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Simple Summary: This manuscript details the literature and discussion around revolutionizing the
neurosurgeon’s approach to surgery for brain tumors by conceptualizing these tumors as entities
within functional networks. We hope that the work detailed herein will aid in establishing neurosur-
gical paradigms to optimize planning for brain tumor surgery to improve functional outcomes for
all patients.

Abstract: The evaluation and manipulation of structural and functional networks, which has been
integral to advancing functional neurosurgery, is beginning to transcend classical subspecialty bound-
aries. Notably, its application in neuro-oncologic surgery has stimulated an exciting paradigm shift
from the traditional localizationist approach, which is lacking in nuance and optimization. This
manuscript reviews the existing literature and explores how structural and functional connectivity
analyses have been leveraged to revolutionize and individualize pre-operative tumor evaluation
and surgical planning. We describe how this novel approach may improve cognitive and neuro-
logic preservation after surgery and attenuate tumor spread. Furthermore, we demonstrate how
connectivity analysis combined with neuromodulation techniques can be employed to induce post-
operative neuroplasticity and personalize neurorehabilitation. While the landscape of functional
neuro-oncology is still evolving and requires further study to encourage more widespread adoption,
this functional approach can transform the practice of neuro-oncologic surgery and improve the care
and outcomes of patients with intra-axial tumors.

Keywords: glioma; connectivity; networks; functional neurosurgery; neuroplasticity

1. Introduction

The interaction between glial tumors and structural and functional neuronal networks
is becoming increasingly recognized and is reshaping our understanding of the impact of
these infiltrative lesions on global brain function. Gliomas adopt mechanisms to promote
progression through newly formed neuroglioma synapses that are thought to impact the
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electrical activity and function of existing neural pathways [1,2]. In parallel, an under-
standing of the overall structural and functional connectivity of the brain has emerged,
alongside an awareness of the neurologic and neuropsychiatric effects that intra-axial mass
lesions can have on neural networks [3]. As such, neurosurgical oncology strategies are
increasingly taking into consideration updated models of the anatomical–functional archi-
tecture of the brain [4]. Conventional topographic- and tumor-oriented surgical planning
is now evolving to encompass network-oriented surgery, tailored to the global structural
and functional profile of each individual patient [5,6]. Innovations in neuroimaging and
connectivity analyses are driving whole-brain network approaches to neurosciences in
general, and functional neurosurgery in particular [7]. For example, the field of deep brain
stimulation (DBS) surgery is progressing away from pre-operative identification of focal
regions of stimulation and towards modulating distributed brain networks [8–10]. Similar
views have been adopted in epilepsy surgery, where network analysis techniques refine
surgical planning [11,12].

This paradigm shift of network analyses in functional neurosurgery can be applied
to neuro-oncologic surgery to serve three important goals: (1) Mitigating tumor spread
by considering the invasive nature of gliomas and their growth along white matter tracts,
or so-called ‘oncologic disconnection’ [6,13]; (2) Preserving critical networks to maintain
cognitive, social and occupational function post-operatively through recognition of the
impact of resections on neural circuitry [6]; (3a) Harnessing neuroplasticity to induce
functional reorganization through targeted neuromodulation, allowing for extended tumor
resections [14]; and, (3b) Personalized strategies for post-operative neurorehabilitation
through neuromodulation guided by connectivity maps.

There are numerous parallels between the functional neurosurgery paradigms cen-
tered on neural networks and those needed in neuro-oncologic surgery. Drawing upon
network-based principles in functional neurosurgery, including DBS and non-invasive
neuromodulation, we detail the potential role of connectivity analyses in improving onco-
logic and functional outcomes. As we will describe herein, a network-based approach to
glioma surgery can improve the neurosurgical management of patients and transform the
traditional lesion-oriented approach of neuro-oncologic surgery into functionally tailored
resections, aimed at optimizing both oncologic and global functional outcomes.

2. What Is Connectomics?
Overview of Connectomic Methodologies and Applications

The term connectomics broadly refers to the study of networks of structurally and
functionally connected regions within the central nervous system. Connectivity can be
measured and inferred using both neuroimaging and neurophysiological methods such
as diffusion tensor imaging (DTI), functional MRI (fMRI), electroencephalography (EEG),
magnetoencephalography (MEG), electrocorticography (ECoG), and awake brain map-
ping [15]. Such studies have yielded novel insights into brain regions traditionally regarded
as ‘non-eloquent’ that may actually be essential for brain function, including anatomical
regions involved in mentalizing, semantic processing, and language expression [4]. In ad-
dition, individual connectomic analyses have expanded our understanding of anatomical–
functional correlation, including the identification of motor speech areas outside of the
traditional topographic location of Broca’s area, characterization of the medial frontal
cognitive control networks, and establishment of the second ventral stream of language
processing [16]. Structural connectivity is typically based on tractography (e.g., DTI) and
provides an estimation of axonal fiber or tract connections between topographic brain
regions [15,17]. Functional connectivity can be assessed using various aforementioned
modalities, including fMRI, EEG, and MEG. While structural connectomes provide organic
pathways for neuronal activity, functional connectomes may inform indirect connections,
multiple inputs, or synaptic changes [18]. Therefore, both structural and functional connec-
tomics are informative and complementary approaches to better resolve our understanding
of brain connectivity. Although discordance between modalities may be observed, it is
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important to consider that each method is governed by specific principles and should
not be interpreted as the failure of an individual method [15]. Information gathered from
awake neuro-oncological, epilepsy, and DBS surgeries is used to reinforce radiological and
neurophysiological models of brain networks. Network analysis can be used to better
understand the structural and functional connections linking distinct brain areas in general,
and in the context of an intra-axial lesion in particular.

Assembling a connectome using any of the aforementioned approaches utilizes an ap-
proximately similar pipeline (Figure 1). The brain is first split into distinct regions through
a process known as parcellation. In the case of functional connectomic methodologies,
such as fMRI, a blood-oxygen-level-dependent (BOLD) time series is extracted from each
parcel and compared with the temporal data from the remaining parcels [15]. In contrast,
generating a structural connectome involves applying each parcel as a seed within the
tractography iteration and the number of fibers subsequently informs putative connections
between regions [15]. Through either approach, connectivity between distinct brain areas
is quantified, often illustrated as a connectivity matrix. This can then be further processed
using techniques such as graph theory, whereby specific regions (nodes or hubs) and the
links between these regions (edges) are studied [19,20].
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Figure 1. General overview of a connectivity analysis pipeline. (A) Structural or functional data are acquired and (B) pre-
processed, then (C) parcellated by dividing the brain into distinct regions. A (D) correlation matrix is then created to
estimate the connectedness between regions and (E) functional brain networks are generated. (F) Graph theory analysis is
applied to delineate nodes, edges, and central hubs. (DTI = diffusion tensor imaging; MEG = magnetoencephalography;
EEG = electroencephalography; Fmri = functional magnetic resonance imaging).
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3. Integrating Connectomic Analysis into the Glioma Peri-Operative Pipeline: Lessons
from Functional Neurosurgery
Demonstrated Utility of Connectomics within Functional Neurosurgery

Connectivity studies have been successfully applied to various indications within
functional neurosurgery. For example, the field of DBS is increasingly conceptualizing
DBS as a tool to modulate brain networks [21,22]. DBS offers a window of insight into
brain function associated with cognition and emotions, as do awake tumor resections
with brain mapping. Viewing DBS as a modality to interrogate dysfunctional neural
circuits, or ‘circuitopathies’, has led to broader applications of DBS [23]. In particular,
DBS is successfully being used to target mood and cognitive circuits for psychiatric and
Alzheimer’s disease, respectively [23]. Similarly, pre-operative connectomic studies using
DTI, fMRI, and resting-state MEG have shown clinical utility in characterizing patients who
have a higher likelihood of responding to vagus nerve stimulation (VNS) for intractable
epilepsy and in DBS parameter selection for Parkinson’s disease (PD) [24,25]. Moreover,
the efficacy of subthalamic nucleus (STN) DBS for PD has been associated with a distinct
structural and functional connectivity profile [26]. The efficacy of DBS and VNS is, in
part, due to the modulation of remote brain regions that communicate with the site of
stimulation and reorganization of neural networks [27–29].

Recognizing these remote effects of DBS, one can also conceptualize that connectomic
analysis may provide insight into the underlying basis of adverse effects or undesirable
symptoms occurring secondary to DBS. Such an approach has been used to map the under-
lying connectivity of DBS-associated flashback phenomena following forniceal DBS, panic
attacks induced by inferior thalamic peduncle DBS, and seizures following subcallosal cin-
gulate DBS for refractory anorexia nervosa [30–32]. Similarly, connectivity-derived models
can guide effective DBS for less well-understood pathologies, such as central post-stroke
pain and neuropsychiatric indications, including obsessive-compulsive disorder [8,33].
Similar analyses were undertaken to investigate the perturbed networks leading to post-
operative morbidity in glioma surgery. One study employed lesion-network mapping
(LNM) to examine the connectomic basis for post-operative depression in a patient with
a cingulate diffuse low-grade glioma [34]. This analysis drew upon principles of connec-
tomic analysis and functional neurosurgery to characterize the neuroanatomical basis of
this post-operative morbidity. Specifically, networks associated with subgenual cingulate
DBS were compared to networks affected both by the tumor and surgical approach. The
analysis showed that the surgical corridor had greater overlap with DBS-based depression
networks [34].

Collectively, there is an emerging body of literature supporting the feasibility and
clinical utility of brain mapping in individual patients, and this can broadly be translated
to glioma patients. Although integrating these studies into a pre-surgical planning scheme
may present challenges in implementation and application, such analyses hold the potential
to identify brain regions that are essential to network function, which may otherwise be at
risk from tumor resection [20].

4. Practical Applications of Connectivity for Glioma Surgery
4.1. Conceptualizing Glioma Resection in Terms of Oncologic Disconnection

The primary goals of integrating connectivity into surgical planning include (1) sparing
of functional networks leading to anticipated decreases in post-operative morbidity and
(2) so-called ‘oncologic’ disconnection. The latter can broadly refer to disconnection of
pathways of tumor spread but may also refer to resection of seizure onset zone and
disconnection of epileptogenic networks. Proving the possibility of using pre-operative
connectivity studies for the sparing of functional networks, one study of glioblastoma
patients demonstrated that ‘connectomic signatures’ derived from fMRI connectomes could
identify regions critical to network function [20]. However, intra-operative direct cortical
and subcortical stimulation remains the gold standard for mapping.
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4.2. Preservation of Cognitive Eloquence, Higher-Order Behavioral and Social Functions

A global perspective that considers the impact of tumors on neural circuitry can
endeavor to preserve critical networks to maintain cognitive, social, and occupational
function post-operatively [6]. Therefore, such strategies must be coupled with formal
neuropsychiatric assessments in both the pre-operative and post-operative phases. The
concept of cognitive eloquence in neurosurgery has been proposed whereby cortical and
subcortical regions of the brain, which are not known to have a definite neurological
function, may result in cognitive morbidity when traversed surgically [35]. Functional MRI
and/or DTI acquired pre-operatively could be leveraged to capture the patient-specific
connectome and delineate specific cognitive or affective networks [36]. Such an approach
can therefore allow the surgeon to plan a minimally disruptive trajectory (Figure 2).
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Figure 2. Schematic of pre-operative structural connectivity to identify optimal trajectories for tumor
resection and minimal network disruption. The top panels demonstrate a representative schematic
of an intra-axial tumor (blue) and possible surgical trajectories (red). The bottom panels show
the corresponding network analysis based on DTI tractography. The trajectory demarcated by the
dashed green line represents the surgical trajectory with minimal structural network disruption. A
similar approach can be applied to visual representations of functional networks derived from other
modalities to infer connectivity.

This is clinically relevant as earlier detection of gliomas had led to the increasing
recognition of preserving quality of life for these patients [37]. Potential regions of cog-
nitive eloquence are thought to coincide with areas central in interconnected brain net-
works [35,38]. Evidence for the existence of these so-called brain ‘hubs’ is derived from
several studies, including network analysis of DTI data as well as resting-state MRI [39,40].
Commonly identified hubs, or areas of centrality, include the dorsal superior prefrontal cor-
tex, non-dominant medial superior frontal gyrus, anterior insula, temporal–occipital cortex,
precuneus, and the superior and medial occipital gyri [38]. In addition to defining potential
regions of functional and cognitive eloquence, it is important to have an understanding of
neuroplasticity in glioma surgery since functional networks can undergo marked reorga-
nization in the face of an infiltrative or compressive mass lesion [41]. Functionally, these
may result in a shift of ‘hubs’ from their location in the normal brain due to neuroplastic
changes imposed by the presence of an infiltrative mass lesion.



Cancers 2021, 13, 6127 6 of 12

5. Employing Neuromodulation Strategies in Glioma Surgery to Influence Peri-
Operative Functional Reorganization and Promote Post-Operative Neurorehabilitation

Utilizing connectomics in the peri-operative pipeline affords strong potential for the
use of network mapping to expand our knowledge of the mechanisms of pre- and post-
resection functional compensation and to conceptualize neuromodulation strategies to
promote post-operative neurorehabilitation (Figure 3).

Cancers 2021, 13, x FOR PEER REVIEW 6 of 12 
 

 

Utilizing connectomics in the peri-operative pipeline affords strong potential for the 
use of network mapping to expand our knowledge of the mechanisms of pre- and post-
resection functional compensation and to conceptualize neuromodulation strategies to 
promote post-operative neurorehabilitation (Figure 3).  

These methods can potentially be used pre-operatively to facilitate plasticity in re-
gions infiltrated by glioma. We anticipate that network-based analyses can inform neuro-
modulatory strategies to improve cognitive and behavioral outcomes by modulating 
physiological pathways. While the concept of using neuromodulation to target distrib-
uted brain networks is not new, there is novelty in our ability to visualize networks, cor-
relate them with symptoms, and utilize this information to personalize strategies to im-
prove functional outcomes [42].  

 
Figure 3. Visual representation of the integration of connectivity into the neurosurgical care management of glioma. Pre-
operative investigations, including neuroimaging and neurophysiology, can be used to derive pre- and post-operative 
connectivity analyses and can also serve to inform neuromodulatory strategies for pre-habilitation or post-operative neu-
rorehabilitation. Intraoperative mapping can be used as an adjunct mapping tool, and the functions assessed can be de-
rived from connectivity analyses. Neuropsychiatric assessment can occur simultaneously to validate and assess cognitive 
and behavioral functions and correlate these with connectivity. 

5.1. Harnessing the Neuroplastic Potential of the Brain to Modulate Function 
Neuroplasticity is an intrinsic property of neural pathways that enables the for-

mation and consolidation of new pathways by refining existing connections, pruning or 
promoting neurogenesis, and adding new synaptic connections [43]. This can be broadly 
conceptualized as a balanced interplay of mechanisms promoting change and those pro-
moting the stability of neural networks [44]. With this understanding of neuroplasticity 
and emphasis on functional outcomes informed by connectivity studies, there is a putative 

Figure 3. Visual representation of the integration of connectivity into the neurosurgical care man-
agement of glioma. Pre-operative investigations, including neuroimaging and neurophysiology,
can be used to derive pre- and post-operative connectivity analyses and can also serve to inform
neuromodulatory strategies for pre-habilitation or post-operative neurorehabilitation. Intraoperative
mapping can be used as an adjunct mapping tool, and the functions assessed can be derived from
connectivity analyses. Neuropsychiatric assessment can occur simultaneously to validate and assess
cognitive and behavioral functions and correlate these with connectivity.

These methods can potentially be used pre-operatively to facilitate plasticity in regions
infiltrated by glioma. We anticipate that network-based analyses can inform neuromodula-
tory strategies to improve cognitive and behavioral outcomes by modulating physiological
pathways. While the concept of using neuromodulation to target distributed brain net-
works is not new, there is novelty in our ability to visualize networks, correlate them with
symptoms, and utilize this information to personalize strategies to improve functional
outcomes [42].

5.1. Harnessing the Neuroplastic Potential of the Brain to Modulate Function

Neuroplasticity is an intrinsic property of neural pathways that enables the formation
and consolidation of new pathways by refining existing connections, pruning or promoting
neurogenesis, and adding new synaptic connections [43]. This can be broadly conceptual-
ized as a balanced interplay of mechanisms promoting change and those promoting the
stability of neural networks [44]. With this understanding of neuroplasticity and empha-
sis on functional outcomes informed by connectivity studies, there is a putative role for
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neuromodulation of neural networks in both peri-operative reshaping and post-operative
neurorehabilitation. The highest potential for plasticity occurs at the cortical level, while
subcortical plasticity is less robust [41]. Studies of patients with ischemic stroke have shown
that damage of white matter pathways leads to worse neurologic outcomes than lesions
of the cortex [41]. This implies that eloquent axonal connectivity should be preserved
to enable post-lesional compensation. Non-invasive brain stimulation (NIBS) methods,
such as transcranial magnetic stimulation (TMS), low intensity focused ultrasound, and
transcranial direct current stimulation (tDCS), can elicit changes in cortical excitability and
potentiate plasticity following brain insult. This may potentially represent an important
role for neuromodulation in promoting peri-operative reshaping and post-operative func-
tional recovery [6]. However, as our understanding of brain circuits facilitating plasticity
evolves, it remains to be determined whether ‘pre-habilitation’ strategies will be more
effective than post-resection rehabilitation. Further studies are also needed to investigate
the impact of pre-habilitation on functional outcomes.

Functional studies using fMRI, repetitive TMS (rTMS), and MEG of patients pre- and
post-resection of low-grade gliomas have shown that cortical functional reorganization
frequently occurs [45–49]. Several studies have identified neuroplasticity in the context of
slow-growing lesions such as low-grade gliomas and provide support for a model by which
staged surgery may be favorable in this clinical context to drive plasticity of subcortical
pathways [50,51]. Evidence of remodeling in patients with gliomas has been demonstrated
through resection of canonically ‘eloquent’ regions with preservation of function [52]. In
the case of DBS, although the mechanisms of deep brain stimulation are currently under
investigation, studies have shown that the efficacy of STN DBS in patients with PD is at
least in part due to restoration of cortical plasticity [53].

MRI-guided focused ultrasound (MRgFUS) is being used as a neuromodulatory
strategy for various central nervous system pathologies and may have a future role in the
neuro-oncology setting [45]. In particular, MRgFUS may be utilized to stimulate specific
brain regions and pathways in order to investigate its potential application in targeted
rehabilitation. Moreover, MRgFUS is also being used as a tool to open the blood–brain
barrier transiently, and this may hold promise in improving adjunct therapy such as drug
delivery to glioma patients [54,55].

5.2. Potential Neuromodulatory Strategies for Further Study

With the evolving knowledge of brain neuroplasticity, it is rational to envision a
treatment strategy for lower-grade glioma patients whereby neuroplasticity is induced
by way of cortical stimulation and followed by surgery to resect the lesion. Importantly,
neuroplasticity in patients with glioma occurs in functional areas, including the precentral
gyrus and regions governing language [56,57]. However, these areas have a relatively
lower index for functional compensation in comparison to speech areas, and as such,
stimulation can provide a sensible approach to promote neuroplastic mechanisms in a
functional–oncologic staged fashion [58].

Cortical stimulation has been shown to suppress function in the stimulated region and,
through this training, promote plastic changes in neural circuitry [59]. Analyses of patients
with brain tumors in eloquent areas have demonstrated successful induction of cortical
plasticity through continuous cortical electrical stimulation (cCES) using subdural grids
inserted at the time of surgical resection [59]. Another method of cortical stimulation is by
way of rTMS. This is a non-invasive approach to target stimulation through serial sessions
of theta-burst stimulation that, when applied to the motor cortex, can result in sustained
depression and potentiation of cortical reactivity [60]. A similar approach has also shown
promise in inducing functional changes in language motor areas in a patient with recurrent
low-grade glioma [61]. However, despite the non-invasive nature of this intervention,
there are limitations such as the need to undergo multiple sessions (ranging from 3–5 times
per week), weak reported effects on sustained plasticity, and significant variability in
response across patients [60]. Motor cortex stimulation (MCS) is yet another stimulation
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approach that has shown safety and efficacy in managing chronic neuropathic pain but
has not been investigated in the context of tumors [62]. The surgical technique generally
consists of placing a quadripolar electrode on the precentral gyrus, either perpendicular
or parallel to the central sulcus. Pre-operative and intra-operative localization are used
to verify placement over the motor cortex [62]. Due to the direct nature of this approach,
MCS represents a promising tool for ‘pre-habilitation’ in patients with low-grade gliomas.
A future surgical strategy may comprise the insertion of a stimulating electrode at the
functional boundary of tumor resection in order to allow post-operative induction of
plasticity. It is important to note that in these studies, stimulation methods were coupled
with intensive motor or language rehabilitation as relevant to the tumor pathology, and this
rehabilitation will likely be central to the success of these approaches. As such, stimulation
in isolation may not be sufficient to consolidate plastic changes of motor tracts in the
absence of the continued selective pressure imposed by volitional rehabilitation.

5.3. Metaplasticiy as a Marker of Plastic Potential

The next step along the evolutionary progression of integrating connectomics into
the neurosurgical pipeline may involve the application of connectomics to metaplasticity,
or the plasticity of plasticity, to compute an index of plastic potential at the individual
level [41,44]. This index would comprise the potential of cerebral remapping and the sub-
cortical constraints limiting this potential. Due to the inherent inter-individual variability
in responsiveness to neuromodulation, such as with TMS, biomarkers of neuroplasticity
would be particularly helpful when planning post-operative recovery strategies [63]. A
better understanding of this concept has the potential to reshape our understanding of ‘elo-
quence’, whereby the eloquent brain may refer to neuroanatomical regions that represent
important network hubs and have a low capacity for plasticity [41].

6. Limitations to Implementation

Collectively, the observations and points discussed herein demonstrate an existing
basis for neurosurgeons to advance their knowledge of cortical networks to improve
surgical strategies for glioma patients [16]. However, while connectome analysis is a
feasible and novel approach to brain mapping in individual patients with brain tumors, it
is not without its limits. Firstly, the approach of intricate pre-operative mapping can be time
consuming and can stress some patients both pre-operatively and post-operatively. Careful
selection of patients who may benefit from this strategy is essential and must consider
patient illness severity, urgency of surgical intervention, as well as willingness and ability
to participate. A patient-tailored approach is needed as the balance between functional
and oncologic goals of surgery are individualized. For example, for symptomatic patients
presenting with radiographic features suggesting high-grade glioma, time constraints or
patient status may preclude the application of such sophisticated pre-operative studies. As
such, this approach may lend itself most beneficially to patients with presumed low-grade
gliomas as the relative immediacy of surgical intervention may not be present. This does not
preclude the application of functional pre-surgical assessment, planning and application
of connectomic concepts in malignant brain tumour surgery. Finally, the integration of
connectomics into neurosurgical planning will undoubtedly be associated with greater
healthcare costs for each patient, which may represent a challenge to its implementation in
resource-limited settings. Cost-effectiveness assessment will be needed to determine how
such an approach can be streamlined in an efficient and economical manner.

7. Future Directions

The intersection of functional neurosurgery and neuro-oncologic surgery represents
an exciting frontier in the neurosciences. Integration of lessons learned from the disciplines
of functional neurosurgery, epilepsy surgery, and neuro-oncology, along with advances
in neuroimaging, neuropsychology paradigms, and technologies that allow us to mod-
ulate brain function non-invasively will revolutionize the surgical approach to intrinsic
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brain tumors such as high- and low-grade glioma. The traditional localizationist view
of correlating brain function with specified cortical regions is not only outdated but also
highly unreliable. Marked interindividual variability in anatomico-functional correlations
exists and this variability occurs to an even higher degree in patients due to neuroplastic
changes induced by tumors [64]. A network-based understanding can also inform epileptic
outcomes in patients with gliomas. Identification of seizure onset zone using stereotactic
EEG or MEG leading to analyses of neural eloquence, extent of resection, and disconnection
necessary to achieve seizure freedom are indispensable tools in the armamentarium of a
functional epilepsy neurosurgeon.

At present, a gold-standard approach for connectivity mapping does not exist, and
the optimal mode remains to be determined [42]. There is limited evidence supporting the
improved extent of resection or morbidity using pre-operative DTI, structural MRI, and
fMRI. The goal of maximal safe resection based on these investigations alone is therefore
inadequate in the complex surgical management of patients with glioma [13,65]. However,
it should be noted that there may be challenges in ascertaining the accuracy of tractography
in the setting of tumors where peri-tumoral edema or destruction of existing tracts may
impact the data. Similarly, while intra-operative direct cortical stimulation has immense
utility, it is usually constrained in identifying a focus of maximal activation for a given
neurologic function [20]. Challenges in implementing connectivity-based surgical pipelines
should not be underestimated, and ongoing coordinated research is needed to better resolve
and define new ways to advance this field [42].

8. Conclusions

As has been demonstrated through the expanding applications within functional
neurosurgery, personalized network-based approaches are anticipated to improve our
overall understanding of brain function, as well as surgical, oncological, and functional
outcomes for glioma patients. Moreover, there is a burgeoning field of peri-operative neu-
romodulation that can draw upon connectivity principles to rationalize target pathways to
promote neuroplasticity and neurorehabilitation. The principles discussed herein may also
be applied to other forms of non-invasive neuromodulation such as transcranial magnetic
stimulation and MRI-guided focused ultrasound in the future. It remains to be deter-
mined how neuromodulation techniques can be incorporated within chemo–radiotherapy
protocols, particularly for patients with high-grade glioma. Potentially, use of functional
approaches for post-operative neurorehabilitation can be timed with oncological therapy.
Coordinated research efforts are needed to aid in refining connectivity analyses derived
through various methods and in designing and implementing trials to evaluate the promise
that this emerging era of neuro-oncologic surgery holds.
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