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Simple Summary: Tumor angiogenesis and heterogeneity are associated with poor prognosis for
breast cancer. Advances in computer technology have made it possible to noninvasively quantify
tumor angiogenesis and heterogeneity appearing in imaging data. We investigated whether low-dose
CT could be used as a method for functional oncology imaging to assess tumor heterogeneity and
angiogenesis in breast cancer and to predict noninvasively histological biomarkers and molecular
subtypes of breast cancer. Low-dose breast CT has advantages in terms of radiation safety and
patient convenience. Our study produced promising results for the use of machine learning with
low-dose breast CT to identify histological prognostic factors including hormone receptor and human
epidermal growth factor receptor 2 status, grade, and molecular subtype in patients with invasive
breast cancer. Machine learning that integrates texture and perfusion features of breast cancer with
low-dose CT can provide valuable information for the realization of precision medicine.

Abstract: This prospective study enrolled 147 women with invasive breast cancer who underwent
low-dose breast CT (80 kVp, 25 mAs, 1.01–1.38 mSv) before treatment. From each tumor, we extracted
eight perfusion parameters using the maximum slope algorithm and 36 texture parameters using the
filtered histogram technique. Relationships between CT parameters and histological factors were
analyzed using five machine learning algorithms. Performance was compared using the area under
the receiver-operating characteristic curve (AUC) with the DeLong test. The AUCs of the machine
learning models increased when using both features instead of the perfusion or texture features
alone. The random forest model that integrated texture and perfusion features was the best model
for prediction (AUC = 0.76). In the integrated random forest model, the AUCs for predicting human
epidermal growth factor receptor 2 positivity, estrogen receptor positivity, progesterone receptor
positivity, ki67 positivity, high tumor grade, and molecular subtype were 0.86, 0.76, 0.69, 0.65, 0.75,
and 0.79, respectively. Entropy of pre- and postcontrast images and perfusion, time to peak, and
peak enhancement intensity of hot spots are the five most important CT parameters for prediction.
In conclusion, machine learning using texture and perfusion characteristics of breast cancer with
low-dose CT has potential value for predicting prognostic factors and risk stratification in breast
cancer patients.
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1. Introduction

Tumor angiogenesis and heterogeneity are associated with poor prognosis for breast
cancer. Angiogenesis involves rapid blood vessel formation and is necessary for the supply
of oxygen and nutrients for cancer growth [1]. Abnormal angiogenesis is critical for cancer
metastasis. Hematogenous metastasis occurs once the connection between the tumor and
systemic circulation is established and becomes persistent [2]. Tumor heterogeneity is the
one of the main causes of complicating treatment and can affect the choice of treatment
strategy setting and sensitivity [3,4]. Heterogeneity has been observed between patients
(intertumoral heterogeneity) and within each individual tumor (intratumoral heterogene-
ity) [3–5]. Intertumoral heterogeneity is classified according to histological biomarkers,
such as hormone receptor or human epidermal growth factor receptor 2 (HER2) status, and
is the basis for targeted therapy. Intratumoral heterogeneity reflects the diverse phenotypic
cell populations, genetic instability, and tumor microenvironment. Therefore, assessment of
tumor angiogenesis and heterogeneity in breast cancer is important for patient stratification
for treatment and improving patient outcomes.

Advances in computer technology have made it possible to quantify tumor angiogen-
esis and heterogeneity appearing in imaging data. In breast magnetic resonance imaging
(MRI), quantification of tumor angiogenesis and heterogeneity using perfusion analysis
and texture analysis is effective in predicting the response to neoadjuvant chemotherapy,
histological biomarkers, and molecular subtypes of breast cancer [6–10]. However, most
MRI protocols performed before breast cancer treatment are multiparametric for the pur-
pose of tumor characterization; these protocols include T1-weighted contrast-enhanced
imaging, T2-weighted imaging, and diffusion-weighted imaging. A breast MRI scan takes
20–30 min and is complex to read because it produces more than 2500 images [11,12]. Rapid
breast MRI protocols, such as ultrafast or abbreviated MRI, can shorten the scan time, but
are difficult to use for assessing tumor functions and have limited use in screening high-risk
populations [11,13]. The role of ultrafast or abbreviated MRI as a stand-alone examination
is currently limited because of the low spatial resolution, but the assessment of tumor
heterogeneity or angiogenesis properties using rapid MRI protocols is also limited.

A recent study of low-dose perfusion computed tomography (CT) has shown its feasi-
bility for oncological functional imaging in terms of quantification of tumor angiogenesis
and radiation dose [14]. That study reported correlations between the quantified CT perfu-
sion parameters and prognostic biomarkers of breast cancer and between CT perfusion
parameters and MRI enhancement characteristics [14]. Low-dose breast perfusion CT takes
just 3 min. Because the perfusion protocol using low-dose CT is safe and convenient, if it
can be shown to provide useful information for the treatment of breast cancer patients, it
may provide an alternative for patients for whom MRI examination is difficult, for example,
those who cannot undergo a long examination, have claustrophobia, or have a cardiac
pacemaker. Interestingly, a recent study by Song et al. [15] showed that chest CT-based
texture analysis can predict overall survival outcome in patients with inflammatory breast
cancer, an aggressive malignancy. CT-based texture analysis also has been shown to be as-
sociated with survival outcomes or treatment response in a variety of solid cancers [16–19].
Therefore, we hypothesized that an integrated model to evaluate tumor angiogenesis and
heterogeneity using low-dose breast CT may provide a functional tumor imaging tool for
precision medicine in patients with breast cancer.

The purpose of this study was to investigate the performance of machine learning al-
gorithms using texture and perfusion characteristics on low-dose CT to predict histological
biomarkers and molecular subtypes in consecutive breast cancer patients. Recent studies
have shown that applying machine learning algorithms to radiological data is useful for
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predicting histological factors or treatment response in breast cancer patients [6,7,20–22].
We evaluated CT-based predictions of histological factors and treatment failure using five
supervised machine learning algorithms: logistic regression, naïve Bayes, decision tree,
random forest, and artificial neural network (ANN).

2. Materials and Methods
2.1. Patients

This prospective study was approved by the Institutions Review Board of Korea
University Ansan Hospital and received written informed consent from all patients. From
May 2017 to October 2018, low-dose breast CT was performed in 159 consecutive patients
with pathologically proven invasive breast cancer before treatment. We included patients
who underwent core needle biopsy for diagnosis, had not undergone a diagnostic excision
or vacuum-assisted biopsy, had no ipsilateral breast surgery within 5 years, and had no
history of allergy to the CT contrast agent. Of the 159 patients, 12 were excluded for the
following reasons: microinvasive cancer or ductal carcinoma in situ in the final pathology
after surgery (n = 7), image quality deterioration caused by movement (n = 2), or poor
identification of cancer on the perfusion map because of its small size (n = 3). Finally,
a total of 147 patients (all women, mean age 52 years, range 25–81 years) with invasive
breast cancer were enrolled in this study. After the CT scan, 85 (58%) patients had breast-
conservation surgery, 44 (30%) patients underwent modified radical mastectomy, 11 (7%)
patients underwent surgery after neoadjuvant chemotherapy, and seven (5%) patients
received chemotherapy. A flowchart of the study population is presented in Figure 1.
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2.2. CT Acquisition and Analysis

Low-dose breast perfusion CT was conducted according to previous studies [14,20].
Before the CT scans, a radiologist (B.K.S.) with 21 years of experience in breast imaging
had reviewed previous breast images obtained using mammography, MRI, or ultrasound,
and this radiologist performed targeted ultrasound to localize the breast cancers. After the
cancer was identified by ultrasound, a dot skin marker (X-spot; Beekley Medical, Bristol,
CT) was attached to the skin at the cancer site. For patients with multiple synchronous
tumors, the largest tumor was selected. The tumor diameter on postcontrast CT ranged
from 7 mm to 109 mm (mean, 24.9 ± 15.3 mm).

We used a spectral scanner (IQon Spectral CT; Philips Health Systems, Cleveland,
OH) for the CT examination. CT was performed with the patient in the prone position,
similar to that used for breast MRI. An additional table pad with a rectangular hole for
breast placement was placed on a standard CT table for proper spread of the breast tissue
for CT scans with the patient in the prone position [14]. CT was performed at 80 kVp tube
voltage, 25 mAs or 30 mAs tube current, 64 × 0.625 mm collimation, 0.5 s rotation time,
512 × 512 matrix, and 5 mm slice thickness. The perfusion scan range was 40 mm along
the z-axis, including the skin markings of the cancer. Precontrast scans were performed to
determine the scan range. Once the extent of perfusion was determined, the skin markers
were removed, 60 mL of the contrast agent (Xenetix 350; Guerbet, Aulnay-sous-Bois, France)
was administered at 4mL/s, and 18 scans were performed at 3-s intervals and four scans at
30-s intervals. The CT dose index at 80 kVp and 25 mAs or 30 mAs using a 32 cm body
phantom was 0.7 mGy or 0.9 mGy, respectively. The CT effective dose for each patient
ranged from 1.01 to 1.38 mSv.

CT data were sent to a dedicated workstation (Extended Brilliance Workspace; Philips
Health Systems), and perfusion analysis was performed using commercial software (Func-
tional CT; Philips Health Systems). The maximum slope algorithm was used for analysis,
and time–intensity curves and perfusion color maps for the cancers were calculated auto-
matically when drawing the regions of interest (ROIs). A perfusion map of the cancer was
obtained by (a) manually selecting images between the start and end of enhancement in
the descending aorta, (b) placing an ROI on the aorta to obtain the reference arterial input
curve, and (c) placing an ROI on the tumor hot spot or entire tumor extent. The size of the
ROI for the hot spots was between 9.8 mm2 and 40.2 mm2. For each cancer, four perfusion
parameters were measured at the tumor hot spot, and four were measured over the whole
tumor. Perfusion was measured in mL/min per 100 mL, blood volume in mL/100 g, peak
enhancement intensity (PEI) in Hounsfield units (HU), and time to peak (TTP) in seconds
(Figure 2). Perfusion is a measure of tissue blood flow, and the volume of blood per unit
time represents blood flow per unit tissue mass. The blood volume represents the total
blood volume over a region during the period of the scan and is determined by the area
under the time–attenuation curve. PEI indicates the peak enhancement due to contrast
injection. TTP represents the time it takes to reach the peak enhancement. A hot spot is
the high-perfusion area on the colored perfusion map [20]. Each perfusion parameter was
measured three times, and the mean of each was used for statistical analysis.
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Figure 2. Perfusion and texture analyses on low-dose breast CT in a 47-year-old woman with invasive ductal cancer of the
left breast. (A) Axial CT image shows an irregular shaped, irregular margined, heterogeneous enhancing mass (arrows).
(B,C) Perfusion analysis was performed using the maximum slope algorithm. Regions of interest (ROIs) were drawn
manually for the entire tumor extent (B) and hot spot (C) for each cancer and four perfusion parameters were measured
at each ROI: perfusion, peak enhancement intensity (PEI), time to peak (TTP), and blood volume (BV). (D,E) Texture
analysis was performed using a filtration histogram technique. The ROI was drawn manually for the entire tumor and a CT
texture histogram was obtained (D). From the histogram, six statistical-based metrics were extracted (E). These six texture
parameters were extracted from precontrast and postcontrast CT images for special scale filters (SSFs) 0, 2, and 5: mean,
standard deviation (SD), entropy, mean of positive pixels (MPP), skewness, and kurtosis.
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Texture analysis was performed using CT perfusion images and a commercially avail-
able algorithm (TexRAD; Feedback Medical Ltd., London, UK). This software is a first-order
statistical-based texture analysis method and uses a filtration histogram technique. Various
texture analysis methods have been applied to the images, including statistical-, model-,
and transform-based methods [17]. Statistical-based methods have been most commonly
used to describe the relationship between gray-level values in the images and include
first-order, second-order, and higher-order statistics. First-order statistical-based texture
analysis evaluates the gray-level frequency distribution from the pixel intensity histogram
in a given ROI. Second-order statistics can be based on co-occurrence matrices and higher-
order statistics can be computed using neighboring grayscale difference matrices [23]. An
optional image filtration step can be performed in texture analysis and the Laplacian of
Gaussian filter is a commonly used advanced image filtering method that alters image
intensity pattern and extracts specific structures corresponding to the width of the fil-
ter [17]. A lower filter value corresponds to a fine texture feature and a higher filter value
emphasizes a coarse texture feature. TexRAD software is used for the initial filtration
step using Laplacian of Gaussian (band-pass filter similar to a non-orthogonal Wavelet),
which extracts and enhances features of different sizes and gray-level/intensity variations
corresponding to spatial scale filters (SSFs) in radius [6,15]. Each SSF represents an equal
number of millimeters of pixel scales, and our study used SSFs 0 (no filtration), 2 (2 mm,
fine texture), and 5 (5 mm, coarse texture). Output from the filtration step includes the
creation of a new derived filtered intensity texture map from the original conventional CT
image corresponding to each SSF value (fine or coarse texture map). These filtered maps
corresponding to the particular SSF value reflect enhancement (amplification) of objects
of different sizes, numbers of objects, and gray-level intensity variation in the objects
in relation to the background tissue/parenchyma. These are based on the relationship
between adjacent/neighbouring pixel intensity values. Six texture parameters were ex-
tracted from the precontrast and postcontrast CT images for SSFs 0, 2, and 5, resulting
in a total of 36 texture parameters (6 texture parameters × 3 SSFs × 2 imaging methods);
the parameters recorded include mean pixel intensity (HU), standard deviation, mean of
positive pixels (HU), entropy, kurtosis, and skewness (Figure 2). Postcontrast images were
selected when the tumor was maximally enhanced during scanning. Mean of positive
pixels represents the average attenuation value of >0 pixels, which reflects the average
brightness of the positive pixel values. Entropy is a measure of the complexity or irregu-
larity. Kurtosis refers to the sharpness or pointiness of the histogram pixel distribution.
Skewness reflects the asymmetry of the histogram.

Image segmentation and analysis were performed by two radiologists (B.K.S. and
J.Y.L., with 21 and 10 years of experience in breast imaging, respectively) who achieved
consensus. They were blind to the clinicohistological findings. For the perfusion analysis,
the ROIs were drawn manually for the entire tumor extent and hot spot for each cancer.
For the texture analysis, the ROI was drawn manually for the entire tumor.

2.3. Clinicohistological Evaluation

We reviewed the histology reports to evaluate the prognostic biomarkers and molec-
ular subtypes of breast cancer. Histology information was obtained from surgical speci-
mens obtained from patients who underwent surgery without neoadjuvant chemotherapy
(n = 129) and from biopsy specimens (n = 18). Estrogen receptor (ER), progesterone receptor
(PR), and HER2 status, Ki67 index, and tumor grade were dichotomized for statistical
analysis. Tumor grade was classified into low (grade 1 or 2) and high (grade 3) [24,25].
The Allred scoring system was used for ER and PR status, and a score > 2 was considered
positive [26]. HER2 overexpression was considered positive when the membranes were
classified as 3+ for HER2 immunohistochemical staining or 2+ for HER2 immunohisto-
chemical staining and HER2 gene amplification in silver-stained in situ hybridization [27].
The Ki67 index was considered positive when the expression was >20% [28]. Molecu-
lar subtypes of breast cancer were divided into four categories: luminal A (ER+ or PR+,
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HER2−, and Ki67−); luminal B (ER+ or PR+, HER2−, and Ki67+, or ER+ or PR+, HER2+,
and Ki67±); HER2-enriched (ER−, PR−, and HER2+); and triple-negative cancer (ER−,
PR−, and HER2−) [29]. Table 1 shows the tumor characteristics of the 147 invasive breast
cancers. The molecular subtypes were as follows: luminal A (44%, 65 of 147), luminal B
(26%, 38 of 147), HER2-enriched (12%, 18 of 147), and triple-negative (18%, 26 of 147).

Table 1. Tumor characteristics.

Characteristic Training Set
(n = 110)

Test Set
(n = 37)

Age 52.2 ± 9 years 52.5 ± 10 years
Tumor size 25.3 ± 16 mm 23.5 ± 14 mm
ER status

Negative 39 (35%) 9 (24%)
Positive 71 (65%) 28 (76%)

PR status
Negative 41 (37%) 9 (24%)
Positive 69 (63%) 28 (76%)

HER2 status
Negative 93 (85%) 30 (81%)
Positive 17 (15%) 7 (19%)

Ki67 status
Negative 50 (45%) 23 (62%)
Positive 60 (55%) 14 (38%)

Tumor grade
Low 68 (62%) 28 (76%)
High 42 (38%) 9 (24%)

Molecular subtype
Luminal 75 (68%) 28 (76%)

Non-luminal 35(32%) 9 (24%)
ER: estrogen receptor, PR: progesterone receptor, HER2: human epidermal growth factor receptor 2. Data are
numbers of cancers, with percentages in parentheses.

We reviewed the clinical data to identify treatment failure, which was defined as
locoregional recurrence, contralateral breast recurrence, or distant metastasis after treat-
ment was complete, except in patients for whom distant metastasis or contralateral breast
cancer had been recorded at the time of diagnosis [30]. Distant metastasis or contralateral
breast cancer was found in 10 patients at the time of diagnosis, and these patients were
excluded in the evaluation of treatment failure. Locoregional recurrence was defined as
ipsilateral chest wall failure or ipsilateral axillary or supra/subclavicular failure. Distant
metastasis was defined as any failure outside the ipsilateral breast and regional nodes. Lo-
coregional recurrence was confirmed histologically by tissue biopsy, and distant metastasis
was confirmed by imaging studies or histological examination of tissue samples [30,31].
The median follow-up time was 39 months (range, 10–50 months). Treatment failure
occurred in 17 patients, with locoregional recurrence (9 patients) and distant metastasis
(8 patients).

2.4. Statistical Analysis

We compared CT parameters and dichotomized histological biomarker groups using
the Mann–Whitney U test or t test. We evaluated differences in CT parameters between
the four molecular subtypes using the Kruskal–Wallis test and analysis of variance. For
data with significant differences identified in the above tests, we used post hoc analysis to
identify different subgroups.

Next, we evaluated CT-based predictions of histological biomarkers and molecular
subtypes using five supervised machine learning algorithms: logistic regression, naïve
Bayes, decision tree, random forest, and artificial neural network (ANN). Logistic regression
is a generalized linear model in which the dependent variable is categorical. In this model,
the probability of a category for the dependent variable is a linear function of independent
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variables. The naïve Bayesian classifier is a classification model based on Bayes’ theorem.
A decision tree has three components: (1) an intermediate node representing the test of
an independent variable, (2) a branch representing a result of the test, and (3) a terminal
node representing a category of the dependent variable. The quality of split of the decision
tree was measured by the Gini index. A random forest creates many training sets, trains
many decision trees, and makes predictions by majority vote (bootstrap aggregation). It
can solve both regression and classification problems with large data sets. But its learning
can be slow (depending on the parameterization) [32]. The random forest in this study
had 1000 decision trees and the quality of split in the decision tree was measured as Gini
index. The ANN is a network of neurons in several layers; in this study, the ANN had
one input layer, two intermediate layers, and one output layer. Each of the intermediate
layers has 10 neurons here. Neurons (basic units of information) in a previous layer connect
with weights (numerical values of association) in the next layer (feedforward operation).
The weights are then adjusted from the output layer (backpropagation operation). These
processes are repeated until the performance of the ANN reaches a certain level. The
number of intermediate layers can vary from one (perceptron) to 10 or even 1000 (deep
neural network). Like the random forest, it can solve both regression and classification
problems with large data sets but it can be slow in learning. Logistic regression, naïve
Bayes, decision tree, random forest, and ANN are popular supervised learning approaches.
Supervised learning models use labeled data, whereas their unsupervised counterparts use
unlabeled data to find hidden patterns behind these unlabeled data [20,33]. All 147 cancers
were divided into the training set (110 cancers, 75%) and the test set (37 cancers, 25%).

We considered six prediction tasks, corresponding to six radiological associations,
which the CT-based machine learning algorithms aimed to differentiate: (a) ER+ vs. ER−,
(b) PR+ vs. PR−, (c) HER2+ vs. HER2−, (d) Ki67+ vs. Ki67−, (e) tumor grade low (grade 1
and 2) vs. high (grade 3), and (f) luminal vs. nonluminal subtypes. Model performance
was compared using the area under the receiver-operating characteristic curve (AUC).
The random split and analysis were repeated 50 times, and their median AUC values
were calculated for each model. The AUCs of the five models were compared using the
DeLong test, and a p value < 0.05 was considered to be significant. We evaluated the
performance of each model using perfusion features only, texture features only, and the
combination of both. The importance ranking of CT parameters for prediction was derived
from the best machine learning model. We also compared model performance in predicting
histological factors and treatment failure using all CT parameters and the top five most
important parameters. Analyses were performed by two statisticians (J.C. and K.L.) using
SPSS Statistics (version 26.0, IBM Corp.) and Python 3.52 in August 2021.

3. Results
3.1. Associations between CT Parameters and Histological Biomarkers and Subtypes

Table 2 shows the associations between CT perfusion parameters and histological
biomarkers and molecular subtypes. The perfusion of hot spots and the TTP of hot spots
were significantly associated with all histological factors including ER, PR, and HER2 status,
Ki67 index, grade, and molecular subtype (p ≤ 0.04) (Figure S1). Perfusion of hot spots
differed significantly between luminal A cancers and HER2-enriched cancers and between
luminal A cancers and triple-negative cancers, and TTP of hot spots differed significantly
between luminal A cancers and HER-2 enriched cancers (p < 0.05 for all comparisons).

Table 3 shows the associations between CT texture parameters and histological factors.
Entropy on contrast-enhanced CT images was significantly associated with all histological
factors for all SSFs (p ≤ 0.02) (Figure S1). Entropy on precontrast CT images correlated
significantly with ER, PR, and molecular subtype for all SSFs (p ≤ 0.01). Entropy on
contrast-enhanced and precontrast CT images for all SSFs differed significantly between
luminal A cancers and HER2-enriched cancers, and entropy on contrast-enhanced CT
images differed between luminal A cancers and triple-negative cancers (p < 0.05 for all
comparisons) (Figure S1).



Cancers 2021, 13, 6013 9 of 19

Table 2. p values for association tests between CT perfusion parameters and histological factors in
the training set.

CT Perfusion Parameter ER PR HER2 Ki67 Grade Subtype

Hot spot
Perfusion <0.001 0.001 0.01 <0.001 <0.001 <0.001

PEI 0.001 0.06 0.01 <0.001 0.001 0.001
TTP 0.001 0.02 0.04 0.02 0.01 <0.001

Blood volume 0.06 0.23 0.09 0.001 0.004 0.001
Whole tumor

Perfusion 0.001 0.10 0.11 0.01 0.001 0.01
PEI 0.01 0.17 0.08 0.01 0.04 0.01
TTP 0.02 0.28 0.43 0.37 0.01 0.23

Blood volume 0.04 0.14 0.35 0.001 0.01 0.001
ER: estrogen receptor, PR: progesterone receptor, HER2: human epidermal growth factor receptor 2, PEI: peak
enhancement intensity, TTP: time-to-peak enhancement. A p value < 0.05 for perfusion features was consid-
ered significant.

Table 3. p values for association between CT texture parameters and histological factors in the
training set.

CT Texture Parameter ER PR HER2 Ki67 Grade Subtype

SSF 0
Mean_precontrast 0.11 0.41 0.003 0.02 <0.001 0.01

Standard deviation_precontrast 0.55 0.18 0.15 0.07 0.30 0.01
Entropy_precontrast 0.002 <0.001 0.09 0.33 0.07 0.01

Mean of positive
pixels_precontrast 0.05 0.26 0.01 0.18 <0.001 0.09

Skewness_precontrast 0.048 0.14 0.07 0.15 0.09 0.21
Kurtosis_precontrast 0.05 0.11 0.12 0.06 0.02 0.18
Mean_postccontrast 0.05 0.38 0.01 0.02 0.01 0.03

Standard
deviation_postcontrast 0.56 0.41 0.16 0.24 0.51 0.05

Entropy_postcontrast <0.001 <0.001 0.003 0.02 0.002 <0.001
Mean of positive

pixels_postcontrast 0.049 0.43 0.02 0.05 0.02 0.07

Skewness_postcontrast 0.01 0.15 0.06 0.09 0.03 0.05
Kurtosis_postcontrast 0.01 0.18 0.22 0.048 0.06 0.08

SSF 2
Mean_precontrast 0.046 0.12 0.12 0.01 0.06 0.01

Standard deviation_precontrast 0.82 0.19 0.19 0.92 0.68 0.32
Entropy_precontrast <0.001 <0.001 <0.001 0.01 0.002 <0.001

Mean of positive
pixels_precontrast 0.21 0.55 0.55 0.04 0.18 0.01

Skewness_precontrast 0.13 0.46 0.46 0.70 0.23 0.23
Kurtosis_precontrast 0.77 0.37 0.37 0.79 0.68 0.85
Mean_postccontrast 0.04 0.06 0.06 0.03 0.046 0.03

Standard
deviation_postcontrast 0.63 0.72 0.72 0.37 0.85 0.78

Entropy_postcontrast <0.001 <0.001 <0.001 0.001 <0.001 <0.001
Mean of positive

pixels_postcontrast 0.16 0.26 0.26 0.15 0.21 0.08

Skewness_postcontrast 0.97 0.50 0.50 0.18 0.35 0.02
Kurtosis_postcontrast 0.70 0.55 0.55 0.20 0.18 0.50

SSF 5
Mean_precontrast 0.18 0.29 0.21 0.02 0.27 0.04

Standard deviation_precontrast 0.88 0.55 0.10 0.84 0.86 0.79
Entropy_precontrast <0.001 <0.001 <0.001 0.004 0.003 <0.001
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Table 3. Cont.

CT Texture Parameter ER PR HER2 Ki67 Grade Subtype

Mean of positive
pixels_precontrast 0.21 0.34 0.22 0.05 0.33 0.11

Skewness_precontrast 0.57 0.93 0.35 0.80 0.97 0.63
Kurtosis_precontrast 0.01 0.04 0.01 0.11 0.04 0.02
Mean_postccontrast 0.14 0.30 0.14 0.07 0.19 0.10

Standard
deviation_postcontrast 0.67 0.99 0.63 0.87 0.71 0.73

Entropy_postcontrast <0.001 <0.001 <0.001 0.001 <0.001 <0.001
Mean of positive

pixels_postcontrast 0.20 0.41 0.16 0.10 0.24 0.12

Skewness_postcontrast 0.74 0.97 0.26 0.10 0.96 0.58
Kurtosis_postcontrast 0.03 0.12 0.07 0.15 0.59 0.12

ER: estrogen receptor, PR: progesterone receptor, HER2: human epidermal growth factor receptor 2, SSF: spatial
scale filter. A p value < 0.05 for texture features was considered significant.

3.2. Performance of the Machine Learning Models

Table 4 shows the AUC values of the five machine learning models to predict his-
tological biomarkers and molecular subtypes using CT perfusion and texture features.
We analyzed model performance using perfusion features only, texture features only, and
the combination of both. For all machine learning models, the performance using the
perfusion parameters of hot spots was better than that using the perfusion parameters of
whole tumors. The integrated machine learning models had better predictive performance
compared with those using the perfusion features only or the texture features only. The
integrated random forest model using perfusion features for hot spots and texture features
at SSF 0 had the best performance for predicting histological factors (AUC = 0.76). This
value differed significantly from that for the decision tree model (AUC = 0.65, p < 0.05), but
not from that for the naïve Bayes (AUC = 0.73, p = 0.63), logistic regression (AUC = 0.71,
p = 0.41), and ANN (AUC = 0.66, p = 0.17) models.

Table 4. Diagnostic performance of five machine learning models using perfusion and texture features to predict histological factors.

Machine Learning
Model

Diagnostic
Performance

Perfusion
Features * Texture Features † Integrating Perfusion

and Texture Features ‡ p Value §

Decision tree AUC median 0.55 0.59 0.65 0.04
AUC mean 0.55 0.58 0.62

AUC SD 0.25 0.34 0.28
AUC 95% CI 0.35, 0.75 0.42, 0.74 0.40, 0.84

accuracy 59% 66% 73%
sensitivity 68% 38% 51%
specificity 47% 64% 73%

NPV 42% 49% 61%
PPV 73% 57% 58%

Naïve Bayes AUC median 0.69 0.54 0.73 0.63
AUC mean 0.69 0.59 0.71

AUC SD 0.31 0.18 0.32
AUC 95% CI 0.44, 0.94 0.51, 0.67 0.45, 0.97

accuracy 67% 51% 65%
sensitivity 80% 60% 60%
specificity 52% 67% 64%

NPV 56% 63% 78%
PPV 77% 69% 61%

Logistic regression AUC median 0.65 0.50 0.71 0.41
AUC mean 0.63 0.53 0.70
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Table 4. Cont.

Machine Learning
Model

Diagnostic
Performance

Perfusion
Features * Texture Features † Integrating Perfusion

and Texture Features ‡ p Value §

AUC SD 0.29 0.42 0.32
AUC 95% CI 0.40, 0.86 0.34, 0.72 0.44, 0.96

accuracy 63% 62% 73%
sensitivity 80% 24% 46%
specificity 43% 68% 71%

NPV 53% 45% 64%
PPV 74% 25% 27%

ANN AUC median 0.60 0.56 0.66 0.17
AUC mean 0.60 0.57 0.68

AUC SD 0.27 0.28 0.31
AUC 95% CI 0.38, 0.82 0.44, 0.70 0.43, 0.93

accuracy 61% 59% 68%
sensitivity 70% 39% 55%
specificity 43% 67% 72%

NPV 38% 47% 71%
PPV 74% 55% 61%

Random forest AUC median 0.65 0.61 0.76 . . .
AUC mean 0.66 0.61 0.75

AUC SD 0.30 0.32 0.34
AUC 95% CI 0.42, 0.90 0.46, 0.76 0.48, 1.00

accuracy 65% 65% 74%
sensitivity 81% 27% 50%
specificity 36% 72% 76%

NPV 48% 48% 69%
PPV 72% 64% 70%

ANN: artificial neural network, AUC: area under the receiver operating characteristic curve, SD: standard deviation, CI: confidence interval,
NPV: negative predictive value, PPV: positive predictive value. * Perfusion features were measured for both the hot spots of the tumor and
the whole tumor. † Texture features were measured at SSF 0, 2, and 5. ‡ The AUC of integrated model was highest when perfusion features
of hot spots and texture features at SSF 0 were used. § p values are for comparing the median AUC values with the random forest model
among the integrating models by the DeLong test.

The performance values for the integrated machine learning models using perfusion
features of hot spots and textures features at SSF 0 for predicting each histological factor are
shown in Table 5. The random forest model showed the best performance for predicting
HER2 expression (AUC = 0.86); the AUC values were 0.61 for the decision tree, 0.75 for naïve
Bayes, 0.67 for logistic regression, and 0.67 for ANN models. The random forest model
also showed superior performance in predicting ER status, tumor grade, and molecular
subtype compared with the other machine learning models.

Table 5. AUCs and accuracies of integrated machine learning models using perfusion and texture features to predict each
histological factor.

Machine Learning Model Diagnostic Performance ER PR HER2 Ki67 Grade Subtype

Decision tree AUC median 0.65 0.55 0.61 0.53 0.69 0.68
accuracy 77% 59% 83% 52% 73% 73%

Naïve Bayes AUC median 0.76 0.60 0.75 0.72 0.73 0.68
accuracy 65% 59% 62% 68% 73% 65%

Logistic regression AUC median 0.76 072 0.67 0.55 0.69 0.79
accuracy 70% 73% 89% 49% 73% 81%

ANN AUC median 0.66 0.60 0.67 0.66 0.73 0.75
accuracy 68% 54% 84% 68% 68% 65%

Random forest AUC median 0.76 0.69 0.86 0.65 0.75 0.79
accuracy 76% 74% 92% 65% 67% 75%

ER: estrogen receptor, HER2: human epidermal growth factor receptor 2, AUC: area under the receiver operating characteristic curve, ANN:
artificial neural network. Integrating machine learning model was built using perfusion features of hot spots and texture features at SSF 0.
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3.3. Importance Ranking of CT Parameters for Prediction

Table 6 shows the top five most important CT parameters for predicting histological
biomarkers and molecular subtypes of invasive breast cancer. The importance ranking of
the CT parameters was obtained from the best performing integrated random forest model,
which was built using the perfusion features of the hotspots and the texture features at
SSF 0. The top five most important parameters were entropy on contrast-enhanced images,
perfusion of hot spots, TTP of hot spots, PEI of hot spots, and entropy on precontrast images.
Entropy on contrast-enhanced CT images was the most important parameter for prediction.
It was significantly higher in ER−, HER2+, high grade, and HER2-enriched or triple-
negative cancers (Table 7) (Figure S1). The second most important parameter, perfusion of
hot spots, was also higher in those cancers with poor prognostic biomarkers. TTP of hot
spots was shorter in ER−, HER2+, high grade, and non-luminal cancers (Figure S1).

Table 6. Top five important CT parameters from the integrated random forest model to predict
histological biomarkers and molecular subtypes.

Rank Important CT Parameters

1 Entropy_postcontrast
2 Perfusion_hot spot
3 TTP_hot spot
4 PEI_hot spot
5 Entropy_precontrast

TTP: time-to-peak enhancement, PEI: peak enhancement intensity. Integrated machine learning model was built
using perfusion features of hot spots and texture features at SSF 0.

Table 7. Values of the top five important CT parameters according to histological factors in the training set.

Histological Facor Entropy_
Postcontrast

Perfusion_
Hot Spot

TTP_
Hot Spot

PEI_
Hot Spot

Entropy_
Precontrast

ER
− 4.75 ± 0.03 46.98 ± 4.34 34.68 ± 5.70 82.22 ± 4.37 4.54 ± 0.04
+ 4.50 ± 0.04 26.94 ± 3.39 51.92 ± 4.27 65.54 ± 3.44 4.35 ± 0.04

HER2
− 4.55 ± 0.03 31.33 ± 3.00 47.63 ± 3.75 68.69 ± 3.05 4.40 ± 0.03
+ 4.76 ± 0.03 48.88 ± 7.04 35.82 ± 9.33 86.61 ± 6.05 4.54 ± 0.05

Grade
low 4.52 ± 0.04 27.67 ± 3.48 51.01 ± 4.38 64.33 ± 3.31 4.36 ± 0.04
high 4.70 ± 0.03 44.36 ± 4.37 37.38 ± 5.60 83.00 ± 4.51 4.51 ± 0.03

Subtype
luminal A 4.48 ± 0.05 20.60 ± 2.67 53.20 ± 5.14 58.03 ± 3.69 4.35 ± 0.05
luminal B 4.54 ± 0.05 35.46 ± 6.74 54.59 ± 7.81 80.88 ± 5.84 4.35 ± 0.05

HER2-enriched 4.78 ± 0.04 59.22 ± 6.86 21.06 ± 4.48 86.98 ± 6.77 4.58 ± 0.04
Triple-negative 4.75 ± 0.04 44.71 ± 5.75 33.32 ± 6.83 76.89 ± 5.85 4.56 ± 0.05

ER: estrogen receptor, HER2: human epidermal growth factor receptor 2, PEI: peak enhancement intensity, TTP: time-to-peak enhancement.

Table 8 presents the AUCs for the integrated models using all CT parameters and
the top five most important parameters for predicting histological factors and treatment
failure. We selected median AUCs as a representative AUC of the integrated models. The
random forest, naïve Bayes, and logistic regression models produced consistently higher
AUC values than the decision tree or ANN model (p < 0.05).
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Table 8. Comparison of AUCs according to number of CT parameters of integrated machine learning
models to predict histological factors and treatment failure.

CT Parameter AUC p Value *

All parameters for predicting ER, HER2, and
molecular subtype

Decision tree 0.59 0.002
Naïve Bayes 0.75 0.52

Logistic regression 0.76 0.63
ANN 0.67 0.04

Random forest 0.79 . . .
Top five important parameters for predicting ER,

HER2, and molecular subtype
Decision tree 0.62 0.03
Naïve Bayes 0.76 0.95

Logistic regression 0.76 0.97
ANN 0.70 0.34

Random forest 0.76 . . .
All parameters for predicting ER, HER2,
molecular subtype, and treatment failure

Decision tree 0.52 <0.001
Naïve Bayes 0.81 0.29

Logistic regression 0.69 0.26
ANN 0.70 0.36

Random forest 0.76 . . .
Top five parameters for predicting ER, HER2,

molecular subtype, and treatment failure
Decision tree 0.52 <0.001
Naïve Bayes 0.83 0.06

Logistic regression 0.72 0.82
ANN 0.68 0.64

Random forest 0.74 . . .
* p values are for comparison with the random forest model among the integrating models by the DeLong test.
ER: estrogen receptor, HER2: human epidermal growth factor receptor 2, AUC: area under the receiver operating
characteristic curve, ANN: artificial neural network.

4. Discussion

The aim of this study was to evaluate whether low-dose CT can be used as a method
for functional oncology imaging to evaluate tumor heterogeneity and angiogenesis in
breast cancer and to predict noninvasively histological biomarkers and molecular subtypes
that are important in the treatment and prognosis of invasive cancer. We used a very low
effective radiation dose (1.01–1.38 mSv) in this study. The average annual effective dose
for natural background radiation in the United States is about 3 mSv and the effective
dose for standard chest CT is 7 mSv [34–36]. We applied machine learning algorithms
to low-dose breast CT for predicting the histological factors. Among the five machine
learning models tested, the integrated random forest model was the best for the overall
prediction of histological factors (median AUC = 0.76), and the random forest model was
best for the prediction of HER2 expression (AUC = 0.86). These results are similar to those
reported for an integrated model using texture and perfusion features of breast cancer on
MRI (AUC = 0.80) in a recent study by Lee et al. [6]. In our study, the most important
top five CT parameters for prediction were entropy on contrast-enhanced images, entropy
on precontrast images, perfusion of hot spots, TTP of hot spots, and PEI of hot spots.
The integrated random forest, naïve Bayes, and logistic regression models using the top
five most important parameters as well as all CT parameters consistently outperformed
the decision tree or ANN model for predicting histological factors and treatment failure.
Therefore, our results suggest that integrated machine learning algorithms using perfusion
and texture features of breast cancer may be feasible for predicting histological biomarkers
and treatment failure in patients with breast cancer. Our results also suggest that the
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entropy and perfusion parameters of hot spots may be valuable for building CT-based
predictive models for breast cancer.

In our study, entropy was the most important CT parameter for predicting histological
factors in breast cancer. Entropy means texture irregularity or complexity in a histogram
analysis. In our study, entropy on contrast-enhanced images and precontrast images
increased in breast cancers with factors indicating poor prognosis, such as ER−, HER2+,
high grade, and HER2-enriched or triple-negative cancers. Previous texture studies have
shown associations between entropy and poor prognosis in a variety of cancers [6,17,37–39].
In breast cancer, most texture analyses have been performed using MRI. On T2-weighted
images, high entropy is associated with breast cancers with poor prognosis [6,39]. By
contrast, results for the relationship between entropy and cancer prognosis obtained from
T1-weighted images vary depending on the image acquisition method. Lee et al. [6] found
that high entropy on precontrast and postcontrast T1-weighted images in dynamic MRI
was associated with histological factors indicating poor prognosis of breast cancer. Kim
et al. [39] reported that low entropy on T1-weighted subtraction images was related to poor
survival outcomes in patients with breast cancer and explained that using postcontrast
T1-weighted images instead of subtraction images may yield different texture results. In
CT texture analysis, intratumoral heterogeneity is related to cell density, necrosis, and
angiogenesis [17]. Our data shows the possibility of CT texture analysis for predicting the
prognosis and planning treatment using low-dose protocols in patients with breast cancer.

The CT perfusion values differ significantly between cancer and normal glandular or
muscular tissues in murine breast cancer tissues and human breast cancers [14,40]. The
perfusion or blood flow is higher and the time to peak or mean transit time is shorter in
cancer tissues than in normal glandular or muscular tissues because of neovascularization
and increased permeability of tumors. Perfusion studies of human breast cancer using
low-dose CT have reported correlations between perfusion parameters and prognostic
histological biomarkers [14,20]. Our results are consistent with previous findings [14,20].
Our measurements at hot spots within tumors showed stronger associations and predictive
performance for histological factors of breast cancer than those obtained from the whole
tumor. The top five most important parameters for prediction in our study include three
perfusion parameters at hot spots: perfusion of hot spots, TTP of hot spots, and PEI of
hot spots. Measurements at hot spots within tumors are more valuable than measure-
ments in whole tumors for correlating histological angiogenesis in cancer [40,41]. Among
perfusion parameters, perfusion of hot spots was one of the top five most important pa-
rameters for predicting histological factors of invasive breast cancers in a previous study
by Park et al. [6]. Perfusion is a quantitative measure of blood flow through the vascular
structure for a defined tissue or mass volume. Blood flow through the blood vessels is
related to intratumoral velocity. Arteriovenous shunts, hyperpermeability, and immature
microvessels increase the velocity of blood flow in cancers [42,43].

In this study, integrated machine learning models using texture and perfusion features
improved the performance of histological factors for predicting breast cancer outcome
compared with using perfusion features only or texture features only. The integrated
random forest model using perfusion features for hot spots and texture features at SSF
0 had the best performance, and the AUC values for predicting each histological factor
were 0.76 for ER status, 0.86 for HER2 status, and 0.79 for the molecular subtype of breast
cancer. In previous studies of texture analysis of breast cancers, unfiltered or fine filtered
texture results show better performance in predicting histological factors or prognosis than
coarse filtered texture results [6,15,44]. A fine filter tends to enhance tissue parenchymal
features, while a coarse filter enhances vascular features [45]. Therefore, unfiltered images
or fine-filtered images may better represent the heterogeneity of the tumor parenchymal
tissue itself than coarse-filtered images. Among the five integrated machine learning
models, the random forest, logistic regression, and naïve Bayes models maintained their
superior performance when comparing their performance in predicting ER status, HER2
status, molecular subtype, and treatment failure using all CT parameters and the top five
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most important CT parameters. Therefore, machine learning models that integrate tumor
texture and perfusion characteristics using low-dose breast CT are promising for predicting
histological factors and treatment failure in breast cancer patients.

Our findings will contribute to advances in breast CT. First, our CT results are similar
to those of previous MRI studies of breast cancer in terms of the associations between tex-
ture and perfusion imaging features and histology [6,10,46,47]. In both CT and MRI studies,
high entropy and high perfusion values are associated with breast cancers when compared
with normal glands or benign lesions, and with cancers with histological biomarkers and
molecular subtypes indicting poor prognosis compared with cancers with factors indicating
better prognosis. In addition, a recent texture analysis study of contrast-enhanced spectral
mammography using the same iodine-based contrast agents as CT shows that entropy is
significantly associated with tumor grade and Ki67 expression in breast cancer [48]. They
used entropy of a first-order statistical feature similar to our study. The texture character-
istics of contrast-enhanced spectrum mammography have shown the diagnostic power
and predictability of prognostic factors for breast cancer [48,49]. Forgia et al. [48] show
high performance in distinguishing HER2 +/− (AUC = 0.91), ER +/− (AUC = 0.84), and
Ki67 +/− (AUC = 0.85) using higher-order statistical texture features on contrast-enhanced
spectral mammography. Therefore, the preliminary results of low-dose breast CT in this
study are comparable to those of breast MRI and contrast-enhanced spectral mammog-
raphy. Second, our results demonstrate the predictability of histological biomarkers and
molecular subtypes of breast cancer using CT features. Three of the five machine learning
models (random forest, logistic regression, and naïve Bayes) showed robust predictive
performance with all CT parameters and with the top five most important CT parameters.
In the eighth edition of the breast cancer staging system of the American Joint Committee
on Cancer, the most significant change is the incorporation of histological biomarkers
into the anatomic staging to create prognostic stages [50]. In addition, the response to
neoadjuvant chemotherapy in breast cancer varies depending on the tumor subtype [51].
Therefore, hormone receptor status, HER2 status, and molecular subtypes may be impor-
tant before, during, and after treatment. According to the Solid Tumor Response Evaluation
Criteria version 1.1, CT and MRI are recommended as in-treatment evaluation methods,
and ultrasound is not useful for evaluation because it is subjective and operator depen-
dent [52]. Our results suggest that, because of its efficiency and convenience, low-dose
breast CT may be an alternative for oncology imaging in patients unable to undergo MRI.
CT has further advantages in the treatment of advanced breast cancers because CT can be
used to evaluate the breast as well as extramammary sites including the lungs and lymph
nodes [53–55]. CT also has other advantages in radiomics because CT data are less variable
than MRI data [56]. In precision medicine, imaging plays a critical role in early diagnosis,
treatment guidance, evaluation of treatment response, and assessment of the likelihood
of recurrence [57,58]. Imaging technologies can represent morphological and functional
information not visible to the naked eye and provide benefits for preventive or therapeutic
interventions, reducing invasive procedures, reducing costs, minimizing the size effect
of treatment, and improving prognosis. Oncology is the forefront of precision medicine.
Prediction of histological biomarkers, cancer subtypes, response to adjuvant chemotherapy,
and recurrence using noninvasive imaging techniques is crucial in precision medicine for
breast cancer.

Our study has several limitations. First, it was conducted in one institution and no
external validation was performed. However, we performed the random split analysis
and repeated the analysis 50 times for internal validation, and we enrolled consecutive
patients to reduce selection bias. In addition, because we used commercial software
to measure tumor heterogeneity and angiogenesis, the results may be applied to other
institutions for multicenter studies or clinical practice. Second, although we did not analyze
segmentation reproducibility, to minimize the problem of lesion selection, two experienced
breast radiologists drew the ROIs and achieved consensus on these. Perfusion analysis
required the selection of hot spots on the perfusion maps, and the radiologist repeated
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the ROI plot three times and used the mean for statistical analysis in this study. For real
clinical applications, automatic selection software for hot spots on the perfusion map is
required to avoid subjective positioning ROI. Investigation of inter-reader variability in
lesion selection and parameter calculations is needed to generalize and standardize our
results in the near future. Third, the texture analysis software we used could analyze only
two-dimensional scans, and this may not have revealed the three-dimensional texture
features of the entire tumor. However, the texture analysis results from two-dimensional
data and three-dimensional data were similar to those of a previous study [59]. Fourth, the
scan range along the z-axis was only 40 mm, and the entire range of large cancers could not
be included. For large cancers measuring > 40 mm, the center of the cancer was selected
for scanning. Further development of perfusion imaging technology should expand the
scanning range while maintaining low radiation doses in the future. Fifth, we used five
basic machine learning algorithms in this study and did not consider different methods of
enhancing, regularizing, and reducing associations between predictors. A wider variety of
machine learning algorithms and optimization techniques could improve the effectiveness
of models.

5. Conclusions

Our study produced promising results for the use of machine learning with low-dose
breast CT to identify histological prognostic factors in patients with invasive breast cancer.
Machine learning that integrates texture and perfusion features of breast cancer with
low-dose CT can provide valuable information for the realization of precision medicine.
Additional trials that include larger sample sizes are needed to validate and generalize
the results.
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Abbreviations

HER2 Human epidermal growth factor receptor 2
MRI Magnetic resonance imaging
CT Computed tomography
ROI Regions of interest
PEI Peak enhancement intensity
HU Hounsfield units
TTP Time to peak
SSF Spatial scale filter
ER Estrogen receptor
PR Progesterone receptor
ANN Artificial neural network
AUC Area under the receiver-operating characteristic curve
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