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Simple Summary: Prostate cancer (PCa) is one of the most frequent malignancies diagnosed in
men and its prognosis depends on the stage at diagnosis. Molecular imaging, namely PET/CT
or PET/MRI using prostate-specific radiotracers, has gained increasing application in accurately
evaluating PCa at staging, especially in cases of high-risk disease, and it is now also recommended by
international guidelines. Radiomic analysis is an emerging research field with a high potential to offer
non-invasive and longitudinal biomarkers for personalized medicine, and several applications have
been described in oncology patients. In this review, we discuss the available evidence on the role
of radiomic analysis in PCa imaging at staging, exploring two different hybrid imaging modalities,
such as PET/CT and PET/MRI, and the whole spectrum of radiotracers involved.

Abstract: We performed a systematic review of the literature to provide an overview of the application
of PET radiomics for the prediction of the initial staging of prostate cancer (PCa), and to discuss
the additional value of radiomic features over clinical data. The most relevant databases and web
sources were interrogated by using the query “prostate AND radiomic* AND PET”. English-language
original articles published before July 2021 were considered. A total of 28 studies were screened
for eligibility and 6 of them met the inclusion criteria and were, therefore, included for further
analysis. All studies were based on human patients. The average number of patients included in the
studies was 72 (range 52–101), and the average number of high-order features calculated per study
was 167 (range 50–480). The radiotracers used were [68Ga]Ga-PSMA-11 (in four out of six studies),
[18F]DCFPyL (one out of six studies), and [11C]Choline (one out of six studies). Considering the
imaging modality, three out of six studies used a PET/CT scanner and the other half a PET/MRI
tomograph. Heterogeneous results were reported regarding radiomic methods (e.g., segmentation
modality) and considered features. The studies reported several predictive markers including first-,
second-, and high-order features, such as “kurtosis”, “grey-level uniformity”, and “HLL wavelet
mean”, respectively, as well as PET-based metabolic parameters. The strengths and weaknesses
of PET radiomics in this setting of disease will be largely discussed and a critical analysis of the
available data will be reported. In our review, radiomic analysis proved to add useful information
for lesion detection and the prediction of tumor grading of prostatic lesions, even when they were
missed at visual qualitative assessment due to their small size; furthermore, PET radiomics could
play a synergistic role with the mpMRI radiomic features in lesion evaluation. The most common
limitations of the studies were the small sample size, retrospective design, lack of validation on
external datasets, and unavailability of univocal cut-off values for the selected radiomic features.

Cancers 2021, 13, 6026. https://doi.org/10.3390/cancers13236026 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-9150-4367
https://orcid.org/0000-0002-5430-1234
https://orcid.org/0000-0002-5955-9488
https://doi.org/10.3390/cancers13236026
https://doi.org/10.3390/cancers13236026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13236026
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13236026?type=check_update&version=1


Cancers 2021, 13, 6026 2 of 12

Keywords: prostate cancer; PET; radiomics; staging

1. Introduction

Prostate cancer (PCa) is the most frequently diagnosed malignancy in men and the
fifth leading cause of death worldwide [1,2]. In primary PCa, risk stratification at staging
is crucial to determine prognosis and treatment strategies. The 5-year risk stratification in
patients with primary PCa is mainly based on clinical stage, prostate-specific antigen (PSA),
and Gleason Score (GS), derived from invasive biopsy samples [3]. Nevertheless, biopsy
sampling cannot help in assessing the entire prostate gland and often it might incorrectly
grade PCa, especially because of tumor downstaging. Moreover, prostate biopsies are prone
to having a false negative rate from 10% up to 30% [4], and transrectal biopsy sampling
can be associated with side-effects, such as hematospermia or hematuria [5].

Positron emission tomography (PET) combined with computed tomography (CT) or
magnetic resonance imaging (MRI) can help to localize suspicious lesions in the prostate
gland by using several prostate-specific radiotracers (i.e., Choline—labelled with either 18F
and 11C, 18F-Fluciclovine, and prostate specific membrane antigen-PSMA ligands labelled
with 68Ga or 18F), thus providing a valuable tool for the detection of cancer, and for the
initial staging of disease [6,7].

Artificial intelligence (AI) is a growing field of computer science that is emerging as
a promising adjunct to support physicians in the detection and management of patients
with cancer by performing tasks typically requiring human intelligence [8]. In this context,
radiomics is a new high-throughput approach to image analysis that aims to quantitatively
describe the tumor phenotype through morphological, statistical, and textural characteris-
tics. When applied to medical imaging, such as CT, MRI, or PET scans, radiomics is able
to extract quantitative features that might be missed by an expert eye, thereby providing
additional and potentially relevant diagnostic information for clinical decision-making in
a non-invasive manner [9,10]. The information provided by radiomics might be useful
to develop models predictive of cancer diagnosis or prognosis and for risk classification,
therefore radiomics is receiving great attention from different medical fields. For instance,
in oncology, AI-based models fed with radiomic features, with or without the inclusion of
other clinical or histopathological parameters, are built to predict clinical outcomes, such
as overall survival, recurrence, risk factors, and others.

In PCa patients, the potentiality of radiomics has been investigated for the initial
staging classification, recurrence detection, and the prediction of metastatic disease using
mainly MRI, while data on the utility of PET radiomics are still limited [11]. However,
PET radiomics has potential utility in the assessment of tumor heterogeneity [12], al-
though several authors have raised concerns over the robustness and reproducibility of the
results [13].

The aim of our paper is to perform a systematic review of the literature to provide an
overview on the potential application, in terms of the additional value over clinical data, of
PET radiomics for the classification of the initial staging of PCa.

2. Materials and Methods

A systematic review was conducted in accordance with the preferred reporting items
for systematic reviews guidelines (PRISMA), by P.G., F.M., A.B., and L.E. The authors ran
queries to retrieve prospective or retrospective studies on the use of radiomic analysis of
PET images at PCa staging in the most relevant databases and web sources (i.e., PubMed,
Web of Science, and Scopus). The search query was “prostate AND radiomic* AND PET”.
English-language original articles published before July 2021 were considered. After
excluding duplicates, papers out of topic, and review articles, the titles and abstracts of
the retrieved records were carefully examined. Full texts of the selected articles were
obtained, and those written in the English language were analyzed. The references in the
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articles selected were also screened for additional studies. The following criteria were
used to select the studies of interest: (a) PET data were used for radiomic analysis; (b) the
PET examination was performed for staging purposes. The flowchart depicting the study
selection process is presented in Figure 1 (PRISMA flow-chart). A total of 28 studies were
available to be reviewed against the inclusion criteria. Twenty-two studies were excluded
based on a review of the title and abstract. Finally, six studies met the inclusion criteria.
For each study, the radiomic analysis was assessed based on the radiomic quality score
(RQS), a metric that was introduced by Lambin and colleagues in 2017 to specifically
evaluate the quality of reporting in the radiomic context [14]. The RQS is in the range of
(0–36) (0–100%) and evaluates sixteen different aspects that can be grouped into six main
domains: (1) Protocol quality and stability in image and segmentation, (2) feature selection
and validation, (3) biologic/clinical validation and utility, (4) model performance index,
(5) high level of evidence, and (6) open science and data. For a robust calculation, RQS
was blindly computed by two of the authors and discrepancies were discussed to reach
a consensus.
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Figure 1. PRISMA statement.

3. Results

A total of 28 studies were screened for eligibility, of which 6 met the inclusion criteria
and were, therefore, selected for further analysis (Figure 1). All studies were based on
human patients. The average number of patients included in the studies was 72 (range
52–101). For each study, the list of clinical characteristics is reported in Table 1.
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Table 1. Clinical characteristics of the selected studies.

Authors, Ref. Country n of pts Median (Range)
or Mean (±SD)

Type of RP
and Scanner Risk Category Results

Zamboglou
et al. [14] Germany 20

(40) NA 68Ga-PSMA-11
PET/CT

Intermediate
and high

QSZHGE can discriminate
between high and low GS and

pN0 vs. pN1

Zamboglou
et al. [15] Germany 20

(52) NA 68Ga-PSMA-11
PET/CT

Intermediate
and high

Radiomics can detect the presence
of multifocal lesions in prostate

gland, otherwise missed by visual
analysis at PSMA-PET

Papp et al. [16] Austria 52 64 (59–70) 68Ga-PSMA-11
PET/MR All ML and radiomics can predict low

vs. high risk, BCR and OS

Solari et al. [17] Germany 101 68 (63–73) 68Ga-PSMA-11
PET/MR All

The combination of PET and ADC
radiomics is the best performing

for GS prediction

Tu et al. [18] Taiwan 74 69 (52–85) 11C-Choline
PET/MR All

Different radiomic zones in the
whole prostate gland have diverse
predicting strengths in classifying

risk groups

Cysouw
et al. [19] Netherlands 76 66 ± 6 18F-DCFPyL

PET/CT
Intermediate

and high

Radiomics can predict lymph
node involvement and high-risk

pathological tumor features

SD = standard deviation, RP = radiopharmaceutical agent, NA = not available; in the brackets are reported the number of patients involved
in the validation cohort.

The radiotracers used were [68Ga]Ga-PSMA-11 (in four out of six studies), [18F]DCFPyL
(one out of six studies), and [11C]Choline (one out of six studies). Considering the
imaging modality, three out of six studies used a PET/CT scanner and the other half a
PET/MRI tomograph.

Zamboglou et al. [15,20] analyzed the role of radiomic features from PSMA PET in a
prospective cohort of 20 patients (pts) with intermediate- and high-risk prostate cancer who
were selected for a surgical approach. The first study, published in 2019, found that some
radiomic features, mainly the “quantized short zones high gray-level emphasis—QSZHGE”
(or in IBSI notation “small zones high gray-level emphasis” of the gray level size zone
matrix, GLSZM, family, obtained after the application of a quantization algorithm), was
able to discriminate low GSs from high ones (i.e., GS < 8 vs. GS >= 8) both considering the
GTV derived from histology and the manually segmented one. Moreover, the same variable
was also able to discriminate between patients with pathological lymph nodes from those
without (i.e., pN1 vs. pN0). The results were internally validated on a retrospective cohort
of 40 patients. In the second paper, published in 2021, Zamboglou et al. found that radiomic
analysis of PSMA PET data was able to identify missing malignant lesions in the prostate
gland, both at the entire and half prostate level. This is important, if we consider that PCa is
often multifocal (78% of cases) [16], influencing the correct therapeutic approach, especially
in the case of focal treatments. Two PSMA-PET-derived radiomic features, i.e., “[GLSZM]
normalized size-zone non-uniformity” and “[GLSZM] small zone emphasis”, derived on
PET images after the application of the local binary pattern (LBP), were found to perform
excellently in visually unknown PCa detection. The results were validated on an external
retrospective cohort of 52 patients.

Papp et al. [17] evaluated 52 patients with primary PCa who underwent PSMA-
PET/MR before any type of therapy. The authors combined radiomic analysis with machine
learning to assess the ability of the models to discriminate between low- and high-risk
prostate cancer and to predict the biochemical recurrence (BCR) of the disease or the overall
patient risk (OPR). They found that a sophisticated machine learning-based model was
able to predict the risk with a higher performance than conventional PET metrics (e.g.,
SUVmax, SUVmean).

The application of radiomic analysis to the hybrid modality PSMA-PET/MR was
also investigated by Solari and colleagues [18], specifically for the prediction of the post-
surgical GS in primary PCa considering the whole-prostate segmentation performed both
on PSMA PET and multiparametric MRI (mpMRI), including T1W, T2W, and ADC map
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imaging. The 101 pts recruited were grouped according to their GS: Inferior to 8 (60 pts),
equal to 8 (23 pts), and superior to 8 (18 pts). Separate models were trained using either
radiomic features (107 in total) from a single image type only or features extracted from the
combination of a PET image and each MR sequence. The predictions of the best-performing
model were compared against biopsy GS (bGS). All radiomic models outperformed two
baseline models: One built with patient clinical information and one trained with the
volume and maximum-intensity features only. Among single-modality models, the highest
performances were achieved by the ADC model (76 ± 6%), even though they were not
significantly better than the other models. The combination of PET + ADC radiomic was
the best-performing double-modality model (82 ± 5%), significantly better than several
other single or double modalities and outperforming bGS. This result demonstrates the
synergic role of PET/MRI-based radiomics.

In the study of Tu et al. [19] the authors went beyond the traditional tumor-centric
view of radiomic analysis; indeed, they evaluated 77 prostate tumors, but divided the
whole prostate organ in three radiomic zones: Zone-1, the metabolic tumor zone; zone-2,
the proximal peripheral tumor zone, and zone-3, the extended peripheral tumor zone
inside the imaging boundaries of the organ. The radiomic analysis of the three zones was
used for risk classification prediction, including the prediction of GS, PSA, TNM, and PFS,
and the authors found that these zones have different predicting strengths in classifying
risk groups. Zone-1 was superior to the others for PSA-based risk classification prediction,
zone-2 and -3 outperformed zone-1 for TNM-based risk, whereas zone-3 was superior to
zones 1 and 2 for PFS-based clinical outcome prediction.

In the prospective study by Cysouw and colleagues [21], the data of 76 patients who
underwent [18F] DCFPyL PET/CT before radical prostatectomy with extended pelvic
lymph node dissection (ePLND) were used to assess if the radiomic-based model applied
to primary tumors could predict lymph node involvement (LNI), the presence of any
metastases, GS ≥ 8, and the presence of extracapsular extension (ECE). All these high-
risk pathological tumor features were predicted by machine-learning-based analysis with
significance (p < 0.01), thus suggesting that PSMA expression is linked to primary cancer
histopathology and metastatic tendency and that radiomic analysis could be integrated
into clinical practice to select low-risk patients for whom ePLND would be unnecessary.

To assess the overall quality of the considered radiomic studies, we adopted the
radiomic quality score (RQS) metric. All the considered studies had an RQS lower than 18
(50%) resulting in being non-compliant with the best-practice procedures. In particular,
the RQSs ranged from a minimum of 8 (22.22%) for Tu et al. [19] to a maximum of 14
(38.89%) for Zamboglou et al. [15]. The study of Zamboglou et al. [20] received an RQS of
13 (36.11%), followed by Papp et al. [17] and Cysouw et al. [21] with 11 (30.56%) and Solari
et al. [18] that scored 10 (27.78%). For all studies, the completion rate of the RQS items is
shown in Figure 2.
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protocol quality, feature selection and validation, clinical validation and utility, model performance, study level of evidence,
and open science.

Another important aspect to consider in the analysis of these studies is the repro-
ducibility of the results, which requires the possibility of replicating the extraction of
radiomic features in detail. The guidelines for radiomic study reporting, which outlines,
inter alia, how to report extraction parameters, were published by the Image Biomarker
Standardization Initiative (IBSI) [22], an international collaboration formed to standardize
the calculation of radiomic features among studies and software. The use of standardized
software is of paramount importance to ensure reproducibility. The software that has been
used in these studies has different levels of compliance with IBSI in terms of the number of
features implemented. For the extraction of radiomic features, four out of six studies used
open-source software (i.e., Pyradiomics [23], RaCaT [24], or LIFEx [25]), while two out of
six studies used in-house software. All these tools were declared to be IBSI-compliant or
participated in the most recent IBSI study.

On average, 227 features (a range of 50–480) were investigated, including first-, second-,
and high-order features, with and without the inclusion of PET-based metabolic parameters
such as SUVmax, SUVpeak, SUVmean, and those similar (for five out of six studies).

As far as the methodology is concerned, heterogeneous techniques were adopted.
In terms of image processing, two studies employed filtering techniques on the image
prior to feature calculation, i.e., wavelet band-pass and the equal-probability histogram
quantization algorithm [15] and the local binary pattern [20]. Parameter settings for
radiomic feature extraction were rather heterogeneous among studies: Three out of six
used isotropic images (two studies resampled the original images to isotropic voxels of
2 × 2 × 2 mm, while in one case, resampling was unnecessary since voxels were already
isotropic), five out of six applied intensity discretization with the fixed bin width (FBW)
approach (e.g., widths of 0.05 or 0.25 for PET SUV and 5 for ADC) or the fixed bin number
(FBN) approach (for MRI data), and five out of six used a 3D feature aggregation method
to calculate texture parameters. The study of Tu et al. [19] instead did not report details on
feature extraction parameters.
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Regarding tumor delineation, radiomic and clinical features were extracted from the
whole prostate in four studies, but other approaches were also proposed. Zamboglou
et al. [15] considered manual GTV delineation and the GTVs resulting both from histology
and a 40% threshold on SUVmax; Tu et al. [19] defined two more zones based on SUV
thresholds (i.e., SUV > 40%, 30% < SUV < 40%), while Cysouw et al. [21] delineated primary
tumors using 50–70% background-adapted peak thresholds on images with and without
partial-volume correction in order to assess model stability with a threshold.

Concerning modeling and validation techniques, five studies employed machine-
learning methods (e.g., random forest, AdaBoost, logistic regression, or support vector
machine models) for the classification of GS (n = 4 papers), LNI (n = 2 papers), low-vs.-
high lesion risk (n = 1 paper), biochemical recurrence (n = 1 paper), overall patient risk
(n = 1 paper), PSA level (n = 1 paper), clinical TNM staging (n = 1 paper), progression-free
survival (n = 1 paper), the presence of ECE (n = 1 paper), and metastases (n = 1 paper). The
study of Zamboglou et al. [20] instead investigated the statistical power of PET-derived
radiomic features to discriminate visually undetectable lesions by using the two-tailed
Mann–Whitney U test (for non-pairwise testing) or Fisher’s exact test (for the comparison
of categorical variables). All works performed feature reduction—to eliminate redun-
dancy among variables—and/or feature selection—to search the optimal feature set and
improve classification accuracy. Among the techniques employed, there were analysis of
feature correlation, the elimination of features highly correlated with the volume, principal
component analysis (PCA), analysis of variance (ANOVA), R-squared feature ranking,
wrapper feature selection, or a recursive feature elimination (RFE) algorithm. Two works
also analyzed feature robustness to different systems in a separate phantom study prior to
including them within the models [15,20].

In four studies, models were evaluated in a k-fold cross-validation scheme that di-
vided patients from the same dataset into training and validation cohorts. On the contrary,
Zamboglou et al. [15,20] performed a more robust model validation by using two separate
cohorts for model development and testing, i.e., they built the model on a prospective
cohort of patients and validated the results in a retrospective internal and external cohort, re-
spectively. The most common performance metrics were the area under receiver-operating
characteristics curve (AUC) and model accuracy, but the false positive rate, odds-ratio, con-
fidence interval, and other metrics were also adopted. To handle the strong class imbalance,
three works resorted the synthetic minority oversampling technique, SMOTE, to generate
synthetic samples with interpolated feature values for the less prevalent class [26].

To benchmark the predictive value of PET radiomics against that of basic PET and
volume parameters, all studies, except Tu et al. [19], either investigated whether model
performance improved with the inclusion of SUV-related features and other clinical param-
eters among the radiomic features or compared the developed radiomic model against a
baseline model trained with clinical parameters only [18,21].

A detailed summary of the radiomic analyses implemented within the selected papers
is reported in Table 2.



Cancers 2021, 13, 6026 8 of 12

Table 2. Radiomic analysis of the selected papers.

Authors,
Ref RQS Software N of fts Params Delineation Method

Zamboglou
et al. [14] 14 (38.89%)

In-house
MATLAB
software

133 + 4
SUV-related

features

• Resampling: None
(already isotropic
images with
2 × 2 × 2 mm)

• FBS discretization:
0.05 SUV

• Aggregation: 3D
approach

• Manual delineation
of GTV from PSMA
PET images

• GTV-Histo resulted
from coregistration
of histopathology
and PET images

• GTV-40% created as
40% of SUVmax

• P cohort:
Intraindividual
correlations of RFs
from different GTVs +
feature correlation
with GS

• P&RV cohorts: Uni-
and multivariate
logistic regression to
predict GS and LNI
with
selected parameters

Zamboglou
et al. [15] 13 (36.11%) PyRadiomics

(vers. 2.02)
154 + clinical
parameters

• Resampling: With
and without nearest-
neighborhood
interpolation to
2 × 2 × 2 mm

• FBS discretization:
0.05 SUV

• Aggregation:
3D approach

Manual segmentation of
prostate and GTV, based
on histology slices
coregistered to CT images

Two-tailed Mann–Whitney U
test or Fisher’s exact test to
evaluate RFs statistical
difference between
non-PCa-PET areas with or
without lesions

Papp
et al. [16] 11 (30.56%)

MUW
Radiomics

Engine
(vers. 2.0)

442 + 4
SUV-related

features

• Resampling:
Ordinary Kriging
interpolation to
2 × 2 × 2 mm

• FBS discretization:

- PET: 0.05
- T2w: 0.05
- ADC: 5

• Aggregation:
3D approach

Use of Hybrid 3D software
ver. 4.0.0. and manual
correction of
segmentations by PET and
MRI specialists

• Feature reduction with
Pearson’s correlation

• Random forest
classifier trained in a
1000-fold Monte Carlo
CV scheme

• R-squared
feature ranking

Solari
et al. [17] 10 (27.78%) PyRadiomics

107 + 6
SUV-related

features

• Resampling: None
• FBS discretization:

- PET: 0.03–1
- ADC: 10–400

• FBN discretization:

- T1w: 8–256
- T2w: 8–256

• Aggregation:
3D approach

Fuzzy-logically adaptive
Bayesian (FLAB)
segmentation
tool of the whole prostate
with manual correction

• 9 SVMs with radial
basis function kernel: 4
for single-modality
radiomic models, 3 for
PET/MRI
double-modality, and 2
baseline models
needed for comparison

• RFE method and 6-fold
CV scheme

Tu et al.
[18]

8
(22.22%) LIFEx 50

• Resampling: NA
• Discretization: NA
• Aggregation: NA

• Metabolic tumor
zone (SUV > 40%)

• Proximal peripheral
tumor zone
(30% < SUV < 40%)

• Whole prostate

• Random forest vs.
AdaBoost algorithms
with 5-fold CV to
predict risk
classification and
clinical outcomes

• Wrapper feature
selection method

Cysouw
et al. [19] 11 (30.56%) RaCaT

480 + 5 clinical
parameters tested

independently
from RFs

• Resampling:
Trilinear
interpolation to
2 × 2 × 2 mm

• FBS discretization:
0.25 SUV

• Aggregation: both
2D—3D approaches

Region growing algorithm
with background adapted
peak threshold varied from
50% to 70% on images with
and without PVC

• Random forest
classifier

• 3 feature reduction
methods (PCA, RFE,
ANOVA) to predict
LNI and high-risk
pathological
tumor features

GTV = Gross tumor volume, RFs = radiomic features, FBW = Fixed bin width, FBW = Fixed bin number, PCA = Principal component
analysis, RFE = Recursive feature elimination, SVM = Support vector machine, LNI = Lymph node involvement, NA = Not available,
P = Prospective cohort, RV = Retrospective validation cohort, PVC = Partial volume correction, CV = Cross validation.
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4. Discussion

PCa radiomic analysis is an emerging research field with a high potential to offer
non-invasive and longitudinal biomarkers for personalized medicine [27]. Our review is
based on a qualitative synthesis of six studies focused on the application of radiomics and
AI to PCa staging. Three out of six papers address PET/MRI imaging, a recently introduced
modality that has been demonstrated to be superior to PET/CT both in detecting primary
PCa lesions and in the assessment of LNI [7]. Interestingly, five out of six articles concerned
PSMA-based tracers, probably due to the increased usage of PSMA PET for the staging
of primary tumors, which will be further expanded after the recent FDA approval of this
imaging modality in some U.S. countries [28].

Measuring intratumoral heterogeneity via images is one of the main targets of ra-
diomic research, which aims to build image-based models for better patient management.
The workflow of radiomics follows these steps: (1) Imaging (image acquisition and recon-
struction); (2) pre-processing (segmentation and discretization); (3) quantification (feature
extraction); and (4) analysis (statistics and/or machine learning methods). The parameters
or conditions at each of these steps affect the results [9].

Based on the available data, we can outline some comments. Risk stratification, in
terms of GS, can be better determined by the combination of radiomics with PET and MRI
data, as clearly reported by Zamboglou [15], Solari [18], and Tu [19].

For some years now, mpMRI has been considered an important diagnostic tool for the
detection of PCa and it is recommended by the American College of Radiology and Euro-
pean Society of Urogenital Radiology (ESUR) [29,30]. Furthermore, the use of computer-
aided diagnosis tools to complement radiologists’ assessments increases sensitivity and
specificity in detecting PCa [31]. Combining information from mpMRI and the prostate-
specific membrane antigen (PSMA) or 18F- or 11C-Choline PET might offer complementary
information in PCa detection, overcoming the limitation of each single technique to identify
the entire intraprostatic tumor amount. Nevertheless, even though several papers have
already been published on MRI and radiomics in PCa [32], the literature is still scarce
regarding radiomics applied to PET examination, thus making it a field that deserves to be
further explored.

The opportunity to correctly identify GS can influence therapy, in terms of the du-
ration of androgen deprivation therapy during radiotherapy [5]. Moreover, Zambogou
et al. [20] found that machine learning can help in the identification of prostatic lesions
otherwise missed by PET with PSMA. From a clinical point of view, we could use these
parameters for guiding appropriate focal treatments, thus avoiding under-treatment in
patients with multifocal prostate cancer. Zamboglou et al. [15] and Cysouw et al. [21]
found that radiomics can also predict the presence of lymph node involvement, therefore
guiding tailored treatments. These results can be useful in clinical practice for two main
reasons: (1) The identification of the correct GS can be misleading in 20–60% of biopsy
specimens, thus affecting the correct management of patients with low/high risk PCa; (2)
careful definition of potential lymph node involvement would influence the duration of
androgen deprivation therapy during radiotherapy. Currently, nomograms are still used
for the definition of the lymphadenectomy extension, but their combination with molecular
imaging would be essential in this setting. Prospective trials are mandatory to provide
definitive information.

In recent years, many studies have been focused on the role of the tumor microen-
vironment (TME), which consists of tumor cells, tumor stromal cells, and immune cells,
as well as the non-cellular components of the extracellular matrix such as collagen [33].
Understanding the interaction between cancer cells can be used to develop therapeutic
strategies to predict and neutralize tactics deployed by cancer cells to survive and resist
anti-cancer modalities [34]; in this scenario, the application of radiomic analysis to the
tissue surrounding a tumor might provide further insight into the outcome prediction, as
demonstrated by Tu [19] in PCa patients, or the response to treatment, as proved in other
type of cancers [35,36].
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Finally, Papp and Zamboglou [17,20] showed that, in the initial staging of disease,
radiomics can predict clinical outcomes such as BCR and OPR. Therefore, the ability
of imaging to correctly identify the risk category of each patient has an impact on the
long-term outcome.

Despite the promising results of the combination of radiomic and PET data to classify
PCa patients at staging, a few comments should be directed to the reproducibility of the
methodologies implemented in all studies. Overall, the selected works exhibit limited
reproducibility in terms of radiomic feature extraction and only five studies reported details
about parameter settings for feature extraction, with an arbitrary level of precision. For
example, most of the studies specified the intensity discretization method, but some of
them are not clear about the aggregation approach used for textural features (e.g., whether
2D/3D averaged/merged). The results may be dependent on these aspects.

The choice of radiomic software also deserves proper discussion. This aspect is not
trivial nor new to the radiomic community, and it is the object of an ongoing international
standardization initiative, which was formed to standardize feature formulation across
software and studies. We found that two of the studies used private and/or in-house soft-
ware to calculate IBSI-compliant radiomic features. However, the choice of “available upon
request” software further limits the reproducibility of results and is not recommendable.

5. Conclusions

Despite the few papers published in the literature so far, preliminary data on the
application of radiomic analysis in PCa patients at staging suggest a possible role in pre-
operative risk-stratification and the prediction of outcomes together with clinical and
histological data.

Furthermore, the combination of PET and MRI imaging could provide strong support
to the hypothesis that radiomics and histology can be linked, and not only in the analysis
of the tumor itself, but also that of the tumor microenvironment or even the whole prostate
gland, to add useful information in the stratification of patients.

Nevertheless, to confirm the added value of PET radiomics for the initial PCa staging
and to accelerate its translation into clinical practice, future works should employ highly
standardized software and clearly report detailed indications and comments about their
settings, both in terms of feature calculation and image processing, hence making results
reproducible. In addition, prospective studies and external validation cohorts would be
recommendable to ensure the robustness of the results.
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version of the manuscript.
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