therapeutic window for the safe and efficient
application and to prevent adverse side effects, e.g., cytokine release syndrome in patients
treated with the SMAC mimetic LCL161 [185].

7. Conclusions

In recent years our understanding of the functions of IAPs has expanded beyond
their ability to interfere and inhibit caspase activity and cell death, with newly identified
properties, especially in malignant cells. The number of their cellular roles continues
to expand as studies implicate IAP involvement in a growing number of signaling and
regulatory cascades, including DNA damage response, invasion and metastatic processes.
Moreover, due to their early involvement in tumorigenesis and prognostic/predictive
relevance in a multitude of malignancies, IAPs cover a group of oncotherapeutic molecular
targets to overcome treatment resistance and to improve the effectiveness of chemo- and
radiation therapy. As depicted in this review, IAPs further experience a huge array of inter-
relationships with the tumor suppressor p53, a marker with pivotal importance in tumor
development, maintenance and therapy response. Although combined modality options
are at an early stage of development, a growing knowledge on physiological and patho-
physiological interconnections may pave the way to develop innovative concepts based
on IAP-binding/regulatory proteins such as SMAC mimetics and activators/inhibitors of
wild type and mutated p53, respectively.
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