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Simple Summary: Bladder cancer is a heterogeneous disease with high recurrence rates. The
current prognostication depends on tumor stage and grade and there is a need for predictive
biomarkers that can distinguish between progressive versus non-progressive disease. We have
identified a 3-gene signature panel having prognostic value in bladder cancer, which could aid in
clinical decision making.

Abstract: Bladder cancer prognosis remains dismal due to lack of appropriate biomarkers that can
predict its progression. The study aims to identify novel prognostic biomarkers associated with the
progression of bladder cancer by utilizing three Gene Expression Omnibus (GEO) datasets to screen
differentially expressed genes (DEGs). A total of 1516 DEGs were identified between non-muscle
invasive and muscle invasive bladder cancer specimens. To identify genes of prognostic value, we
performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. A
total of seven genes, including CDKN2A, CDC20, CTSV, FOXM1, MAGEA6, KRT23, and S100A9 were
confirmed with strong prognostic values in bladder cancer and validated by qRT-PCR conducted
in various human bladder cancer cells representing stage-specific disease progression. ULCAN,
human protein atlas and The Cancer Genome Atlas datasets were used to confirm the predictive
value of these genes in bladder cancer progression. Moreover, Kaplan–Meier analysis and Cox hazard
ratio analysis were performed to determine the prognostic role of these genes. Univariate analysis
performed on a validation set identified a 3-panel gene set viz. CDKN2A, CTSV and FOXM1 with
95.5% sensitivity and 100% specificity in predicting bladder cancer progression. In summary, our
study screened and confirmed a 3-panel biomarker that could accurately predict the progression and
prognosis of bladder cancer.

Keywords: non-muscle invasive bladder cancer; muscle invasive bladder cancer; biomarkers; bioin-
formatics; prognosis; prediction

1. Introduction

Bladder cancer is a heterogeneous disease with high prevalence and recurrence
rates [1]. According to an estimate by the American Cancer Society, in the United States,
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approximately 84,000 new bladder cancer cases will be diagnosed and 17,000 deaths will
occur in the year 2021 (cancer facts and figure, American Cancer Society). The diagnosis
and treatment of bladder cancer is based on a sequence of clinical stage with two dis-
tinct entities that include a low-risk, non-muscle invasive variant (NMIBC) and a highly
aggressive muscle invasive (MIBC) subtype [2]. At initial diagnosis, about 70–80% of
NMIBC tumors are confined to the epithelium or sub-epithelial connective tissue [3]. These
tumors are frequently managed by surgery and/or immunotherapy based on their risk
of progression assessment. Meanwhile, the best option for patients with loco-regionally
advanced (intermediate to high-risk) disease remains standard chemotherapy. However,
these treatments often become refractory over time with a high recurrence rate of 50–70%
over a 5-year period and subsequent progression to MIBC [4,5]. To date, there has been
no reliable means of prediction of disease progression other than clinical decision making
models, risk estimates tables and nomograms [6]. The utility of these existing prediction
models are less accurate as these classifiers are unable to provide information on the
underlying biological properties that likely drive tumor behavior. Therefore, exploring
molecular pathways and gene regulatory networks that provide information about disease
progression may provide a new approach to predict prognosis and improvements in the
management of bladder cancer.

An integral part of understanding the molecular basis of bladder cancer progression
includes analysis of differentially expressed genes in NMIBC (low-risk) versus MIBC (high-
risk) phenotype. At the molecular level, alterations in genes result in unrestricted cell
proliferation, reduced cell death, invasion, and metastasis [7]. Specific alterations in gene
regulatory network could affect the biologic behavior of the tumor that may influence
patient’s survival. In fact, patients with aggressive disease require careful supervision,
particularly because the treatment and pathogenesis of MIBC and NMIBC differ and
conventional histopathological evaluation is inadequate to precisely predict the behavior
of high-risk NMIBC [8]. Thus, there is a clear need of predictive biomarkers that can
differentiate progressive from non-progressive NMIBC. Analysis of The Cancer Genome
Atlas (TCGA) identified a distinct gene expression profile between NMIBC and MIBC [9,10];
however, limited prognostic values of these genes established the requirement for new
molecular markers of bladder cancer outcome.

To examine the prognostic significance of genes and designate them as potential
biomarkers for bladder cancer, we conducted sequential analyses on high-throughput
sequencing data obtained from three datasets (GSE154261, GSE57813, and GSE37317) of
bladder cancer. In the first step, differentially expressed genes (DEGs) were identified that
are common among the three databases and analyzed using ingenuity pathway analysis
(IPA). In the second step, we used Metascape to explore the major pathways of DEG en-
richment in bladder cancer [11]. In the third step, the protein interaction network between
DEGs was generated using the STRING online tool and demonstrated employing the Cy-
toscape software. Next, the Gene Expression Pro-filing Interactive Analysis 2 (GEPIA2) [12],
and human protein atlas datasets were utilized to explore DEGs and their association with
bladder cancer prognosis. Lastly, we discover single gene and its key biological role using
the UALCAN, cBioPortal, and STRING online tools.

In the analysis, we identified 1516 DEGs commonly associated with bladder cancer
progression. The DEGs aligned with functional interactome analysis comprising of 40 in-
dependent knowledge database revealed overrepresentation of cell cycle and cell-cycle
check point associated genes in bladder cancer. We further validated the subset of selected
core genes using independent datasets from TCGA and GEO databases and explored their
potential as prognostic biomarkers in clinical use.

2. Materials and Methods
2.1. Cell Culture

Bladder cancer RT4, J82, HT1197, and 253JB-V cells were grown in RPMI 1640 (Cata-
logue number SH30027.01, GE Healthcare, Marlborough, MA, USA) supplemented with
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10% fetal bovine serum, 50 U/mL penicillin and 50 µg/mL streptomycin in 100-mm tissue
culture plates at 37 ◦C in a humidified atmosphere (5% CO2). The transformed bladder
epithelial Urosta cells were grown in recommended culture medium supplemented with
growth factors. The absence of mycoplasma contamination was tested using PCR-based
assay (Catalogue MP0025; Sigma–Aldrich, St. Louis, MO, USA).

2.2. Data Set

The transcriptomic gene expression datasets of bladder cancer consisting of non-
muscle invasive and muscle invasive subtypes were downloaded from the publicly avail-
able NCBI GEO (GSE154261, GSE57813, and GSE37317). The GSE37317 dataset con-
tains 8 non-muscle invasive and 11 muscle invasive bladder cancer specimens, whereas
GSE154261 dataset consists of 99 non-muscle invasive T1 stage bladder cancer specimens.
The GSE57813 dataset comprised of 9 non-muscle invasive and 12 invasive T1G3 bladder
cancer that are at high-risk of progression to muscle-invasive cancer (Table 1).

Table 1. Information on GEO datasets and platforms.

GSE Dataset Tumor Type Tumor Type DEGs Platform

GSE154261 Non-muscle invasive
(Surveillance) (n = 73)

Non-muscle invasive
(Surgery) (n = 26) 6078 GPL20301 (Illumina HiSeq 4000)

(Homo sapiens)

GSE57813 Non-muscle invasive (n = 9) Muscle invasive (n =
12) 7975

GPL14951Illumina
HumanHT-12 WG-DASL

V4.0 R2 expression beadchip

GSE37317 Non-muscle invasive (n = 8) Muscle invasive (n =
11) 7589 GPL96 [HG-U133A] Affymetrix

Human Genome U133A Array

2.3. Data Processing

The datasets were analyzed using GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/,
accessed on 8 June 2021) and limma R packages (Boston, MA, USA). The DEGs between
the NMIBC and MIBC group were analyzed by using the ingenuity pathway analysis
(IPA) (Qiagen, Redwood City, CA, USA), Metascape and Cytoscape. Finally, the genes
with adjusted p < 0.05 and log2 fold-change FC > 1 or < –1 were set as the cut-off criteria.
P-values were corrected for false discovery rate (FDR) using the Benjamini–Hochberg (B–H)
test. To further enhance the reliability of the analysis, the overlapping DEGs co-existed in
all 3 GSE data files were identified using IPA.

2.4. Functional and Pathway Enrichment Analysis

Metascape web based portal (http://metascape.org, accessed on 8 June 2021) was
used to perform the pathway enrichment analysis, and the gene network reconstruction
in human with default parameters set (minimum overlap 3, minimum enrichment 1.5,
p-value < 0.01). Pathway and functional enrichment analyses were performed using the
KEGG pathway, GO, reactome gene set, and canonical pathway. Specifically, p-values were
calculated based on accumulative hypergeometric distribution, q values were calculated
using the Benjamini–Hochberg (B–H) procedure to account for multiple testing. Kappa
scores were used as the similarity metric when performing hierarchical clustering on the
enriched terms, and then sub-trees with similarity >0.3 were considered a cluster. The most
statistically significant term within a cluster was chosen as the one representing the cluster.
To further capture the relationship among terms, a subset of enriched term was selected
and rendered as a network plot, where terms with similarity >0.3 are connected by edges.

2.5. Quantitative RT-PCR

Total RNA was isolated from four bladder cancer cell lines viz. RT4 (transitional
cell papilloma), J82 (transitional cell carcinoma), HT1197 (bladder carcinoma), and 253JB-
V (metastatic phenotype) representing different cancer stage and transformed bladder

http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://metascape.org
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epithelial Urosta cells using RNeasy mini kit (Qiagen, Germantown, MD, USA). The iso-
lated RNA was treated with RNase-free DNase (Qiagen) to ensure samples were free of
DNA. The cDNA was synthesized using 1 µg total RNA using high yield cDNA synthesis
kit (Applied Biosciences, Waltham, MA, USA) followed the protocol as per manufac-
turer’s instructions. The cDNA (2 µL) was used as the template for PCR to quantify the
abundance of transcript using specific primers for genes viz. CDC20, CDKN2A, CTSV,
FOXM1, MAGEA6, KRT23, and S100A9 (Supplementary Table S1). As an internal control,
GAPDH (NM_008084), and actin (NM_007393) were used in the reaction. The qRT-PCR
data was analyzed using REST-2009 software (Qiagen, USA), 2000 times the data was
randomized (iterations), and relative expression ratio was calculated using the formula
ratio = (Etarget)∆CP

target (control-sample)/(Eref)∆CP
ref (control-sample). All values are in the 95%

confidence interval were greater than 1, the interval is consistent with the REST 2009 at
p-value of 0.000, compared with the significance level of 0.001.

2.6. Identification of Prognostic Genes

Gene expression profiling interactive analysis 2 (GEPIA2) was used for analyzing the
RNA sequencing expression data of 9736 tumors and 8587 normal samples from the TCGA,
using a standard processing pipeline with LogFC cutoff of 1 and p-value cutoff 0.01 to
generate boxplot. To identify genes that exhibited stage-specific expression may represent
potential prognostic marker. Stage specific gene expression analysis identified a subset of
7 genes viz. CDC20, CDKN2A, CTSV, FOXM1, MAGEA6, KRT23, and S100A9 which were
significantly altered in MIBC, compared to NMIBC. To analyze the expression of these
genes in different subsets based on tumor grade, UALCAN web-based tool was used.

2.7. Statistical Analysis

Overall survival (OS) was measured from the date of diagnosis to the date of death
and censored at the date of last follow up for survivors. Progression free survival (PFS)
was measured from the date of diagnosis to the date of disease progression or the date of
death and censored at the date of last follow up for those alive without disease progression.
The effects of seven gene expressions on tumor aggressiveness (NMIBC versus MIBC),
OS and PFS were estimated using logistic regression and Cox regression, respectively.
The effects of gene expressions on OS and PFS were also analyzed using Kaplan–Meier
method with log-rank test. All tests were two-sided and p-value ≤ 0.05 was considered
statistically significant.

3. Results
3.1. Identification of DEGs in NMIBC versus MIBC

We analyzed 3 NCBI-GEO database using IPA and aligned the DEGs with ingenuity
knowledge database. A total of 1516 DEGs were identified, which were common from
GSE154261, GSE57813, and GSE37317 databases (Supplementary Table S2) and processed
with GEO2R (an interactive web tool) in order to identify genes that are differentially
expressed (DEGs) with the adjusted p-value < 0.05 (Figure 1A). The data was analyzed and
showed as a heat map for all 3 datasets and a volcano plot (Figure 1B,C).
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Figure 1. Identification of differentially expressed genes (DEGs) between 3 datasets. (A) Venn-
diagram exhibiting three database GSE154261, GSE37317 and GSE57813 showing common DEGs
associated with bladder cancer. (B) The composite heat map of three datasets. (C) The volcano plot
of the three datasets.

3.2. GO and KEGG Pathway Analysis

To investigate the prospective functions of DEGs, we performed GO analysis using
Metascape online tools. The database aligned the DEGs with human genome database
(GRCh38.p13), the bars represent the significant signaling pathway, which were discretely
colored to encode p-values of increasing statistical significance. The analysis identified
DEGs that were mainly enriched in biological pathways such as molecular mechanism
of cancer, mitochondrial dysfunction, protein ubiquitination, oxidative phosphorylation,
sirtuin signaling, EIF2 signaling, glucocorticoid receptor signaling, RAR activation, aryl
hydrocarbon receptor signaling, tight junction signaling, and death receptor signaling
pathways. KEGG pathway analysis revealed some highly ranked disease relevant pathways
in all three databases, which were markedly enriched include hepatic fibrosis, cardiac
hypertrophy, Huntington’s disease, osteoarthritis, and senescence pathways (Figure 2A–C).

Figure 2. GO and KEGG pathway analysis of DEGs in bladder cancer. Bar diagram of three datasets (A) GSE154261,
(B) GSE37317, and (C) GSE57813 analyzed for bladder cancer. Significant pathways with p-values < 0.01 were considered.

The analysis further identified that the DEGs are mostly enriched in cell-cycle signaling
by receptor tyrosine kinase, nervous system development, cellular response to external
stimuli, and others (Figure 3A–C).



Cancers 2021, 13, 5931 6 of 20

Figure 3. GO and KEGG pathway analysis of DEGs in bladder cancer from the Metascape website. (A) The results of KEGG
pathway analysis were plugin Cytoscape software and discrete color scale to represent statistical significance in terms of
p-value. (B) Colored by p-value, where terms containing more genes tend to have a more significant p-value. (C) Gene
cluster enrichment network visualization generated using 1516 DEGs associated with bladder cancer. Each node represents
one enrichment term and its color represents the individual cluster identity (nodes with same color belong to same cluster).

3.3. Protein-Protein Interaction and Identification of Genes of Prognostic Significance

To further investigate the relationship between DEGs, the Cytoscape online application
tool was applied (Figure 4A). We identified a subset of seven genes, which include CDKN2A,
CDC20, CTSV, FOXM1, KRT23, MAGEA6, and S100A9 (Table 2).

Table 2. Functional role and general information of the seven gene subset in bladder cancer.

Gene Entrez Gene Name Ensemble
Gene ID Molecule Type Putative Biological

Function Location

CDKN2A Cyclin Dependent
Kinase Inhibitor 2A ENSG00000147889 transcription

regulator Tumor suppressor Nucleus

CDC20 Cell Division Cycle 20 ENSG00000117399 Enzyme Cell cycle regulator Nucleus

CTSV Cathepsin V ENSG00000136943 Peptidase Lysosomal protease Cytoplasm

FOXM1 Forkhead box M1 ENSG00000111206 Transcription
regulator Promotes oncogenesis Nucleus

MAGEA6 MAGE Family
Member A6 ENSG00000197172 other Tumor progression Cytoplasm

KRT23 Keratin 23 ENSG00000108244 other Structural integrity Cytoplasm

S100A9 S100 calcium binding
protein A9 ENSG00000163220 other Cell cycle progression Cytoplasm
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Figure 4. Determination of gene network in bladder cancer. (A) PPI network of 1516 overlapping target genes in bladder
cancer. (B) GO annotation and z-score of the genes.

The query genes are presented in green, attributed gene network is represented in color
blue, and associated pathways in red color. The result revealed the association of CDKN2A,
CDC20, CTSV, FOXM1, KRT23, MAGEA6, and S100A9 with ANAPC11 (anaphase promot-
ing complex subunit 11), S100A8 (S100 calcium binding protein A8), ANAPC7 (anaphase
promoting complex subunit 7), ANAPC1 (anaphase promoting complex subunit 1), CD26
(cell division cycle 26), ANAPC4 (anaphase promoting complex subunit 4), and others are
important in the regulation of cell cycle. Along with attributed genes, the cluster of genes
showed its interaction with cell cycle, G1 pathway, G1 and S phases, mitotic spindle check
point, c-MYC pathway and others as shown in red color (diamond shape). The Q-value,
coverage and GO annotation are shown in Figure 4B. Furthermore, collagen type I and
3 alpha chain (COL1A2 and COL3A1), decorin (DCN), fibronectin (FN1), regulator of G
protein signaling (RGS2), and secreted phosphoprotein (SPP1) were significantly downreg-
ulated in bladder cancer specimens, compared to noncancerous tissues (Supplementary
Table S2).

3.4. Differential Expression of Selected Genes in Bladder Cancer and Normal Bladder Patients

To verify the differential gene expression of prognostic relevance, we analyzed the
expression of seven genes between bladder cancer and normal bladder tissues. The subset
of these genes were analyzed by using GEPIA2 within human patient cohorts consisting of
bladder cancer (BLCA, n = 404) and normal bladder tissue (n = 28). The expression profile
of CDC20, CDKN2A, CTSV, FOXM1, KRT23, MAGEA6, and S100A9 were significantly
higher in bladder cancer specimens compared with normal bladder tissue in patients
(Figure 5).
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Figure 5. Expression analysis of seven gene subset in bladder cancer based on GEPIA. The expression of CDC20, CDKN2A,
CTSV, FOXM1, KRT23, MAGEA6, and S100A9; * p < 0.05 was considered statistically significant.

3.5. Stage-Specific Expression of Selected Genes in Bladder Cancer Progression

To analyze the stage-specific expression of seven subset of genes we used UAL-
CAN –TCGA database. Within the seven subset of gene expression of CDC20, CDKN2A,
CTSV, and FOXM1 significant changes in stage-specific expression were exhibited, while
KRT23 and MAGEA6 showed changes at T2, T3, and T4 stages of bladder cancer, whereas
no significant changes were noted between T1 and normal bladder tissue. S100A9 showed
high level of expression at T2, T3, and T4 stages compared to Ta, T1 stages but the difference
was non-significant (Figure 6). Log-rank P values showed statistical significance of the
patterns observed between the groups.

We also analyzed the seven gene subset and its expression based on histologic subtype.
CDC20 and FOXM1 showed high level of expression in non-papillary tumors, compared to
papillary tumors; the level of these proteins were significantly lower in normal bladder
samples. While CDKN2A, CTSV, KRT23, and MAGEA6 showed significant differential
expression in papillary and non-papillary tumors compared with normal tissue, no signif-
icant expression was observed between papillary and non-papillary tumors. Moreover,
S100A9 showed significant changes in expression between papillary and non-papillary
tumors but was not significant compared with normal tissue (Figure 7).
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Figure 6. Expression of seven gene subset in bladder cancer based on sample types. The expression of CDC20, CDKN2A,
CTSV, FOXM1, KRT23, MAGEA6, and S100A9 based on tumor stage. The figures were generated using ULCAN database.
* p < 0.05, ** p < 0.001 and *** p < 0.0001 were considered statistically significant. ns, non-significant.

3.6. Survival Analysis of Selected Genes in Bladder Cancer

We next examined the prognostic relevance of the gene subset in bladder cancer
patient survival using the human protein atlas online tool for differential analysis. We
found that higher expression of CDC20, CTSV, KRT23, and S100A9 correlate with poor
survival, whereas lower expression of CDKN2A and FOXM1 were indicative of poor
survival (Figure 8). The expression and survival analysis of MAGE6A was not shown in
the protein atlas database.

3.7. Differential mRNA Expression of Selected Genes in NMIBC and MIBC Cell Lines

In order to validate our findings, we determined the mRNA expression of seven DEGs
selected for their prognostic significance. We selected four bladder cancer cell lines repre-
senting various stages of disease progression and transformed bladder epithelial Urosta
cells, signifying as normal bladder epithelium. Compared to Urosta cells, CDC20 showed
high expression (138.35 fold) in J82 cell line, a representative of epithelial transitional
cell carcinoma line, and lower expression (3.98 and 8.47 fold) in HT1197 carcinoma cells
and 253JB-V cells, which are metastatic variant at p-value 0.000. CDKN2A showed high
level of expression (301.31, 2078.34, and 555.12 fold) in transitional papilloma RT4 cells,
HT1197 cells, and 253JB-V cell line whereas J82 cells showed down-expression 0.5 fold
at p-value 0.000. CTSV showed high level of expression (81.4 and 6.2 fold) in J82 and
253JB-V cell lines at p-value 0.000, and 0.069 fold downregulation in RT4 cell line at p-value
0.000. FOXM1 showed 1.85 and 86.13-fold overexpression in HT1197 and 253JB-V cell
lines at p-value 0.047 and 0.000; whereas downregulation (0.023 and 0.25 fold) in RT4 and
J82 cells at p-value 0.000. KRT23 showed similar trend of 3.85 and 2.42-fold higher expres-
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sion in HT1197 and 253JB-V cells at p-value 0.039 and 0.002; whereas 0.1 and 0.021-fold
downregulation in RT4 and J82 cells at p-value 0.004 and 0.000, respectively. Interestingly,
MAGEA6 showed 317.25, 1707.45, and 1046.24-fold higher expression in RT4, HT1197, and
253JB-V cell lines at p-value 0.000. Expression of S100A9 was downregulated in all bladder
cancer cells, compared to Urosta 0.16, 2.12, 1.45, and 0.13-fold downregulation in RT4, J82,
HT1197, and 253JB-V cells at p-value 0.000 (Figure 9).

Figure 7. Expression of seven gene subset in bladder cancer based on histologic sample types. The expression of CDC20,
CDKN2A, CTSV, FOXM1, KRT23, MAGEA6 and S100A9 based on tumor subtype. The figures are generated using ULCAN
database. ** p < 0.001 and *** p < 0.0001 were considered statistically significant. ns, non-significant.

3.8. Prognostic Role of Selected Genes in Bladder Cancer

To analyze the prognostic significance of seven genes, tumor aggressiveness (NMIBC
versus MIBC), overall survival (OS), and progression free survival (PFS) were estimated
using logistic regression and Cox regression on an independent dataset. The patient
characteristics are shown in Table 3.

Univariate analysis was performed and the results demonstrated that receiver opera-
tive curve (ROC) for CDKN2A with AUC = 0.9879 (p-value < 0.01), sensitivity of 100% and
specificity of 93.3% when the cutoff value of CDKN2a was 426.27 with a very good diag-
nostic performance (Figure 10A). The ROC curve for CTSV with AUC = 0.8152, sensitivity
of 91% and specificity of 80% when the cutoff value of CTSV was 10.01, demonstrated good
diagnostic performance (Figure 10B). A ROC curve analysis showed FOXM1 has very good
diagnostic performance with AUC = 0.8909 and with the cutoff value of 104.67, the sensi-
tivity and specificity for detecting tumor aggressiveness was 95% and 87%, respectively
(Figure 10C).
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Figure 8. Kaplan–Meier survival plots of CDC20, CDKN2A, CTSV, FOXM1, KRT23, and S100A9 and their protein expression
stratified into low-risk and high-risk groups from the TCGA and human protein atlas database.

Table 3. Patient characteristics.

Factor Frequency or Mean (STD) (n = 37)

Age (year) 65.9 (10.6)

Weight 82.1 (20.8)

Race (Asian/Black/White) 4/4/29

Stage (1/2/3/4) 2/13/12/10

Tumor aggressiveness (NMIBC / MIBC) 15/22

Tumor grade (High/Low) 34/3

Lymph node present (No/Yes) 5/30

Sex (female/male) 5/32

The ROC curve for KRT23 with AUC = 0.7273, sensitivity of 59% and specificity of
100% when the cutoff value of KRT23 was 1.64, the analysis showed that KRT23 has not so
good diagnostic performance with AUC of 0.7273 (Figure 10D); the p-values are shown in
Table 4. The results of univariate analysis demonstrate that CDKN2A, CTSV, FOXM1 and
KRT23 were predictive of tumor aggressiveness (MIBC) and the odds of having MIBC was
increased by 3% per unit increase of CDKN2Aa (p = 0.01). The interpretation of other gene
expressions remains similar. In addition, CDC20 values were predictive of OS (p = 0.014)
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and PFS (p = 0.021) the hazard of having disease progression or dying was increased by
12%. The univariate analysis of gene expression on OS and PFS is shown in Tables 5 and 6.

Figure 9. Validation of seven gene subset using qRT-PCR. Real time qRT-PCR validation of genes of CDC20, CDKN2A,
CTSV, FOXM1, KRT23, MAGEA6 and S100A9. The qRT-PCR data was analyzed using REST 2009 © (Relative Expression
Software Tool), Qiagen, Germantown, MD, USA. Bar represents the standard error mean (SEM) for three biologicals and
three technical replicates.

Table 4. Univariate analysis of gene expression data on tumor aggressiveness (NMIBC versus MIBC)
using logistic regression.

Factors Odds Ratio (95% CI) p Value

CDKN2A (per unit increase) 1.03 (1.01, 1.05) 0.01

CDC20 (per unit increase) 1.08 (0.92, 1.25) 0.355

CTSV (per unit increase) 0.84 (0.74, 0.96) 0.008

FOXM1 (per unit increase) 0.97 (0.96, 0.99) 0.0009

KRT23 (per unit increase) 5.07 (1.32, 19.44) 0.018

MAGEA6 (per unit increase) 1.03 (0.97, 1.09) 0.419

S100A9 (per unit increase) 2.07 (0.63, 6.81) 0.233
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Figure 10. ROC curve for (A) CDKN2A, (B) CTSV, (C) FOXM1, and (D) KRT23 with AUC = 0.9879 for CDKN2A,
AUC = 0.8152 for CTSV, AUC = 0.8909 for FOXM1, and AUC = 0.7273 for KRT23, respectively.

Table 5. Univariate analysis of gene expression on overall survival using Cox model.

Factors Hazard Ratio (95% CI) p Value

CDKN2A (per unit increase) 0.999 (0.999, 1) 0.127

CDC20 (per unit increase) 1.12 (1.02, 1.23) 0.014
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Table 5. Univariate analysis of gene expression on overall survival using Cox model.
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CDKN2A (per unit increase) 0.999 (0.999, 1) 0.127

CDC20 (per unit increase) 1.12 (1.02, 1.23) 0.014

CTSV (per unit increase) 1.01 (0.96, 1.05) 0.747

FOXM1 (per unit increase) 1.004 (0.998, 1.01) 0.213

KRT23 (per unit increase) 1.19 (0.86, 1.64) 0.297

MAGEA6 (per unit increase) 1 (0.999, 1.001) 0.987

S100A9 (per unit increase) 0.94 (0.53, 1.66) 0.834

Table 6. Univariate analysis of gene expression on progression free survival using Cox model.

Factors Hazard Ratio (95% CI) p Value

CDKN2A (per unit increase) 0.999 (0.999, 1) 0.11

CDC20 (per unit increase) 1.12 (1.02, 1.22) 0.021

CTSV (per unit increase) 1.01 (0.98, 1.05) 0.529

FOXM1 (per unit increase) 1.002 (0.997, 1.01) 0.447

KRT23 (per unit increase) 1.08 (0.79, 1.47) 0.625

MAGEA6 (per unit increase) 1 (0.999, 1.001) 0.954

S100A9 (per unit increase) 1.27 (0.79, 2.06) 0.329
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3.9. Construction of Multiplex Model for Prognosis of Bladder Cancer

To evaluate if a multiplex model could improve performance over single biomarker(s),
a three gene panel was selected, which demonstrated good diagnostic performance was
subjected to determine the Pearson correlation coefficient. The Pearson correlation coeffi-
cient between CDKN2A and CTSV was −0.54 (p = 0.0005); CDKN2A and FOXM1 exhibited
−0.77 (p < 0.0001); and CTSV and FOXM1 was 0.7 (p < 0.0001) (Figure 11A), demonstrating
a variable selection to identify the minimum combination to accurately predict NMIBC
progression. The ROC curve for the combination of a three gene set (CDKN2A, CTSV,
and FOXM1) showed AUC = 0.9939. This analysis resulted in a final selection of a 3-gene
model that contains CDKN2A, CTSV, and FOXM1. This model is capable of discriminating
the progressive from non-progressive bladder cancer cases with sensitivity of 95.5% and
specificity of 100% (Figure 11B).

Figure 11. Scatter plot of (A) CDKN2A versus CTSV. The Pearson correlation coefficient between CDKN2A and CTSV was
−0.54 (p = 0.0005). CDKN2A vs. FOXM1. The Pearson correlation coefficient between CDKN2A and FOXM1 was −0.77
(p < 0.0001). CTSV versus FOXM1. The Pearson correlation coefficient between CTSV and FOXM1 was 0.7 (p < 0.0001).
(B) ROC curve for the combination of three biomarkers (CDKN2a, CTSV, and FOXM1) with AUC = 0.9939, sensitivity of
95.5% and specificity of 100%.

4. Discussion

Predicting the risk of bladder cancer progression is often challenging because of histo-
logic heterogeneity [13] and clinical characteristics of tumors. Therefore, there is a pressing
need for identification of precise and novel biomarkers with prognostic significance. Our
comprehensive analysis of databases identified 1516 differentially expressed genes (DEGs)
between NMIBC and MIBC. The IPA analysis of individual dataset showed diverse overrep-
resented canonical pathways. In GSE154261 dataset, a total of 6078 DEGs were identified
with significant enrichment in canonical pathways that include molecular mechanisms of
cancer, mitochondrial dysfunction, protein ubiquitination pathway, oxidative phosphory-
lation, sirtuin signaling pathway, EIF2 signaling, senescence pathway, mTOR signaling,
HER-2 signaling, estrogen receptor signaling, IGF-1 signaling, and hepatic fibrosis path-
ways. The GSE57813 dataset showed 7589 DEGs exhibiting RAR activation, molecular
mechanism of cancer, aryl hydrocarbon receptor signaling, tight junction signaling and
death receptor signaling, osteoarthritic pathway, PXR pathway, D-myo-inositol tetrakispho-
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sphate biosynthesis, calcium transport, 3-phosphoinoside degradation and biosynthesis
as overrepresented pathways. In the GSE37317 dataset, 7975 DEGs were noted and the
pathways significantly overrepresented were molecular mechanism of cancer, hepatic
fibrosis, glucocorticoid receptor signaling, and cardiac hypertrophy signaling, Hunting-
ton disease signaling, senescence pathway, hereditary breast cancer signaling, colorectal
cancer metastasis, NRF2-mediated oxidative stress response, estrogen receptor signaling,
axonal guidance signaling, and aryl hydrocarbon receptor signaling. Furthermore, the
GO annotation and KEGG pathway enrichment analysis revealed pathways enriched in
cell cycle/cell cycle checkpoint, signaling by receptor tyrosine kinase, nervous system
development, cellular response to external stimuli and regulation of transferase activity,
and autophagy. Previous studied showed that dysregulation of cell cycle events were
closely associated with cell growth, anabolism, and cell proliferation, which comprise
major hallmarks of cancer [14]. Therefore, investigating these signaling networks and
disease-specific pathways are important to understand bladder cancer progression.

Several previous studies involved only one dataset for analysis. Nonetheless, a recent
study by Xu et al. [15] analyzed three databases, while the present study collected more
public dataset for analysis. We focused on transcript levels of DEGs in low-risk NMIBC
and high-risk MIBC tissues. To explore the difference between the non-invasive versus
invasive group, we identified the DEGs and analyzed by GO and KEGG pathway enrich-
ment analysis. The enrichment analysis was constructed to demonstrate the nexus among
key signaling pathways. It appears that the risk scores were predominantly related to the
regulation of cell cycle. Interestingly the cell-cycle signaling pathway showed its close
liaison with nervous system development, and positive regulation of transferase activity.
Furthermore, the PPI network identified, mitotic spindle checkpoint, involvement of APC-
CDC20, FOXM1 transcription factor network, phosphorylation of Emi-1, endogenous TLR
signaling, CFCF, ARF, and c-MYC pathways, hypoxia and oxygen homeostasis as some
key differentially expressed pathways. Besides, our analysis highlighted several attributed
genes and their associated signaling network involved in bladder cancer prognosis, in-
cluding the family of ubiquitin-conjugating enzymes (UBE2C, UBE2D1, and UBE2E1),
regulatory protein involved in mitosis (CCNB1), cell division cycle protein ubiquitin ligase
(CDC16, CDC23, and CDC26) that are components of the multiprotein APC complex. Other
proteins involved in cell cycle regulation are the subunits of the anaphase-promoting
complex (ANAPC1, ANAPC2, ANAPC4, ANAPC5, ANAPC7, ANAPC10, and ANAPC11),
cyclin-dependent kinases (CDK1 and CDK27), genes encoding kinases involved in the spin-
dle checkpoint function (BUB1B and BUB3), mitotic spindle assembly checkpoint (MAD2L1)
and S100 calcium and RAGE receptor binding protein (S100A8). The above data tempted
to explore the gene regulatory network, which may give insight to understand its role in
disease progression. The results of gene network analysis revealed the interaction of genes
with anaphase-promoting complex/cyclosome (APC/C), which function together with one
of homologous coactivators, CDC20. APC/C is an evolutionary conserved multi-subunit
E3 ubiquitin ligase consisting of CDC16, CDC20, CDC23, CDC26, and CDC27 subunits that
function to regulate progression of cells through the mitotic phase of the cell cycle. A defect
in APC/C gene extends mitosis, inhibits drug-induced segregation errors in chromosomes,
and diminishes naturally occurring lagging chromosomes in malignant cells. Indeed,
somatic mutation in one the subunit CDC27 reduces chromosome segregation errors [16].
Additionally, it was demonstrated that the transcriptional regulation of CDC20 is mediated
by FOXM1/transcription factor network, which is in accordance with our gene regulatory
network data. BUB1B/MAD3L and BUB3 were also identified as molecules involved
in the regulating gene network [17]. BUB1B gene encodes a kinase involved in spindle
checkpoint function and plays a role in the inhibition APC/C by blocking the binding
of CDC20 to APC/C, delaying the onset of anaphase and ensuring proper chromosome
segregation [18,19]. Regarding CDKN2A and its interaction with MAGEA6 very little is
known so far, moreover previous studies identified higher expression of MAGEA6 in early
stage bladder cancer [20]. Cancer patients with high MAGEA6 expression exhibit poor
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prognosis. Conclusively, high expression of MAGEA6 in primary lesions could represent a
promising prognostic biomarker [20,21].

The PPI network analysis of three databases identified the following subsets of DEGs,
including CDC20, CDKN2A, CTSV, FOXM1, KRT23, MAGEA6, and S100A9, which were
significantly upregulated in bladder cancer. Moreover, collagen type I and 3 alpha chain
(COL1A2 and COL3A1), decorin (DCN), fibronectin (FN1), regulator of G protein signaling
(RGS2), and secreted phosphoprotein (SPP1) were significantly downregulated in NMIBC
specimens, compared to MIBC tissues. In addition, some of the genes were in line with
previously published studies [22–24]. The cell division cycle protein 20 (CDC20) homolog is
a key regulator of cell division that is encoded by the CDC20 gene in humans that combines
with the APC/C, and subsequently controls securin degradation. Loss of securin promotes
the degradation of cohesion, interferes in sister chromatid segregation, and transition
of cells from the G2/M phase to G1 phase of the cell cycle [25]. Abnormal expression
of CDC20 promotes premature anaphase, resulting in mitotic anomalies and aneuploidy,
which may promote carcinogenesis. Studies have demonstrated that CDC20 overexpression
decreases overall survival and recurrence-free survival time in bladder cancer patients [22].
The molecular mechanism(s) of its overexpression is still unclear in bladder cancer, and
further studies are required to establish it as a candidate biomarker.

CDKN2A, also referenced as cyclin-dependent kinase inhibitor 2A, encodes p16 pro-
tein that regulates cell cycle and is ubiquitously expressed in numerous tissues and cell
types [26,27]. p16 inhibits CDK4 and CDK6 [28,29], the cyclin dependent kinases thereby
activating the retinoblastoma (RB) family of proteins and its check on E2F transcription
factors [30,31], which block progression of cells from G1 to S-phase of the cell cycle [32,33].
CDKN2A can activate tumor suppressor p53 either by binding and obstructing MDM2 pro-
tein to p53 or directly inhibiting RB protein during the G1-phase cell cycle [34,35]. Previous
studies have demonstrated genomic alterations in CDKN2A in 20 to 60% of bladder
carcinomas, which are associated with either RB1 deletions or E2F amplification [36,37].
Overexpression of CDKN2A is significantly observed in genomically unstable tumors
associated with shorter progression-free survival in bladder cancer patients [38].

The CTSV gene encodes CTSL protein, which is a member of the peptidase C1 fam-
ily, is a lysosomal cysteine proteinase that degrade extracellular matrix and basement
membrane components such as type IV collagen, laminin, fibronectin, and proteoglycans
of the bladder [24]. CTSL promoter activity and synthesis is driven by tumor secreted
cytokines, and its upregulation is reported in a wide range of malignancies, including
bladder cancer. High expression of CTSL correlates with metastatic aggressiveness and
poor patient prognosis [39]. Evidence shows that CTSL expression may be linked to cancer
grade and stage [40]. Studies have proposed CTSL as an independent predictor of bladder
cancer and invasiveness in patients with a history of urothelial carcinoma [41,42].

FOXM1, a member of the forkhead gene family, is a regulator of embryogenesis and
numerous developmental processes [43]. FOXM1 is primarily expressed in proliferating
cells or induced by growth factor release. FOXM1 is designated as a proto-oncogene in most
cancers [44], as it exclusively expressed in dividing cells and is involved in angiogenesis,
cell migration and epithelial-to–mesenchymal transition. Relative research considers that
FOXM1 plays an essential role in the phenotype determination and the development of
molecular bladder cancer subtypes [45,46]. FOXM1 has been designated as a prognostic
marker for bladder cancer and an independent predictor for overall survival and disease-
specific survival in muscle-invasive bladder cancer [46]. The FOXM1 signaling network
and its regulators, including FOXO3, PI3K, and AKT, remains putative drug targets in
bladder cancer which requires additional work.

Human keratin 23 gene (KRT23) belongs to the family of type I keratins and 60–65%
similarity within the alpha-helical rod domain [47]. Previous studies have reported abnor-
mal expression of KRT23 in numerous tumor tissues, including bladder cancer. KRT23 is
localized in the Golgi apparatus in the cytoplasm and is involved in the development and
migration of various types of human cancers [48]. An association has been established
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between KRT23 and Smad4 in malignant cells, promoting Smad4-dependent upregula-
tion and subsequent migration of cancer cells. However, the mechanism through which
KRT23 regulates epithelial-to-mesenchymal transition in malignant cells remains unclear.
Precise bio-informatics analysis provides evidence that KRT23 may upsurge epithelial-
mesenchymal transition through regulation of TGF-β signaling pathway [49]. Additional
studies are needed, especially in bladder cancer.

MAGEA6 (MAGE family member A6) is a protein coding gene associated with
melanoma and osseous dysplasia [20]. MAGEA6 is overexpressed in a variety of human
cancers, including bladder carcinoma [50]. Studies have shown that MAGEA6-TRIM28 lig-
ase complex can degrade AMPK, a master cellular energy sensor and regulator, through
ubiquitination of the alpha catalytic subunit (PRKAA1) resulting in overall reduction of
AMPK protein levels in tumors [51]. Downregulation of AMPK by MAGEA6 led to signifi-
cant decrease in autophagy and upregulation of mTOR, facilitating tumor growth. High
MAGE6A expression is associated with poor clinical outcomes [52]. However, studies
elucidating the tumorigenic role of MAGE6A in bladder cancer need further exploration.

S100A9 is a member of the low-molecular calcium binding S100 protein family im-
plicated in regulating cell proliferation [53]. S100A9 is induced by various mitogens
including VEGF-A, TGFβ and TNFα, increasing motility and promoting metastatic process.
S100A9 supports proliferation and invasion of malignant cells which is dependent on
receptor of advanced glycation end products (RAGE) and MAPK signaling cascades [54].
Studies have investigated the role of S100A9 in tumorigenesis [55]; however, the underlying
molecular mechanism(s) in bladder cancer remains unknown.

We selected seven genes differentially regulated in NMIBC versus MIBC and their
expression was analyzed in various bladder cancer cells representing stage-specific dis-
ease progression. Among the seven genes analyzed, CDKN2A and MAGEA6 showed a
progressive increase in the transcript with disease severity, whereas CTSV, FOXM1 and
KRT23 gene transcript levels were higher in the carcinoma and metastatic carcinoma cell
line. Irrespective of the tumor type, CDC20 and CTSV showed higher expression in tran-
sitional cell carcinoma. Previous studies have shown abnormal expression of CDC20 in
bladder cancer tissue that may serve as a potential diagnostic biomarker for NMIBC [56].
In addition, CDKN2A, is also designated as a molecular risk factor for tumor progression
in NMIBC [38]. Our data suggest that overexpression of CDKN2A and MAGEA6 are
associated with Ta/T1 stage NMIBC. The mRNA expression of seven genes were further
confirmed from TCGA database demonstrating that the expression of these genes were
markedly higher in bladder cancer compared with normal tissues. Indeed, the expression
of CDC20, FOXM1, and MAGEA6 showed higher levels in tumors compared with normal
tissues. Further, it will be interesting to validate the above set of genes in stage-specific
manner in bladder cancer.

In order to validate the prognostic significance of the seven selected genes in low-
risk NMIBC versus high-risk MIBC tumors, overall survival (OS) and progression free
survival (PFS) were estimated using logistic and Cox regression. The results suggested
that high expressions of these genes were associated with the malignant progression of
bladder cancer. Furthermore, the mRNA expression levels of the subset genes were all
significantly higher in MIBC tissues compared with NMIBC, which demonstrated that
these seven genes played important roles in the progression of bladder cancer. The effect of
expression of these genes were analyzed on survival and tumor aggressiveness in patients
with bladder cancer. The univariate analysis of gene expression showed that CDC20 was
predictive of OS (p = 0.014). Indeed, univariate analysis of gene expression on PFS using
the Cox model showed the CDC20 was predictive of PFS (p = 0.021). Univariate analysis
of gene expression data on tumor aggressiveness (NMIBC versus MIBC) using logistic
regression showed genes, including CDKN2A, CTSV, FOXM1, and KRT23, were predictive
of tumor aggressiveness.

The study has the following limitations and strengths. Firstly, there are a lack of
in vivo experiments to validate the mechanisms of the genes in driving bladder cancer.
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Secondly, the sample size for validation analysis was small; therefore, some potential assays
could not be performed. Lastly, NMIBC exhibit a heterogeneous subtype, thus multivariate
analysis is needed to control the confounding effects, which requires substantial sample
size. Therefore, further research with large sample size is warranted, which remains top
priority on our research agenda. The strength of the study is the identification of a subset
of seven genes, which are prognostic for bladder cancer. Furthermore, a combination of
three gene set has 95.5% sensitivity and 100% specificity to differentiate between high-risk
and low-risk disease subtype.

5. Conclusions

In summary, using a series of bioinformatics and retrospective analyses, the present
study identified a subset of seven genes (CDC20, CDKN2A, CTSV, FOXM1, KRT23, MAGEA6,
and S100A9), which were significantly associated with progression and prognosis of blad-
der cancer. Furthermore, the study also revealed a three-panel gene set (CDKN2A, CTSV,
and FOXM1) that can accurately predict tumor progression and suggested as potential
prognostic biomarker(s) for bladder cancer, which could aid in clinical decision making.
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