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Simple Summary: Defects in a DNA repair pathway called mismatch repair (MMR) can lead to can-
cer, including colorectal cancer (CRC). The detection of mismatch repair deficiency (dMMR) is based
on molecular tests, one of which is microsatellite instability (MSI) testing. Detecting tumors with
dMMR/MSI is important for the identification of patients with Lynch Syndrome and determining if
patients may benefit from immunotherapy. Recently, artificial intelligence has been evaluated as a
method to predict MSI/dMMR directly from tissue slides that are available for most cancer patients.
We review the data regarding the utility of machine learning for dMMR/MSI classification, including
its accuracy and limitations, focusing on CRC. We also provide an overview of previous efforts to
predict MSI from tissue slides and background regarding the use of artificial intelligence for image
analyses. We summarize recent efforts to use artificial intelligence for the prediction of MSI and
discuss the implications for predicting response to immunotherapy.

Abstract: Microsatellite instability (MSI) is a molecular marker of deficient DNA mismatch repair
(dMMR) that is found in approximately 15% of colorectal cancer (CRC) patients. Testing all CRC
patients for MSI/dMMR is recommended as screening for Lynch Syndrome and, more recently, to
determine eligibility for immune checkpoint inhibitors in advanced disease. However, universal
testing for MSI/dMMR has not been uniformly implemented because of cost and resource limitations.
Artificial intelligence has been used to predict MSI/dMMR directly from hematoxylin and eosin
(H&E) stained tissue slides. We review the emerging data regarding the utility of machine learning
for MSI classification, focusing on CRC. We also provide the clinician with an introduction to image
analysis with machine learning and convolutional neural networks. Machine learning can predict
MSI/dMMR with high accuracy in high quality, curated datasets. Accuracy can be significantly
decreased when applied to cohorts with different ethnic and/or clinical characteristics, or different
tissue preparation protocols. Research is ongoing to determine the optimal machine learning methods
for predicting MSI, which will need to be compared to current clinical practices, including next-
generation sequencing. Predicting response to immunotherapy remains an unmet need.

Keywords: colorectal cancer; microsatellite instability; DNA mismatch repair; tumor immunology;
immunotherapy; digital pathology; convolutional neural network; deep learning; machine learning;
artificial intelligence

1. Introduction

Colorectal cancer (CRC) is the third most common and second most deadly cancer
worldwide, causing an estimated 880,000 deaths in 2018 [1]. Mortality rates for CRC
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have been declining in many countries due to improved screening efforts and therapeutic
advances [2], but both the incidence and mortality of CRC have been increasing in patients
under the age of 50 in high-income countries [3]. CRC is a heterogenous group of diseases
(subtypes) with differences in epidemiology, anatomy, histology, genomics, transcriptomics
and host immune response [4–7]. This heterogeneity leads to disparate clinical presentation,
survival and response to therapy [8–11].

One of the clinically relevant subtypes of CRC is DNA mismatch repair deficient
(dMMR) CRC. dMMR occurs due to pathogenic alterations in genes involved in the MMR
system (MLH1, MSH2/EPCAM, MSH6, and PMS2) [12–14]. Several mechanisms can lead to
dMMR, the most common being somatic hypermethylation of the MLH1 gene promoter [14].
In patients with Lynch Syndrome, who carry a germline pathogenic mutation in one of
the MMR genes, an additional somatic alteration can occur (“second hit”), leading to the
phenotype of dMMR tumors. Sporadic bi-allelic somatic mutations in the MMR genes can
also occur [13]. Deficiencies in MMR cause high rates of mutations throughout the DNA,
especially in microsatellites, regions of DNA in which short sequences of nucleotides are
repeated in tandem [12]. Thus, dMMR results in microsatellite instability (MSI), which is a
highly sensitive marker of dMMR [13].

MSI has diagnostic, prognostic, and therapeutic implications in CRC and other cancers.
The detection of dMMR/MSI is recommended as a screening test for Lynch syndrome for
every case of CRC [14]. Confirmation requires germline testing and can inform surveillance
and treatment decisions for both the patient and their relatives [15]. CRC patients with
MSI generally have a better prognosis [13,16,17], which may be explained by a robust host
immune response to tumor neoantigens [10,11,18]. Lastly, MSI status can inform treatment
decisions, as patients with MSI tumors may be eligible for immune checkpoint inhibitor
(ICI) therapy [19], and the benefit of fluorouracil-based chemotherapy regimens for tumors
with MSI has been questioned [20–23].

Current testing for dMMR/MSI requires either an immunohistochemical analysis
of MMR protein expression or a PCR-based assay of microsatellite markers [14]. While
guidelines set forth by multiple professional societies recommend universal testing for
dMMR/MSI [24], these methods require additional resources and are not available at all
medical facilities, so many CRC patients are not currently tested [25]. Recently, artificial
intelligence has been evaluated as a method to predict MSI directly from hematoxylin and
eosin (H&E) stained slides (Figure 1). If successful, this approach could have significant
benefits, including reducing cost and resource-utilization and increasing the proportion of
CRC patients that are tested for MSI.
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Figure 1. Detection of microsatellite instability (MSI) or mismatch repair (MMR) deficiency is performed by (A1) Im-
munohistochemistry of the mismatch repair proteins or (A2) PCR amplification of consensus microsatellite repeats that 
are analyzed with capillary electrophoresis. Inference of MSI/MMR status from next generation sequencing (NGS) is not 
presented. (B) MSI/MMR status can be predicted from hematoxylin and eosin (H&E) stained slides, without requiring 
molecular analyses (see Figure 2). Detection of MSI/dMMR has implications for Lynch Syndrome screening and deter-
mining eligibility for immune checkpoint blockade in advanced disease. MSS: microsatellite stable. MSI-H: high mi-
crosatellite instability. pMMR: proficient mismatch repair. dMMR: deficient mismatch repair.  
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vations have been made in other tumors enriched for MSI, such as endometrial cancer 
[29]. These associations may present a means of identifying the tumors most likely to 
have the dMMR phenotype, and therefore the patients most likely to benefit from addi-
tional testing. They may also help to identify those at low risk who would be less likely 
to benefit. The targeted deployment of MMR/MSI testing could reduce costs and save re-
sources [26]. Inferring MSI status may be considered in settings where MSI testing is not 
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with capillary electrophoresis. Inference of MSI/MMR status from next generation sequencing (NGS) is not presented. (B) MSI/MMR
status can be predicted from hematoxylin and eosin (H&E) stained slides, without requiring molecular analyses (see Figure 2).
Detection of MSI/dMMR has implications for Lynch Syndrome screening and determining eligibility for immune checkpoint blockade
in advanced disease. MSS: microsatellite stable. MSI-H: high microsatellite instability. pMMR: proficient mismatch repair. dMMR:
deficient mismatch repair.

We review the emerging data regarding the utility of artificial intelligence for MSI
classification, focusing on CRC. We provide (1) an overview of pathologic predictors of
MSI, (2) a background regarding the use of artificial intelligence for image analyses, (3) a
summary of recent efforts to use artificial intelligence for the prediction of MSI, and (4) a
discussion about the implications for predicting response to immunotherapy.

2. Histological and Clinical Predictors of Microsatellite Instability

With the significant cost and non-universal availability of the molecular testing re-
quired to determine MMR/MSI status, studies have sought to predict MSI based on
routinely available data, such as clinical information and histopathology [26]. CRC tumors
with MSI are associated with certain histological features, detectable via standard H&E
staining, and clinical data, such as patient age and tumor location [26–28]. Similar observa-
tions have been made in other tumors enriched for MSI, such as endometrial cancer [29].
These associations may present a means of identifying the tumors most likely to have
the dMMR phenotype, and therefore the patients most likely to benefit from additional
testing. They may also help to identify those at low risk who would be less likely to benefit.
The targeted deployment of MMR/MSI testing could reduce costs and save resources [26].
Inferring MSI status may be considered in settings where MSI testing is not performed
but is unlikely to be adopted in resource-rich settings unless the prediction accuracy is
near-perfect.

Several clinicopathologic predictors of MSI have been discovered and several groups
have proposed models for MSI prediction (Table 1). Histological features such as signet
ring cells, mucinous or medullary morphology, and poor differentiation are significantly as-
sociated with MSI status, but show poor sensitivity for MSI prediction on their own [27,30].
Correlations between MSI and immunological features of tumor pathology, such as mea-
surements of tumor infiltrating lymphocytes (TILs) [11,26,28,31] and specific histological
structures such as the Crohn’s-like lymphoid reaction (CLR), are well established in the
literature [18,26,28]. CLR represents CRC-specific tertiary lymphoid aggregates [18]. The
host response to MSI tumors is attributed to the high tumor mutational burden (TMB) and
the abundance of immunogenic mutations, including insertion-deletion mutations, but
other factors may contribute [32–34]. The Revised Bethesda Guidelines for MSI testing in
CRC suggested testing tumors with “MSI histology” in patients younger than 60 years of
age [35]. MSI histology was defined as the presence of TILs, CLR, mucinous/signet-ring
differentiation, or medullary growth pattern. One of the histopathological features most
strongly associated with MSI is the density of TILs [26,27,30]. When TIL density was
assessed as a potential predictor of MSI, the area under the receiver operating characteristic
curve (AUC) was 0.73. With a cutoff value of 40 lymphocytes/0.94 mm2, MSI status could
be predicted with a sensitivity of 75% and a specificity of 67% [30]. However, given that
TIL density can vary across tumor area, this study using surgical specimens likely yielded
a greater AUC than would be achieved with smaller biopsy specimens, such as those
typically available from sites of metastasis.
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Table 1. Histological predictors of microsatellite instability.

A

Variable Sensitivity % (95% CI) Specificity % (95% CI) Odds Ratio, Univariate (95% CI) Odds Ratio, Multivariate (95% CI)

Host response features

Tumor-infiltrating lymphocytes (TILs)

70 [26] 76 [26] 7.4 (5.4–10.3) [26] 3.8 (2.5–5.6) [26]
72 (64–78) [27] 82 (80–85) [27] 9.1 (5.9–14.1) [27]

21 [30] 97 [30] 9.8 (3.5–28.5) [30]
60 (50–70) [36] 78 (76–79) [36] 5.2 (3.2–8.5) [36] 3.7 (2.0–6.8) [36]

Crohn’s-like lymphocytic reaction (CLR)

68 [26] 54 [26] 2.5 (1.8–3.4) [26] 2.3 (1.6–3.5) [26]
56 (48–63) [27] 77 (74–80) [27] 1.9 (1.2–2.9) [27]

49 [30] 64 [30] 1.7 (0.9–3.2) [30]
69 (59–78) [36] 45 (44–46) [36] 1.8 (1.1–3.0) [36] 1.1 (0.6–2.0) [36]

Peritumoral lymphocytic reaction 86 (77–92) [36] 42 (40–42) [36] 4.3 (2.3–8.3) [36] 3.7 (1.6–8.6) [36]

Stromal plasma cells 78 (68–86) [36] 48 (46–48) [36] 3.2 (1.9–5.6) [36] 2.1 (1.1–4.1) [36]

Tumor characteristics

Mucinous morphology *

53 [26] 80 [26] 4.6 (3.4–6.3) [26] 1.7 (1.1–2.7) [26]
28 (21–35) [27] ** 91 (89–93) [27] ** 2.8 (1.7–4.8) [27] **

22 [30] 93 [30] 3.7 (1.7–8.0) [30]
51 (41–61) [36] 78 (77–79) [36] 3.7 (2.3–6.0) [36] 4.71 (2.1–10.7) [36]

2.13 (1.3–3.4) [37]

Medullary morphology (10–70%) 25 [30] 97 [30] 12.5 (4.6–35.9) [30]

Grade †

64 [26] † 81 [26] † 7.4 (5.4–10.1) [26] † 3.4 (2.2–5.2) [26] †
38 (31–46) [27] 82 (79–84) [27] 1.9 (1.2–3.1) [27]

38 [30] 87 [30] 4.0 (2.2–7.3) [30]
17 (10–26) [36] 90 (89–91) [36] 1.8 (0.9–3.5) [36]

32 (23–43) [36] † 77 (76–78) [36] † 1.6 (0.9–2.6) [36] †

Signet ring cells 4.3 (2.2–8.7) [26]
13 [30] 95 [30] 2.7 (1.1–6.8) [30]

Lack of dirty or garland necrosis 59 [26] 79 [26] 5.4 (3.9–7.4) [26] 1.8 (1.1–2.8) [26]
26 (18–35) [36] 89 (88–90) [36] 2.7 (1.5–4.7) [36] 1.4 (0.7–3.0) [36]

Cribriform pattern 13 [30] 72 [30] 0.4 (0.2–0.8) [30]

Histologic heterogeneity 4.4 (3.0–6.4) [26]
55 (45–65) [36] 69 (68–70) [36] 2.7 (1.7–4.4) [36]
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Table 1. Cont.

Clinical/Molecular Features

Age <50 years
2.2 (1.3–3.8) [26] 3.1 (1.5–6.5) [26]

52 (44–60) [27] 59 (56–62) [27] 1.9 (1.3–2.9) [27]
21 (13–29) [36] 89 (88–90) [36] 2.0 (1.1–3.7) [36] 3.8 (1.8–8.0) [36]

Female
1.4 (1.0–1.9) [26]

51 (41–62) [36] 63 (62–64) [36] 1.8 (1.1–2.8) [36] 1.3 (0.7–2.2) [36]
1.56 (1.0–2.4) [37]

Size > or equal to 60 mm 2.75 (1.8–4.2) [37]

Anatomic site (right sided/proximal)

70 [26] 63 [26] 4.1 (2.9–5.7) [26] 2.2 (1.5–3.3) [26]
74 (67–81) [27] 70 (67–73) [27] 4.7 (3.1–7.3) [27]
79 (70–87) [36] 63 (61–63) [36] 6.4 (3.6–11.2) [36] 5.08 (2.7–9.6) [36]

3.76 (2.4–5.9) [37]

BRAF mutant 13.33 (8.0–22.2) [37]

B

Model Model Variables Sensitivity (%) Specificity (%) Positive/Negative Predictive
Value (%) AUC or Accuracy (95% CI)

Greenson et al. ** [26]

TIL/HPF, well or poorly
differentiated, age < 50, CLR,
R-sided, lack of dirty necrosis,
any mucinous differentiation

92 ** 46 ** AUC 0.850 **

MsPath [27]

Age < 50, proximal location,
mucinous/signet

ring/undifferentiated, poorly
differentiated, CLR, TILs

93 55 AUC 0.890 (0.83– 0.94)

PREDICT [36]

R-sided, mucinous component,
age < 50 years, TILs, peritumoral

reaction, increased stromal
plasma cells

96.9 76.6 35.2/99.5 AUC 0.924

Fujiyoshi et al. [37]

Female, mucinous component,
tumor size > or equal to 60 mm,

proximal location,
BRAF mutation

76 77 AUC 0.856 (0.806 –0.905)
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Table 1. Cont.

RERTest6 ** [38]

Proximal location, expansive
growth pattern, CLR, solid

pattern %, mucinous pattern %,
cribriform pattern

78.01 ** 93.39 ** 51.8/97.9 ** Accuracy 0.921 **

Table 1 summarizes individual features and composite models used for the prediction of microsatellite instability (MSI) from histology. (A) Individual variables associated with MSI are listed. * Jenkins et al. [27]
included signet cell and medullary morphology with mucinous morphology. † These studies included either poorly or well differentiated tumors as associated with MSI. (B) Multivariable models and their
performance in differentiating between tumors with and without MSI are presented. ** Values are presented for validation cohorts when available. Greenson et al. and RERTest6 did not include a separate
validation cohort. CI: confidence interval. TIL: tumor infiltrating lymphocytes. CLR: Crohn’s-like lymphoid reaction. HPF: high power field. R-sided: right sided. AUC: area under the curve.
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Multiple histological and clinical variables have been incorporated into algorithms
designed to predict MSI status. The MsPath score was developed to predict MSI in patients
under the age of 60 [27]. Using a scoring system incorporating age, anatomical site of the
primary tumor, histologic type, tumor grade, and the presence or absence of TILs and CLR,
an AUC of 0.89 was achieved when the model was tested against a separate validation
cohort (Table 1). Validation of the MsPath score in a population based-cohort showed that its
accuracy was insufficient for the selection of patients for Lynch Syndrome germline testing,
misclassifying 18% (2/11) of patients with a pathogenic mutation in MLH1/MSH2 [39].
Another scoring scheme by Greenson et al. incorporated similar variables but included lack
of dirty necrosis in the model and was derived from a population that included patients
of all ages [26]. The features associated with MSI all had a negative predictive value
>90%. This model yielded an AUC of 0.85 based on the study cohort alone (no validation
cohort was tested) (Table 1). Over half of the tumors analyzed had less than 5% chance
of harboring MSI, presenting the potential for significant cost savings [26]. In another
cohort, the model by Greenson et al. detected 93% of tumors with MSI and outperformed
MsPath [40].

The PREDICT score was developed to improve on MsPath and other models [36]. It
included variables that were significantly associated with MSI in a multivariable regression
model, including age <50, right sided location, TILs, a peritumoral lymphocytic reaction,
any mucinous component and increased stromal plasma cells [36]. PREDICT reported a
sensitivity of 97% for the detection of MSI with an AUC of 0.924 in the validation cohort
(Table 1). The RERtest6 model was developed to maximize the negative predictive value
and included tumor location, growth pattern, solid and mucinous pattern, TIL and CLR [38].
The model had an accuracy of 92% in the global cohort and a negative predictive value of
97.9% (Table 1). The prevalence of MSI was 8.5% in this study. If this model were applied as
screening for MSI in this study population, only 10% of patients would need confirmatory
testing [38].

Another large study of MSI prediction from commonly available clinico-pathologic
data included over three thousand patients over 50 years of age in Japan [37]. Female sex,
proximal location, tumor size larger than 60 mm, mucinous component and BRAF mutation
were associated with MSI and were included in a composite score used for prediction. CLR
and TILs were not evaluated. In the validation cohort, the AUC was 0.856. Patients with
MLH1 promoter hypermethylation had higher scores than patients with Lynch Syndrome,
as a result of the known association between BRAF mutations and MLH1 hypermethylation
and the high score given to BRAF mutations in the model. Overall, the performance of
the model was disappointing, with approximately 25% of MSI tumors misclassified at the
proposed threshold [37].

The encouraging performance of certain histology-based prediction models has not
been sufficient to supersede universal testing for MSI/dMMR. Measurement of the vari-
ables for MSI prediction requires significant effort and expertise by pathologists, and
inter-rater differences may affect the perceived reliability of histology-based scoring sys-
tems [41,42]. However, this work is fundamental to the premise that MSI can be predicted
from histology, which has now been proposed as a task for deep learning from digital
pathology [43] (Figure 1).

3. What Is Deep Learning and How Does It Apply to Digital Pathology?

Artificial intelligence is a broad term that characterizes the ability of machines to
mimic intelligent human actions. Machine learning is a subset of artificial intelligence that
allows computer systems to improve their performance (“learn”) without being explicitly
programmed [44]. Deep learning is a branch of machine learning that incorporates several
layers of computational operation for the execution of complex tasks [45]. In the context of
computer vision, deep learning often utilizes convolutional neural networks (CNNs) [44,46,47].
CNNs are designed to process raw data in the form of multiple arrays, such as color images;
their structure is inspired by architecture found in the human brain’s visual cortex [45]. To
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achieve their goals of classifying images (e.g., is this a tumor or not?) or identifying objects,
CNNs are trained on datasets that have been labeled with the desired output [41,44].

The layers of CNNs are arranged such that deeper layers represent increasingly
synthesized features of an image. For example, the first layer typically detects edges; the
second represents motifs related to the arrangement of edges; subsequent layers combine
motifs into a representation of objects, and so on [45]. A simplified version of a CNN is
presented in Figure 2. Images are represented as red, green and blue (RGB) color arrays
such that each pixel in the image is represented by three numbers. RGB arrays are then
subjected to filters. Filters are matrices that are used to learn specific features that are
not prespecified but will help the CNN perform its task. For example, first layer filters
often detect object edges in different orientations. This happens in the following fashion.
The RGB arrays are convolved (a mathematical operation) with filters to create a multi-
dimensional convolutional layer (Figure 2). To mimic the physiological “firing” of a neuron,
a non-linear activation function is applied to the results of the convolution operation. Next,
a pooling, or subsampling, procedure can be used to summarize the features from the
convolutional layer and reduce the number of parameters, such that a pooling layer is
created (Figure 2).
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RGB arrays are subjected to filters to create a convolutional layer. Filters detect specific features from an image (e.g., lines,
edges). A pooling layer with a reduced number of parameters is created by summarizing (subsampling) the input of the
convolutional layer. After a defined number of convolutional and pooling layers, fully connected layers are created. Fully
connected layers are uni-dimensional layers from which the output is predicted.

After a series of convolutional and pooling layers, fully connected layers are created.
A fully connected layer is typically a unidimensional layer that is used to create the output
prediction function (Figure 2). When the CNN output is generated, it is compared to the
“true” label assigned to the data. When the CNN output is wrong, the CNN modifies its
filters to improve the prediction accuracy of the CNN, thus learning the features associated
with the desired output.

Training well-performing CNNs requires large datasets for training, testing and vali-
dation [47,48]. For the purpose of supervised learning such as image classification, these
data need to be labeled according to the desired output. Many of the CNNs used for
deep learning from digital pathology were originally developed for object detection and
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image classification as part of the ImageNet challenge [47,49–51]. ImageNet is an annotated
database of over a million non-medical images for which increasingly efficient CNNs were
designed. These CNNs are robust to diverse classification and image recognition tasks and
have been applied to digital pathology tasks [52]. Another advantage of applying CNNs
to new tasks is the ability to use transfer learning, building on previously trained CNNs to
perform a new task. Computationally, this means that not all layers of the CNN need to be
trained again, and adequate performance can be achieved using a smaller dataset.

The availability of digital pathology datasets, annotated with clinical and molecular
data, has led to a growing number of studies to evaluate the performance of CNNs on
digitalized histology slides [41,46,52]. Such datasets include The Cancer Genome Atlas
(TCGA) and the Genotype-Tissue Expression (GTEx) project. The tasks that have been
assigned to CNNs are diverse, including predicting clinical outcome and response to
therapy, identifying molecular features, and others [52]. While CNNs have similar features,
as described above, they differ from one another in their architecture, including the size,
sequence and number of layers and filters, their number of parameters, and the connections
between the layers of the CNN. As a result, CNNs vary in their computational efficiency
and performance [52]. Common CNNs for the purpose of image classification include
VGG [49], ResNet [50] and Inception [51].

4. Application of Deep Learning to Digital Pathology in Oncology

Deep learning is being explored for a myriad of research and clinical uses. Emerging
studies in oncology have suggested that deep learning can be used to predict the diagnosis,
prognosis, and response to treatment using histopathology digital slides as input [41]. For
example, a deep learning algorithm has been developed for the prediction of the histology-
based Gleason score in prostate cancer [53]. The deep learning algorithm outperformed
general pathologists, but accuracy in assigning Gleason scores was only 0.70 when com-
pared with reference scores provided by genitourinary pathologists [53]. In CRC, a deep
learning method predicted five-year CRC-specific survival from spot images of H&E tumor
slides, independent of tumor stage and grade [54]. MSI and the immune response to the
tumor were not reported, and pathologists were provided only with spot images for risk
stratification. Although conceptually intriguing, the comparison with pathologist perfor-
mance in this study does not reflect standard pathologic evaluation. A “deep stroma score”
has also been generated by using CNN transfer learning for the prediction of survival in
CRC [55].

Recently, ten CNNs were used to generate an independent prognostic biomarker for
CRC-specific survival, termed “DoMore-v1-CRC” [56]. This biomarker was associated with
several clinical and molecular features and was trained on different resolutions of H&E
images. The immune response to tumors was not reported, and the biomarker was not
compared with the Immunoscore [57], a validated prognostic marker measuring immune
cells in the CRC microenvironment using digital pathology. A prospective trial of tailoring
therapy to prognostic subgroups is planned based on these results [56].

Deep learning has also been used to predict tumor molecular features, such as ge-
nomics, transcriptomics and proteomics. Using an Inception CNN, researchers classified
non-small cell lung cancer into histological subtypes and predicted the mutational status
of several genes in lung adenocarcinoma [58]. Histological subtype classification achieved
high AUC (0.97) when trained on TCGA data, but performance was worse for independent
datasets, requiring manual identification of tumor areas by pathologists. Some of the
misclassifications included the labeling of blood vessels, clots, inflammation, and necrosis
as lung adenocarcinoma and the labeling of cartilage as lung squamous cell carcinoma.
For the purpose of genomic prediction, mutations in STK11, EGFR, KRAS, TP53 and other
genes were predicted with AUCs of 0.733 to 0.856.

Using the ResNet CNN, the prediction of PD-L1 expression was performed from H&E
slides in non-small cell lung cancer [59]. Prediction was good for adenocarcinomas (AUC =
0.83) but did not perform well for squamous cell histology (AUC = 0.64). This difference
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highlights potential challenges in the generalizability of such CNNs to different histological
subtypes and different tumor sites, and how the composition of the training dataset
may influence CNN performance. In breast cancer, the VGG CNN was used to predict
tumor grade, estrogen receptor status, histological subtype, and RNA-based molecular
subtype and recurrence risk score [60]. Accuracy was highest for the task of histological
subtype classification, raising the possibility that output based on visual patterns may be
more amenable to prediction than transcriptomic data. Consensus molecular subtypes of
CRC, derived from transcriptomic data, have also been predicted from histology using an
Inception CNN [61]. This study used three datasets and suggested that the CNN learned
features that are specific to the dataset, thus potentially biasing the learning process and
limiting generalizability. To overcome this, the authors implemented adversarial training
to minimize the weight of dataset-specific features. Histological predictors of the consensus
molecular subtype 1 were underrepresented in a dataset comprised of rectal cancer biopsies,
requiring adjustment of the classification probabilities.

These examples demonstrate the broad applications of machine learning methods to
digital pathology in oncology as well as some of the caveats to their performance. Careful
evaluation of individual studies is required, as methods differ considerably and at times
include modifications that may hamper the feasibility or generalizability of the methods
proposed. Most studies are retrospective and have not been evaluated in prospective
clinical trials with standard of care comparator methods. In addition, CNNs learn features
that are biased and do not reflect biological differences. This can be partially mitigated if
features that may cause bias are known, but since the features determining CNN output
are often unknown, validation in additional cohorts is crucial.

5. Predicting MSI Status with Deep Learning

Recently, several studies have investigated the potential for CNNs to predict MSI
from H&E stained histological samples. Kather et al. trained and tested CNNs on gastric,
endometrial, and colorectal samples that were snap-frozen or formalin-fixed paraffin-
embedded (FFPE) [43]. FFPE slides are routinely used for histological diagnosis and
immunohistochemistry. Fixation with formalin and embedding with paraffin are performed
to maintain tissue architecture and morphology, and to allow long-term preservation at
room temperature. The process of generating an FFPE slide requires many hours and
the fixation process results in the cross-linking of DNA and proteins that can impair the
performance of molecular analyses. Snap-frozen tissue is not routinely obtained but can be
used for intraoperative diagnoses because it can be rapidly reviewed by a pathologist. Snap-
frozen tissue can also be used for extensive molecular analyses [62,63]. The morphological
quality of snap-frozen tissue is not considered sufficient to render a definitive diagnosis,
and confirmation using FFPE slides is typically required [64–66]. All CNNs in the study
by Kather et al. had been pretrained on the ImageNet database, and only the last ten
layers of the CNNs were trainable. After assessing the performance of five CNNs in
differentiating tumor tissue from healthy tissue, the CNN ResNet-18 (a ResNet with 18
layers) was selected for further evaluation based on its strong performance and smaller
number of parameters. The advantage of a CNN with a smaller number of parameters is a
decreased risk of overfitting the data and increased likelihood of maintaining performance
when applied to a validation cohort. ResNet-18 was trained with two sets of CRC (fresh
frozen and FFPE slides) and one gastric cancer dataset (FFPE) from TCGA (Table 2). Tumor
tissue was divided into smaller tiles, each of which was separately analyzed and assigned
a predicted MSI score. Predicted MSI status for each slide was determined by the predicted
MSI status of the majority of its constituent tiles.
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Table 2. Deep learning for prediction of MSI from digital pathology.

CNN and Additional Methods Other CNNs Evaluated Training Cohort Test Cohort(s) with AUC (95% CI)
or Accuracy

External Validation Cohort(s) with
AUC (95% CI)

ResNet-18
Whole-slide image classified per

majority of image tiles [43]

AlexNet, VGG-19,
InceptionV3, SqueezeNet

TCGA CRC FFPE TGCA CRC FFPEAUC 0.77
(0.62–0.87)

DACHS CRC FFPE AUC 0.84
(0.72–0.92)

TCGA CRC frozen TCGA CRC frozen
AUC 0.84 (0.73–0.91)

DACHS CRC FFPE
0.61 (0.50–0.73)

TCGA gastric FFPE TCGA gastric FFPE
AUC 0.81 (0.69–0.90)

DACHS CRC FFPE AUC
0.60 (0.48–0.69)

KCCH gastric FFPE AUC
0.69 (0.52–0.82)

TCGA uterine FFPE TCGA uterine FFPE
AUC 0.75 (0.63–0.83)

ShuffleNet [67] AlexNet, InceptionV3,
ResNet-18, DenseNet201 TCGA CRC TCGA CRC

AUC 0.805
DACHS CRC AUC

0.89 (0.88–0.92)

ResNet-18
Whole slide image classified using

two multiple instance learning
pipelines integrated into an

ensemble classifier [68]

none

TCGA CRC frozen TCGA CRC frozen
AUC 0.885

Asian CRC AUC FFPE
0.650

TCGA CRC frozen with 10% Asian
CRC FFPE Asian CRC FFPEAUC 0.850

TCGA CRC frozen with 70% Asian
CRC FFPE Asian CRC FFPEAUC 0.926

Custom multilayer perceptron
(HE2RNA) applied after feature

extraction by ResNet-50; with and
without transcriptomic

representation of histology [69]

none

TCGA CRC FFPE, with
transcriptomic representation and

20% of training cohort
TCGA CRC FFPEAUC ~0.80 *

TCGA CRC FFPE, using >80% of
training cohort TCGA CRC FFPEAUC ~0.80 *
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Table 2. Cont.

CNN and Additional Methods Other CNNs Evaluated Training Cohort Test Cohort(s) with AUC (95% CI)
or Accuracy

External Validation Cohort(s) with
AUC (95% CI)

Inception-V3 with and without
adversarial learning [70] VGG-19, ResNet-50

TCGA CRC TCGA CRC
Accuracy 98.3%

TCGA endometrial
Accuracy 53.7%

TCGA CRC and endometrial

TCGA CRC
Accuracy 72.3%

TCGA endometrial
Accuracy 84.2%

TCGA gastric
Accuracy 34.9%

TCGA CRC and endometrial with
adversarial learning

TCGA CRC
Accuracy 85.0%TCGA endometrial

Accuracy 94.6%

TCGA gastric
Accuracy 57.4%

InceptionResNetV1 [71]
InceptionV1-3, InceptionResnetV1-2,

Panoptes1-4 (multibranch
custom InceptionResnet)

TCGA and CPTAC
endometrial carcinoma

TCGA and CPTAC
endometrial carcinoma

AUC 0.827 (0.705–0.948)

ShuffleNet [72] none
MSIDETECT CRC
(color normalized)

MSIDETECT CRC
AUC 0.92 (0.90–0.93)

YCR-BCIP CRC surgical samples
AUC 0.96 (0.93–0.98)

YCR-BCIP CRC biopsy samples
AUC 0.78 (0.75–0.81)

YCR-BCIP CRC biopsy samples YCR-BCIP CRC biopsy samples

Table 2 summarizes the methods and performance of available data regarding deep learning for MSI prediction from pathology. * Exact AUC not reported, estimate based on an included graphical
representation. CNN: convolutional neural network. TCGA: The Cancer Genome Atlas, CRC: colorectal cancer, DACHS: CRC prevention through screening study (abbreviation in German), FFPE: Formalin-Fixed
Paraffin-Embedded, AUC: Area under the receiver operating characteristic curve, KCCH: Kanagawa Cancer Center Hospital (Japan), CPTAC: Clinical Proteomic Tumor Analysis Consortium, MSIDETECT: A
consortium comprised of whole slide images from TCGA, DACHS, the United Kingdom-based Quick and Simple and Reliable trial (QUASAR), and the Netherlands Cohort Study (NLCS), YCR-BCIP: Yorkshire
Cancer Research Bowel Cancer Improvement Programme.
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Using this process, the CNN was able to detect MSI in snap-frozen and FFPE TCGA
samples with similar AUCs to those achieved with previous pathology-based scoring
systems such as MsPath and the model by Greenson et al. (0.84 for snap-frozen CRC
samples, 0.77 for FFPE CRC samples, and 0.81 in FFPE gastric adenocarcinoma samples).
This level of performance was maintained when the CNN trained on FFPE CRC samples
was tested on an external validation cohort from the DACHS (Darmkrebs: Chancen der
Verhütung durch Screening) study (Table 2), which consisted of FFPE CRC samples from
Germany (AUC 0.84). The authors also tested the classification performance of the ResNet
when applied to slides with limited tissue, finding that performance plateaued with a
quantity of tissue that is available from standard needle biopsies [43].

To attempt to identify what pathological features the ResNet used to make its classifi-
cations, tumor regions that were assigned high or low MSI scores were visually inspected.
Areas predicted by the CNN to represent MSI often showed characteristics consistent
with known pathological correlates of MSI, such as poor differentiation and lymphocytic
infiltration. PD-L1 expression and an interferon gamma transcriptomic signature were
correlated with the proportion of a sample’s tiles predicted to have MSI. This finding is
consistent with previous data showing high expression of PD-L1 and interferon gamma in
CRC with MSI [73,74].

Despite encouraging performance for MSI classification in similar cohorts, testing
against different cohorts revealed some limitations. CNNs trained on snap-frozen CRC
samples or gastric adenocarcinoma samples did not perform as well as the CNN both
trained and tested on FFPE CRC samples. When the CNN was trained to detect MSI
in endometrial cancers, its performance was significantly reduced to an AUC of 0.75,
raising the possibility that the CNN is learning tissue-specific features associated with MSI.
Additionally, the CNN trained on TCGA gastric adenocarcinomas did not perform as well
when tested on a Japanese gastric adenocarcinoma cohort (AUC 0.69), possibly due to
distinctive histological patterns seen in gastric adenocarcinomas in this cohort [43].

Other studies have attempted to improve upon these results using other CNNs and
machine learning techniques (Table 2). In a follow up study by Kather et al., the prediction
of MSI was performed as a benchmark task by various CNNs, which were pretrained on
the ImageNet database [67]. The ResNet and Inception CNNs were outperformed by the
DenseNet [75] and ShuffleNet [76] architectures. ShuffleNet, a CNN optimized for mobile
devices, was able to achieve an AUC of 0.89 when trained on a CRC cohort from TCGA
and validated on the DACHS CRC cohort (Table 2). The ResNet used for the previous
study by Kather et al. achieved an AUC of 0.84 [43,67].

Another group reports improvement upon the results by Kather et al. in terms of
overall predictive accuracy and generalizability to different cohorts [68]. This study also
used ResNet-18 to assign each tile within the tumor area an MSI likelihood. However,
multiple instance learning was used to train the CNN to classify the whole slide image.
Multiple instance learning assumes that not all tumor regions contribute the same amount
of information to the task of classification of the tumor as a whole [77]. Certain regions
or patterns found in limited areas of a sample may be more important to determining the
likelihood of the tumor being MSI. For example, any mucinous differentiation increases
the likelihood of a tumor harboring dMMR/MSI [26,28]; this may be focal and not seen in
the majority of tumor areas. Two different multiple instance learning methods were used
in this study, and their input was integrated into a final ensemble predictor (Table 2). This
ensemble classifier achieved an AUC of 0.885 [68], which was better than the performance
reported by Kather et al. [43].

This group also found a significant reduction in AUC (0.650) when the TCGA-trained
ensemble classifier was tested on a cohort of Asian patients with samples acquired with
a different slide preparation protocol [68]. They were able to overcome this reduction in
performance by transfer learning. By adding increasing proportions of data from the Asian
cohort to the training set, they were able to achieve an AUC of 0.850 with 10% samples from
the Asian cohort, with continued improvement up to an AUC of 0.926 with 70% samples
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from the Asian cohort (Table 2) [68]. Pathologic signatures were derived from the model
and were associated with known features of MSI, including TMB and insertion-deletion
mutational burden, as well as transcription signatures of immune activation.

A conference paper by Wang et al. also assessed an alternative technique, Patch
Likelihood Histogram (PALHI), for integrating tile-level MSI predictions into patient-
level predictions using whole slide images from a TCGA endometrial cancer cohort [78].
First, a ResNet-18 pre-trained on ImageNet was trained to predict MSI for individual tiles
on a subset of the TCGA cohort. PALHI then generated a histogram of the patch-level
estimated MSI likelihoods, which were used to train a machine learning classifier called
XGBoost to make patient-level predictions. The performance of a pipeline using PALHI to
make patient-level predictions was compared to pipelines using another machine learning
method, Bag of Words (BoW) and the “majority voting” method, using another subset of
the TCGA cohort as a testing set. The three methods were each trained on both patches
assigned binary “hard labels” and patches assigned “soft labels,” or MSI probabilities. The
PALHI method trained using “soft labels” yielded the best performance on the test set,
with an AUC of 0.75. By comparison, the AUCs for BoW and the majority method using
“soft labels” were 0.71 and 0.56, respectively [78].

Transcriptomic prediction from H&E slides has also been used to improve MSI pre-
diction when limited training data are available [69]. First, features were extracted from
each tissue tile using the ResNet-50, pretrained on the ImageNet database. These features
served as the input for a custom multilayer perceptron, which was trained to predict gene
expression from RNA-Seq data. Multilayer perceptrons are neural networks composed of
fully connected layers, typically without convolutional layers. This neural network was
trained on pan-cancer and tissue-specific TCGA datasets and was able to predict several
expression signatures, including adaptive immune response signatures [69]. For MSI pre-
diction, the authors simulated a situation where a limited number of training slides are
available at two sites. They showed that, using the transcriptomic representation trained at
one site, they could improve MSI prediction at the second site. However, when increasing
proportions of data at the second site were used for MSI prediction without integrating
transcriptomic representation, this advantage was largely lost. Neither method achieved
an AUC > 0.85 and no external validation set was used (Table 2) [69]. It is unclear if this
approach would be applicable in real-life settings.

In a conference paper submitted to the 1st Conference on Medical Imaging with Deep
Learning (MIDL 2018) [70] and a related patent [79], adversarial learning was used to
improve the generalizability of CNNs for MSI prediction across different cancers. The
Inception-V3, ResNet-50 and VGG-19 CNNs were compared; Inception-V3 was chosen
for downstream analysis. TCGA samples were used for both testing and training; this
study did not use an external validation dataset. MSI status was categorized as stable, low
instability or high instability. Inception-V3 was trained on CRC samples and achieved a
slide-level accuracy of 98.3% with an internal validation set of 10% of TCGA slides. It is
unclear if this level of accuracy represents overfitting. Accuracy was poor when applied
to endometrial carcinoma samples at 54%, whereas training the CNN on both CRC and
endometrial carcinoma decreased the accuracy of MSI prediction for CRC to 72% (Table 2).
This CNN also performed poorly at classifying MSI in gastric adenocarcinoma with a
slide-level accuracy of 35%. Next, a tumor type classifier was added to the CNN with
an adversarial objective—to decrease the ability of the model to predict tumor type. The
rationale for creating this adversarial objective is to remove tissue-specific features that are
learned by the CNN, such that the model will recognize the features associated with MSI
better. Adversarial training improved MSI classification across the three cancer types, but
accuracy remained poor for gastric adenocarcinoma at 57% [70].

Focusing on endometrial cancer, a recent study available as a preprint generated
CNNs that had three branches of an InceptionResNet architecture, each analyzing tiles
at a different resolution [71]. An optional fully connected layer incorporating clinical
features was also evaluated as a fourth branch. This structure, termed Panoptes, allowed
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the model to take into account both tissue-level and cellular-level structures, as would a
human pathologist using a microscope. MSI classification was one of several tasks that the
CNNs were trained to do. While the complex architecture showed strong performance in
predicting many histological and molecular features, MSI was best predicted by the existing
InceptionResnetV1 architecture, with an AUC of 0.827 (Table 2), which outperformed
Kather’s previously described ResNet-18 architecture (AUC 0.75). The inclusion of clinical
data did not seem to improve the model’s performance: when the age and BMI of the
patient were added into the model, its performance did not significantly improve [71].
Predicted MSI was correlated with certain histological features, including intratumoral and
peritumoral lymphocytic infiltrates.

The strongest-performing model for MSI prediction was developed by Echle et al. by
training a CNN on a large cohort of H&E-stained CRC samples from the MSIDETECT
consortium, which is comprised of whole slide images from TCGA, DACHS, the United
Kingdom-based Quick and Simple and Reliable trial (QUASAR), and the Netherlands
Cohort Study (NLCS) [72]. A modified version of the CNN ShuffleNet that was pre-trained
on ImageNet was trained on whole slide images from MSIDETECT with known MSI or
dMMR status and externally validated on a separate population-based cohort, Yorkshire
Cancer Research Bowel Cancer Improvement Programme (YCR-BCIP). For each slide,
tumor tissue was manually outlined and the slide was divided into smaller tiles. The
patient-level prediction of MSI/dMMR was based on the average tile-level prediction
for each patient. The CNN was first trained and tested on individual sub-cohorts. As in
earlier-described studies [43,68,70], when a CNN trained on a single sub-cohort was tested
on another sub-cohort, performance usually suffered. A positive correlation between the
size of the training cohort and the performance of the model was noted. The CNN was
then trained on increasing numbers of patients randomly selected from the MSIDETECT
cohort. The model showed better performance with greater numbers of patients up until
about 5000 patients, after which performance plateaued. After training with samples from
5500 patients, the model attained an AUC of 0.92 when tested on a separate set of patients
from MSIDETECT. When tested on the external validation cohort (YCR-BCIP), the model
attained a similarly impressive AUC of 0.95. Additionally, when slides were subjected
to color normalization, the specificity at given levels of sensitivity increased and a slight
improvement in AUC to 0.96 was demonstrated [72]. Though these results are encouraging,
it is worth noting that the samples used to train and test this model were derived mostly
from European patients. Further validation with more diverse cohorts and prospective
studies will be necessary before this model can be applied in a broad clinical context.

Subgroup analysis did reveal some variation in the model’s performance for certain
tumor characteristics. While the performance was consistent for tumors at stages I-III
(AUCs 0.91–0.93), the AUC for stage IV tumors was lower (0.83). The authors do not
discuss potential explanations for this discrepancy, but there was a similar reduction in
AUC for tumors with high histologic grade (AUC for high grade tumors was 0.83). The
relatively low prevalence of MSI/dMMR in stage 4 colorectal cancers would have decreased
the number of available images from this subgroup available for training, as would the
fact that stage 4 tumors are more likely to come from biopsy specimens than complete
resection samples. This lower performance for stage 4 tumors is unfortunate given that ICI
therapy is currently primarily used in late-stage colorectal cancer, reducing the model’s
potential utility for guiding treatment decisions. Additionally, the model predicted MSI
more effectively for colon cancer (AUC 0.91) than for rectal cancer (AUC 0.83). Performance
did not vary significantly by tumor molecular characteristics (e.g., mutation status) [72].

As noted above, a previous study demonstrated that the performance of ResNet-18 in
classifying MSI status plateaued with a quantity of tissue that can be obtained by needle
biopsy [43]. However, Echle et al. found a significant decrease in AUC when the CNN
trained on surgical specimens was tested on YCR-BCIP biopsy specimens as compared
to YCR-BCP surgical specimens (0.78 vs. 0.96). Though size of specimen may be a factor
here, artifacts from specimen acquisition and the fact that samples were derived only from
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luminal tumor tissue may also affect performance. When the authors performed a 3-fold
cross-validated experiment using YCR-BCIP biopsy specimens to both train and test, the
AUC improved to 0.89 [72]. However, the model was not tested on samples from sites of
metastasis, which are commonly biopsied in the clinical setting. Thus, machine learning
models may be effective in classifying the MSI status of biopsy specimens, but will likely
perform best when trained on similarly derived specimens.

Taken together, these studies demonstrate that multiple CNNs and machine learning
techniques are being evaluated for MSI prediction from histology. There is no clear consen-
sus regarding the optimal network architecture. The use of large and diverse datasets for
training may overcome some of the limitations of models whose classification accuracy for
MSI status is worse when applied to datasets with differing characteristics, which could
be the case when applying these methods across different health systems, regions and
populations. With continued experimentation, improvement, and validation of existing
models, the use of machine learning to predict MSI may reach a level of accuracy sufficient
for clinical application in the future.

6. Predicting Response to Immunotherapy with Deep Learning

While MSI status is currently used to determine a CRC patient’s eligibility for ICIs, it is
far from a perfect predictor of the efficacy of these treatments. Only 30–50% of CRC patients
with MSI respond to ICIs. There is also a subset of microsatellite stable CRC that responds
to ICI [32,80,81], demonstrating that ICIs could have a role in the treatment of early-stage
proficient MMR tumors. Patients who receive these treatments are at risk for immune-
related adverse events including thyroid dysfunction, hepatitis, colitis, pneumonitis and
others [82]; there is increasing evidence of an association between response to therapy and
the development of immune-related adverse events [83,84]. Thus, alternative methods of
determining eligibility and predicting the efficacy and toxicity of ICIs are needed.

Despite the potential for the prediction of MSI from histology discussed above, there is
little published research using this method to predict ICI response, and to our knowledge,
there are no published results concerning ICI response prediction in CRC. Machine learning
can be used to predict ICI response in other tumors from various types of input data,
including H&E staining, which may lay the groundwork for similar research in CRC. One
study available in abstract form predicted ICI response in melanoma from pre-treatment
H&E slides in patients who were treated with first-line ICI therapy [85]. A CNN was trained
to classify slides into responders and non-responders and into those who experienced
severe adverse events and those who experienced none. The model performed modestly
well in predicting ICI response, despite training on slides from only 124 patients. The
model was much less effective at predicting adverse events, and research incorporating
immunologic biomarkers into the algorithm is ongoing [85]. A similar study on non-small
cell lung cancer (NSCLC) samples used the spatial arrangement of TILs as detected by
computer algorithms to train a machine learning classifier to predict response to nivolumab,
achieving an AUC of 0.64 on an external validation cohort [86].

A variety of biomarkers have been evaluated for predicting response to immunother-
apy, many of which can be predicted from histology leveraging deep learning. One such
biomarker is TMB, which is associated with specific CNN-derived pathological signa-
tures [68]. In most cancers, including CRC, TMB is associated with improved overall
survival after treatment with ICIs [87,88]. This association is attributed to the height-
ened immune response elicited by the multitude of tumor neoantigens [89–91]. However,
tumors with low TMB can respond to ICIs, as such tumors may harbor one or more
highly immunogenic mutations. This was demonstrated in a case study of a patient with
pembrolizumab-responsive proficient MMR metastatic CRC, who was found to have T-cell
responses to at least one neoantigen expressed within their tumor [92]. In addition, a recent
study of neoadjuvant ICI treatment showed that there was no difference in pretreatment
TMB between early-stage proficient MMR (pMMR) CRCs that responded and those that
did not [81]. MMR deficient CRC is substantially more immunogenic than unselected MMR
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proficient CRC [10,32], in part due to the high TMB including frameshift insertion-deletion
mutations [34].

T cell infiltration in the tumor microenvironment has also been studied as a potential
biomarker for ICI response. A recent study of early-stage CRCs including both proficient
and deficient MMR tumors showed that neoadjuvant therapy with a combination of
nivolumab and ipilimumab elicited a pathological response in all dMMR tumors and
27% of proficient MMR tumors [81]. Proficient MMR tumors that responded to this
treatment could be predicted by the presence of TILs that co-expressed CD8 and PD-1 on
pre-treatment biopsies. No other biomarkers were found to differ significantly between
the proficient MMR tumors that responded and those that did not [81]. Increasing density
of CLR was observed after treatment. Other factors likely play a role in the response of
proficient MMR tumors to ICIs. For example, high expression of IL-17 has been suggested
to abrogate the ICI-responsiveness of such tumors, even in the presence of TILs expressing
CD8 and PD-1 [93]. CNNs have been used to predict the spatial organization and subtypes
of T cells within the tumor microenvironment of CRC and other tumors [69,94,95]. These
features have already been used to predict ICI response in NSCLC with some success [86].

CNNs have also successfully predicted PD-L1 expression [59], another biomarker that
has been assessed as a potential predictor of ICI response. However, while mechanistically
compelling and potentially predictive of ICI response in NSCLC, PD-L1 does not seem to be
useful on its own in determining which CRC will respond to ICI [96]. PD-L1 expression was
not associated with progression-free or overall survival in CRC patients treated with ICIs,
and there was no significant difference between responders and non-responders in PD-L1
expression in pre-treatment samples from patients with dMMR metastatic CRC [32,97]

Other researchers have used different types of clinical data to train machine learning
models to predict ICI response. For example, a machine learning method called Immu-
CellAI was developed to predict the relative abundance of various types of T cells in
pre-treatment samples of melanomas from gene expression data. They then developed
a separate model to predict immunotherapy response based on these results, achieving
an AUC of 0.80–0.91 [98]. The successful implementation of a similar machine learning
technique involving ICI response prediction based on the expression of immune-related
genes was also reported in NSCLC and triple-negative breast cancer [99,100].

Radiomics-based machine learning has also been used to predict response to im-
munotherapy in melanoma and NSCLC based on a defined set of features extracted from
pre-treatment CT imaging of primary and metastatic tumors from patients treated with
anti-PD-1 therapy [101]. The model produced a radiomic biomarker score for each lesion
evaluated, from which anti-PD-1 response was predicted. By combining the predictions
from each of an individual patient’s lesions, a patient level prediction of anti-PD-1 response
could be made. The model achieved significant performance for both tumor types (AUC
0.76 for NSCLC and 0.77 for melanoma) [101]. A similar study used deep learning to
develop a TMB radiomic biomarker that can divide NSCLC tumors into high- and low-
TMB groups (AUC 0.81) and divide ICI-treated NSCLC patients into high and low risk
groups with significantly different overall and progression-free survival [50]. Another
model can predict the transcriptomic-based abundance of CD8 T-cells, and response to
immunotherapy, from radiologic data. The resultant biomarker was found to be positively
associated with response to treatment with anti-PD-1 and anti-PD-L1 therapies [102]. Fluo-
rodeoxyglucose (FDG)-positron emission tomography (PET) scans have also been used to
train deep learning networks to determine a biomarker quantifying CD8+ T cell activity
against the tumor that can differentiate between those patients more likely to respond to
immunotherapy and those who are less likely to respond [103].

Specific somatic mutations may affect tumor response to ICIs. Previous success in
predicting genomic data from histology [58,60,71] suggests that it would be possible to per-
form for other genes, but validation for individual genes would be required. For example,
mutations in the DNA polymerase epsilon (POLE) gene, which codes for an enzyme in-
volved in DNA proofreading during replication, can lead to a very high mutational burden
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without MSI [104]. The predicted number of neoantigens produced by affected CRCs can
significantly exceed that of CRCs with MSI [105]. CRCs harboring POLE mutations have
quantities of TILs similar to those found in dMMR CRCs [106], demonstrating an adaptive
host response to these tumors. At least one case report describes a robust response to
pembrolizumab treatment in a patient with a metastatic, treatment-refractory microsatellite
stable CRC with a confirmed POLE mutation [107]. Clinical trials are ongoing to determine
the extent of the benefit of ICI treatment in CRC with POLE mutations [108]. However, the
impact of these studies will be limited, as POLE mutations are only found in about 1–2% of
CRCs [106].

While multiple machine learning methods have been used to predict ICI efficacy
in tumors other than CRC, and several biomarkers associated with ICI efficacy in CRC
have been identified, data are lacking regarding machine learning for the prediction of
ICI efficacy in CRC. Optimal ICI response prediction in CRC and other cancers will likely
require larger datasets and the integration of multiple types of biomarkers incorporating
genetic, immunologic, and other data. Leveraging machine learning to predict ICI response
in CRC is an appealing goal given the lack of a sufficiently accurate predictive biomarker.
The prediction of ICI response from ubiquitously available clinical data, such as H&E slides
and radiographic studies, could greatly improve access to these therapies.

7. Future Directions

Table 3 summarizes the potential advantages, current limitations, and suggestions
for future development of machine learning for MSI classification from digital pathology.
The potential to predict multiomic data from a universally available clinical specimen
has substantial advantages that rely on the ability to achieve excellent classification with
CNNs. Data that are not routinely collected (e.g., transcriptomics) can be predicted utilizing
relatively limited resources if a digital pathology infrastructure already exists. With the
increasing use of omics data for clinical decision making for cancer treatment [109], many
more institutions and clinicians could have access to this information. Expanding this
technology to mobile phones, as with CNNs discussed above, could allow even greater
accessibility [67], but the scalability of these methods to settings with limited resources
remains to be demonstrated.

Predicting MSI and other molecular features from H&E slides is an attractive goal
given the success of CNNs in similar tasks and initial encouraging results. The focus of
the published literature has been on H&E stained slides. It is possible that performance
can be further improved by using additional histological stains. The previous performance
of models created by human pathologists may also point to the attainability of this goal.
The most important hurdle will be to demonstrate, through rigorous clinical trials, that
utilizing machine learning on clinical samples is superior or non-inferior to the standard
of care, which is itself rapidly evolving and non-uniform. For example, next generation
sequencing is increasingly performed on tumor specimens, permitting the identification
of MSI as part of a broader, clinically relevant, molecular characterization [110,111]. With
decreasing sequencing costs and the need to detect certain mutations clinically (e.g., in
KRAS and BRAF), accurate genomic predictions in addition to MSI classification may be
required from histology-based machine learning methods. Blood based tests have shown
good accuracy for predicting MSI from the primary tumor [112] and radiomics have also
been proposed for the prediction of MSI status [113–115].

Another major challenge is the generalizability of these methods, which, contrary to
molecular methods such as PCR or immunohistochemistry, are often not robust to differing
patient or tissue characteristics. The reduction in performance seen in several studies
when a trained CNN was applied to new datasets may be a barrier to the widespread
implementation of these methods (Table 3).
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Table 3. Advantages, limitations, and future directions for MSI classification from digital pathology using machine learning.

Advantages Limitations Future Directions

Classification accuracy
- Rapidly improving accuracy of several

CNN architectures

- Insufficient accuracy to obviate universal MSI
screening in resource-rich settings currently

- Decreased accuracy when applied to
biopsy samples

- Lacking data on post treatment samples (e.g.,
rectal cancer)

- Determine optimal CNN architecture/s for
distinct clinical scenarios

- Leverage machine learning to prioritize
molecular testing in settings with
limited resources

Generalizability Excellent performance on well curated cohorts
that are similar to training data

Performance not robust to differing patient and
tissue characteristics

Increase availability of datasets for global and
local model refinement

Accessibility
Potential to expand access to settings without
pathology experts or molecular testing,
including via cellular devices

- Digital pathology not yet widely available
- No published studies conducted in settings

with reduced access to healthcare

Design dedicated CNNs for settings with reduced
access to healthcare

Clinical endpoint prediction Very good classification of MSI No direct prediction of clinical endpoints Shift from surrogate marker classification to
clinical endpoint prediction

Patient selection
for immunotherapy

Decreased accuracy of MSI classification in metastatic
disease, where immunotherapy is approved

- Directly predict response to immunotherapy,
regardless of MSI status

- Improve MSI prediction in
metastatic disease

Identification of Lynch Syndrome
Inability to distinguish between somatic and
germline etiology of MSI, such that confirmatory
testing is required

- Predict somatic vs. germline etiology of MSI

Comparison with next generation
sequencing (NGS)

Rapid and cost-effective after
initial investment

Cannot currently reliably detect KRAS or BRAF
mutations, tumor mutational burden and other
clinically actionable alterations

- Attempt to directly predict response to
therapy based on histology

- Improve classification of other
molecular alterations

- Integrate genomic and histologic data for
optimal prediction

Cost effectiveness Long term savings on molecular assays Initial investment required in hardware and software
for digital pathology Expand use of and access to digital pathology

Table 3 outlines the advantages, limitations, and future directions as they relate to detecting MSI from histology using machine learning. CNN: convolutional neural network.
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The few peer-reviewed data that are available suggest that the accuracy of the current
machine learning algorithms for the prediction of MSI may not yet be sufficient to guide
clinical care in high-resource settings. However, as methods continue to improve and
more training datasets become available, it is plausible that CNNs will be able to predict
MSI status more accurately. Predictions for differing populations, primary cancer sites
and tissue preparation methods (including true biopsies) are some of the challenges that
exist. The accuracy of prediction for post-treatment pathology slides has not been explored
and may be relevant for rectal cancer patients undergoing neoadjuvant therapy. Until the
performance of CNNs improves, emphasis could be placed on achieving a near-perfect sen-
sitivity for the detection of MSI, tolerating a certain number of false positives. MSI/dMMR
assays could be avoided for most samples, but confirmation of CNN-predicted MSI would
be required. Since MSI is a biomarker, the major potential for machine learning to improve
upon MSI testing is if it were able to predict clinically relevant genomic features, such as
MLH1 hypermethylation or germline dMMR mutations, or clinically relevant outcomes,
such as response to chemotherapy and immunotherapy (Table 3). The Immunoscore al-
ready uses digital pathology for prognostication [10,57] but machine learning could be
utilized to improve predictions and to identify subsets of patients with microsatellite stable
CRC that could benefit from immunotherapy [81].

Another limitation of the current research is that, to our knowledge, all CNN models
trained to identify MSI status in CRC have been trained on surgical samples derived
from resection of the primary tumor. Under current guidelines, immunotherapy is most
commonly used to treat patients with stage IV tumors, who often have tissue samples
available only from biopsies of metastatic sites. If machine learning models are not able to
accurately predict MSI based on such samples, one of the most promising applications of
MSI prediction from histological samples would be restricted to a much smaller segment
of potential beneficiaries. Thus, future research should work to optimize machine learning
algorithms for the prediction of MSI from biopsy samples of distant metastases.

Lastly, to accelerate the acceptance of CNNs as clinical tools and inform other areas
of research, further insights into the features that drive CNN classification are needed.
Without understanding what features CNNs are using to classify images, there exists a risk
of introducing bias and error.
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