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Simple Summary: In this review, we evaluate the updated data of the immunological effects of
kinase inhibitors on the innate immune system and provide an in-depth analysis of the underlying
mechanisms. We also discuss how this immunological effect can be harnessed to improve cancer
treatment and highlight recent successes, such as the combination with anti-tumor immunotherapy.
Last, we explore novel kinase targets and the incorporation of them with targeted drug delivery
techniques as promising research areas.

Abstract: Innate immune cells constitute a plastic and heterogeneous cell population of the tumor
microenvironment. Because of their high tumor infiltration and close interaction with resident tumor
cells, they are compelling targets for anti-cancer therapy through either ablation or functionally
reprogramming. Kinase inhibitors (KIs) that target aberrant signaling pathways in tumor prolifera-
tion and angiogenesis have been shown to have additional immunological effects on myeloid cells
that may contribute to a protective antitumor immune response. However, in patients with malig-
nancies, these effects are poorly described, warranting meticulous research to identify KIs’ optimal
immunomodulatory effect to support developing targeted and more effective immunotherapy. As
many of these KIs are currently in clinical trials awaiting approval for the treatment of several types
of solid cancer, we evaluate here the information on this drug class’s immunological effects and how
such mechanisms can be harnessed to improve combined treatment regimens in cancer.

Keywords: kinase inhibitors; immune checkpoint inhibitors; VEGFR; immunogenic cell death;
pyroptosis; tumor-associated macrophages; MDSCs; tumor microenvironment

1. Introduction

The abnormal activation of signaling pathways is one of the hallmarks of various types
of cancer. Kinases function as a crucial node within the signaling network by phosphorylat-
ing surface receptors and cytoplasmatic enzymes, activating cellular functions that could
potentially trigger carcinogenesis. Therefore, protein kinases serve as a promising target
for anti-cancer therapy. Following the success of the first small molecule kinase inhibitor
(KI), Imatinib, for the treatment of chronic myelogenous leukemia 20 years ago, along with
a better understanding of the molecular mechanism of oncogenesis, an increasing number
of KIs have gone through extensive investigation, which has ultimately led to the broad
clinical use of KIs in cancer patients with specific mutations.

Initially, the therapeutic efficacy of KIs has been postulated to be derived from their
actions on malignant cells only. However, clinical evidence suggests that patients show
durable responses after the discontinuation of KI therapy [1]. Supporting this notion, in
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preclinical studies, KIs exert stronger anti-tumor activity in immunocompetent animal
models compared to immunodeficient mice, indicating that at least part of the anti-tumor
activity is mediated via the immune system [2].

Immune evasion and suppression remain the major hurdles in anti-cancer therapy.
Immunotherapy has revolutionized the treatment of cancer, giving hope to patients who
were previously deemed incurable. However, only a minority of patients experience
long-lasting benefits from these therapies, and the incidence of severe side effects remains
high [3]. To unlock immunotherapy’s full potential, we must reinforce our therapeutic focus
towards the immune system and its response to cancer. The current cancer immunother-
apy strategies primarily focus on adaptive immune responses. For example, immune
checkpoint blockades, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and
programmed cell death protein 1/programmed cell death ligand 1 (PD1/PD-L1), activate
T cells. However, the complex tumor microenvironment (TME) and associated myeloid
cells’ immunosuppressive nature are responsible for the primary resistance to immune
checkpoint inhibition (ICI) [4,5]. Since the onset and maintenance of T cell responses and
the development of long-term protective memory depend on the interplay between the
adaptive and innate immunity, targeting innate immunity provides a promising opportu-
nity to re-activate the anti-tumor immune response [6]. Therefore, the role of the innate
immune response in cancer immunotherapy should be considered in cancer immunology
and immunotherapy.

The immunological effects of KIs provide a strong rationale for the combination with
immune checkpoint inhibition, aiming at synergistic effects. In this review, we evaluate
the most recent data on the immunological effects of KI, with a specific focus on the innate
immune system. We will explore how these effects can be incorporated in the multimodal
approaches against malignant tumors and to improve the patient outcome.

2. Innate Immunity in the Context of Cancer

In addition to providing protection against infections, the innate immune system
serves as the front line of the non-specific defense against oncogenesis and cancer progres-
sion, but it also initiates and directs the adaptive immune response (Figure 1). Cells of the
innate immune system, such as natural killer (NK) cells, rapidly detect membranous or
soluble molecules from tumor cells by pattern recognition receptors (PRRs) and exert direct
cytolysis on tumor cells. Next to their direct cytotoxic effects, they orchestrate downstream
inflammatory reactions. Ultimately, this leads to the infiltration of other myeloid and
lymphoid cells, such as dendritic cells (DCs), into TME. Macrophages and DCs function as
professional antigen-presenting cells (APCs). After tumor antigen uptake, DCs migrate to
secondary lymphoid organs to cross-present the tumor antigens and prime tumor-specific
CD8+ T cells, resulting in their activation [7]. In addition, DCs in the tumor produce
chemokines that are essential for the infiltration of tumor-specific CD8+ T cells into the
tumor that exert direct tumor cytotoxicity [8].

Tumor-associated macrophages (TAMs) are the largest fraction of the myeloid infiltra-
tion within TME, which is generally associated with adverse clinical outcomes, as shown in
various solid tumors [9–13]. Under the influence of different local factors, such as cytokines
and chemokines, macrophages recruited in the TME undergo functional programming,
resulting in an immunosuppressive and pro-tumoral phenotype [14]. The underlying
spectrum of TAMs’ immunosuppressive properties has not been completely elucidated
and ranges from direct effects on tumor cell proliferation and angiogenesis expansion to
the recruitment of T regulatory cells (Treg) and suppression of cytotoxic CD8+ T cells [15].
Re-educating TAMs towards an antitumor phenotype might unleash the cytotoxic function
of CD8+ T cells; hence, clinical trials examining the combination of macrophage antagonists
and other immunotherapies, such as ICIs, are ongoing (e.g., NCT04301778) [16,17]. Further-
more, the inhibition of macrophage differentiation and recruitment by blocking macrophage
colony-stimulating factor signaling improves anti-CTLA4 and anti-PD1 therapeutic effi-
cacy [16]. In addition to TAMs, populations of myeloid cells with immunosuppressive
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properties have also been described in the circulation and termed ‘myeloid-derived sup-
pressor cells’ (MDSCs). They are recruited to the TME by several chemokines, such as C-C
motif ligand (CCL) 2 and CCL5, where they rapidly differentiate into TAMs in various
preclinical tumor models [18]. Similar to TAMs, the MDSC recruitment inhibition improves
the response to ICIs in two different murine carcinoma models [19]. Interestingly, in murine
tumor models, it was shown that anti-PD-1 monoclonal antibody (mAb) therapy rapidly
removed from PD-1+ CD8+ T cells and transferred to neighboring PD-1 negative TAMs,
which could be reversed by the blockage of the Fc/FcγR binding that eventually amplifies
anti-PD-1 therapeutic efficacy [20]. In cancer, different types of innate immune cells, in-
cluding TAMs and MDSCs, facilitate tumor growth and counteract anti-tumoral adaptive
immune responses. Regulating innate immune responses, therefore, offers compelling
opportunities for long-lasting, comprehensive tumor control.
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tumor antigens to CD8+ T cells, resulting in their activation. In addition, DCs produce chemokines to recruit tumor-specific 
CD8 T cells into TME, exerting direct cytotoxicity on tumor cells. Collectively, innate immune cells are closely involved in 
antitumor response via non-specific killing and modulation of tumor-specific T cell priming, infiltration, and cytotoxicity. 
Abbreviations: APC, antigen presenting cells; CXCL, Chemokine (C-X-C motif) ligand 9; DAMPs, damage-associated mo-
lecular pattern; DCs, dendritic cells; HMGB1, high mobility group box 1 protein; HSP70, 70 kilodalton heat shock proteins; 
iDC, immature dendritic cells; Mφ, macrophage; MHC, major histocompatibility complex; NK, natural killer cells; TCR, T 
cell receptor; TME, tumor microenvironment. Created with BioRender.com. 
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Figure 1. The role of innate immunity in anticancer response. Within the tumor immunity cycle, myeloid cells (NK cells,
Mϕ) recognize tumor cells via DAMPs and exert direct cytolysis by which they activate an adaptive immune response
and recruit DCs into the TME. DCs take up and process tumor antigens and migrate to lymph nodes to cross-present the
tumor antigens to CD8+ T cells, resulting in their activation. In addition, DCs produce chemokines to recruit tumor-specific
CD8 T cells into TME, exerting direct cytotoxicity on tumor cells. Collectively, innate immune cells are closely involved in
antitumor response via non-specific killing and modulation of tumor-specific T cell priming, infiltration, and cytotoxicity.
Abbreviations: APC, antigen presenting cells; CXCL, Chemokine (C-X-C motif) ligand 9; DAMPs, damage-associated
molecular pattern; DCs, dendritic cells; HMGB1, high mobility group box 1 protein; HSP70, 70 kilodalton heat shock
proteins; iDC, immature dendritic cells; Mϕ, macrophage; MHC, major histocompatibility complex; NK, natural killer cells;
TCR, T cell receptor; TME, tumor microenvironment. Created with BioRender.com.

3. Kinase Inhibitors (KIs) for Cancer Treatment

During the past few decades, molecular pathways regulated by driver oncogenes
have been extensively studied. We now know that genetic alterations of protein kinases
are involved in the oncogenesis of various types of cancer. Therefore, oncogenic kinases
have become highly attractive pharmaceutical targets over the past two decades [21].
The targeted kinase group includes tyrosine kinase and serine/threonine protein kinase;
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both contain surface receptors and cytoplasmic signaling proteins (Figure 2). Receptor
tyrosine kinases (RTKs) serve as the receptor of multiple growth factors and cytokines,
while downstream cytoplasmic signaling kinases, such as MEK1/2, transmit signals to the
nucleus [22,23]. KIs are developed as a group of small molecules that can pass through the
cell membrane and interact with the intracellular ATP binding site of kinases, leading to
the blockage of various downstream signaling cascades. Until now, the U.S. Food and Drug
Administration (FDA) has approved more than fifty KIs for clinical use in cancer patients
in the United States. The majority of KIs target RTKs, while others target intracellular
signaling kinase and serine/threonine protein kinases (Table 1). The most common drug
targets include vascular endothelial growth factor receptor (VEGFR), epidermal growth
factor receptor (EGFR), BCR-ABL, and anaplastic lymphoma kinase (ALK) [22].
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Figure 2. Mechanism of the FDA-approved kinase inhibitors. The targeted kinases include receptor tyrosine kinase
(cell surface, in dark green), non-receptor tyrosine kinase (intracellular, BCR-ABL), and serine/threonine protein kinase
(intracellular, in red). During oncogenesis and angiogenesis, constitutive overexpression or activation of protein kinases
promotes cell proliferation and survival and inhibits apoptosis. Kinase inhibitors can pass through cell membrane and
interact with the intracellular domain by interfering with the transfer of the terminal phosphate of ATP to the substrates,
hence blocking the activation of the downstream signaling cascades. Others** include AXL family, Trk family. Abbrevia-
tions: Akt, protein kinase B; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor receptors; MAPK,
mitogen-activated protein kinase; mTOR, mechanistic target of rapamycin; PDGFR, platelet-derived growth factor receptor;
PDK1, phosphoinositide-dependent kinase-1; PI3K, phosphoinositide 3-kinase.; STAT, signal transducer and activator
of transcription; TKIs, tyrosine kinase inhibitors; VEGFR, vascular endothelial growth factor receptor. Created with
BioRender.com.
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Table 1. List of FDA-approved kinase inhibitors for solid cancers.

Targets Clinical Indications Kinase Inhibitors

Receptor Tyrosine Kinase

VEGFR (multi-targeted) RCC, HCC, GIST, DTC, MTC, CRC
Sorafenib (2005), Sunitinib (2006), Pazopanib (2009),

Vandetanib (2011), Axitinib (2011), Cabozantinib (2012),
Regorafenib (2012), Lenvatinb (2015), Tivozanib (2021)

EGFR Lung cancer
Gefitinib (2002), Erlotinib (2004), Afatinib (2013),

Osimetinib (2015), Olmutinib (2016), Brigatinib (2017),
Dacomitinib (2018)

ALK Lung cancer Crizotinib (2011), Ceritinib (2014), Alectinib (2014),
Lorlatinib (2018)

MET Lung cancer Tepotinib (2019), Capmatinib (2020)

RET Lung, thyroid cancer Selpercatinib (2020), Pralsetinib (2020)

Her2 Breast Cancer Lapatinib (2007), Neratinib (2017), Tucatinib (2020)

Kit, PDGFR, CSF1R, FLT3
GIST Ripretinib (2020), Avapritinib (2020)
TGCT Pexidartinib (2019)

FGFR Bladder, cholangiocarcinoma Erdafitinib (2019), Pemigatinib (2020)

Trk Any metastatic solid tumor with
NTRK mutations Larotrectinib (2018), Entrectinib (2019)

Serine/threonine Protein Kinase

CDK family Breast cancer Palbociclib (2015), Ribociclib (2017)

B-Raf, MEK1/2 pathway Melanoma
Vemurafenib (2011), Dabrafenib (2013), Trametinib

(2013), Cobimetinib (2015), Encorafenib (2018),
Binimetinib (2018)

Neurofibromatosis type I Selumetinib (2020)

PI3K pathway Breast Cancer Alpelisib (2019)

FDA-approved small molecule kinase inhibitors for the treatment of solid cancer up to 2021; kinase inhibitors are categorized based on
primary targets and clinical indications. Abbreviations: ALK, Anaplastic lymphoma kinase; CRC, Colorectal cancer; CSF1R, Colony
stimulating factor 1 receptor; DTC, Differentiated thyroid cancers; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth
factor receptors; FLT3, Fms like tyrosine kinase 3; GIST, Gastrointestinal stromal tumors; Her2, Human epidermal growth factor receptor
2; MTC, Medullary thyroid cancer; NSCLC, Non-small-cell lung carcinoma; PDGFR, Platelet-derived growth factor receptors; PI3K,
Phosphoinositide 3-kinases; Raf, Rapidly accelerated fibrosarcoma; RCC, Renal cell carcinoma; RTKs, Receptor tyrosine kinases; SLL, Small
lymphocytic lymphoma; TGCT, Tenosynovial giant cell tumor; TKIs, Tyrosine kinase inhibitors.

The advantage of targeted therapies, such as KIs, compared with conventional chemo-
therapy, is that they are highly specific, which may limit treatment-related side effects.
However, as the targets of KIs are widely distributed, the receptor cross-reactivity between
the targeted cancer cells and healthy cells in patients could cause off-target toxicities, such
as cytopenia and gastrointestinal side effects [24].

Based on target selectivity profiles, the development of KIs has followed two related
yet independent paths [25–27], namely multitargeted kinase inhibitors (MKI) and selective
inhibitors. The overall anti-tumor activity of MKIs originates from the concomitant inhibi-
tion of a broad spectrum of human kinome. The clinical indication of these drugs does not
necessarily require additional individualized patient selection. A notable example is So-
rafenib, which has been approved for the treatment of advanced renal cell carcinoma (RCC),
hepatocellular carcinoma (HCC), and thyroid cancer due to its broad inhibitory profile,
including B-Raf, VEGFRs and fibroblast growth factor receptors (FGFR), platelet-derived
growth factor receptors (PDGFR), etc. [28]. On the other hand, the highly selective KIs tend
to inhibit a specific component of the oncogenic pathway. Patients are often selected for
treatment with these drugs based on specific predictive biomarkers using clinical samples.
For example, the EGFR tyrosine kinase inhibitor (TKI) Gefitinib is recommended as the
first-line treatment of non-small cell lung cancer (NSCLC) patients with EGFR sensitizing
mutations [29].
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KIs were initially developed as tumor-intrinsic therapies; however, recent work uncov-
ered that they are capable of modulating the composition and functionality of the tumor
immune microenvironment [30]. Preclinical and clinical data indicate that KIs, at clinically
relevant concentrations, exert immunomodulatory effects (Table 2): they can synergize with
immunotherapy or impair host immune defense, leading to secondary infections. Thus,
they could have either a favorable or detrimental impact on clinical outcomes [24,31–33].
However, early phase drug development has mainly employed human cancer cell lines
that were either cultured in vitro or xenografted into immunodeficient hosts; therefore, the
potential immunological effect was overlooked. It is reasonable to assume that only those
with favorable immunological effects have been selected for further clinical trials. Thus, the
impact of a targeted therapy-induced stress response on tumor cells and the corresponding
anti-tumor immunity remains to be further investigated.

Table 2. Immunological effects of kinase inhibitors in preclinical models.

Impact on
Immune Cells Drug Tumor Type Model Impact on

Tumor Cells

Combination
with Im-
munotherapies

Efficacy of
Combination with
Immunotherapy

Ref.

Increases
proinflammatory Mϕ
and T cell infiltration,
Upregulates PD-1 and
CTLA-4 expression

Crizotinib
10µM (plus
cisplatin)

NSCLC
Transplantable tumor
in immunocompetent
murine model

Induces ICD,
Upregulates
PD-L1
expression

Anti-PD-1
Anti-CTLA-4

Reaches 100% cure
rate [34]

Decreases
tumor-infiltrating
monocytes and
macrophages.
Increases CD8+ T cells

Lenvatinib HCC

Immunocompetent
murine model
(compared to im-
munocompromised)

Anti-PD-1 Improves tumor
regression [2]

Increases
tumor-infiltrating
macrophages, CD8+
T-cells, Tregs,
PMN-MDSCs

Lenvatinib ATC Orthotopic tumor
murine model Anti-PD-1 Improves tumor

reduction [35]

Increases IL12
secretion from TAMs Sorafenib HCC

Immunocompetent
murine model
(compared to im-
munocompromised)

Induces cancer
cell apoptosis

GPC3-targeted
chimeric antigen
receptor T cell
therapy

Increases animal
survival [36]

Decreases TAMs,
Promotes T cells
infiltration

Foretinib Colorectal
Carcinoma

Subcutaneous tumor
in murine model

Increases PD-L1
expression on
tumor cells

Anti-PD-1
Improves tumor
regression, prolongs
overall survival

[37]

Reduces TAMs and
MDSCs in TME
Promotes T cell
expansion

BRAF
inhibitors
+ MEK
inhibitors

Melanoma

Immunocompetent
murine model
(compared with im-
munocompromised
model)

Induces
pyroptosis ND [38]

Reprograms Mϕ
towards anti-tumor
phenotype

Regorafenib HCC In vitro Anti-PD1
Reduces tumor
growth, Improves
animal survival

[39]

Selectively depletes
MDSCs

Cabozantinib,
BEZ235

Prostate
cancer

Spontaneous tumor
in immunocompetent
murine model

Inhibits PI3K
pathway;
Reduces CCL5,
CCL12, CD40,
HGF, Increases
IL-1ra, CD142,
and VEGF
released by
tumor cells

Anti-CTLA-4 +
Anti-PD-1

Decreases tumor size,
Reduces lymph node
metastasis and lung
micro-metastasis

[40]

Decreases infiltration
of granulocytic
MDSCs and
neutrophils

Selumetinib Colorectal Transplantable tumor
in murine model Anti-CTLA-4

Reduces tumor
volume,
Prolongs animal
survival

[41]

Depletes MDSCs
Increases CD8+ T cells Sunitinib HPV-Induced

cancer
Induced tumor in
murine model Cancer vaccine Increases survival

rate [42]

Impairs recruitment of
immunosuppressive
TAN, enhances T cell
expansion

Capmatinib

Melanoma
Lung
Breast
Colon

Transplantable tumor
+ Inducible primary
tumor in murine
model

Anti-PD-1,
PCP

Increases animal
survival [43]
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Table 2. Cont.

Impact on
Immune Cells Drug Tumor Type Model Impact on

Tumor Cells

Combination
with Im-
munotherapies

Efficacy of
Combination with
Immunotherapy

Ref.

Increases PD-L1
expression in TAMs Sorafenib HCC Patient tissue ND [44]

Upregulates IL-15Ra
expression on
circulating monocytes

Sorafenib Melanoma Patient tissue ND [45]

Favors the expansion
of proinflammatory
TAMs, activates
antitumor response of
NKs

Sorafenib HCC Murine HCC model +
In vitro ND [46]

Negatively affects the
differentiation of
monocytes into
functional MDSCs

Sorafenib NA In vitro ND [47]

Increases MDSCs
infiltration Sorafenib HCC

Orthotopic liver or
subcutaneous tumor
in murine model

ND [48]

Induces Mϕ
pyroptosis, activates
NK cells anti-tumor
response

Sorafenib HCC

Spontaneous and
transplantable
murine model +
in vitro

ND [49]

Restores DCs
maturation Sorafenib NA In vitro ND [50]

Improves DCs
differentiation and
performance

Pazopanib NA In vitro ND [51]

Increases neutrophil
infiltration and
anti-tumor activity

Cabozantinib Prostate
cancer

Genetic engineered
tumor murine model

Triggers release
of CXCL12 and
HMGB1 from
dying tumor
cells

ND [52]

Increases TANs
infiltration Sorafenib HCC

Transplantable
murine model +
patient tissue biopsy

ND [53]

Reduces anti-tumor
TANs recruitment

MET TKIs
(PF-04217903,
INCB28060,
JNJ-
38877605)

Melanoma
Transplantable tumor
in Met conditional
knockout mice

ND [54]

Notes: studies were included if they evaluated a kinase inhibitor in preclinical setting in solid cancers and reported effects on myeloid
cells (TAMs, monocytes, MDSCs, NK cells, DCs, and neutrophils); studies were excluded if the drug was designed for the treatment
of hematological malignancies. Abbreviations: ATC, anaplastic thyroid cancer; CTLA-4, cytotoxic T-lymphocyte-associated protein
4; CCL5, chemokine ligand 5; CCL12, chemokine ligand 12; CXCL-12, chemokine ligand 12; DC, dendritic cells; HCC, hepatocellular
carcinoma;HMGB1, high mobility group box 1; HPV, human papillomavirus; ICD, immunogenic cell death; Mϕ, macrophages; NA,
not applicable; ND, not determined; NK, natural killer cells; PCP, poly(I:C) + CpG; PD-1, programmed cell death protein 1; PD-L1,
programmed death-ligand 1; PI3K, phosphoinositide 3-kinases; PMN-MDSCs, polymorphonucler myeloid-derived suppressor cells; TAN,
tumor-associated neutrophils.

4. Immunological Actions of Kinase Inhibitors through Effects on Tumor Cells

The immunological effect of KIs could derive from the direct impact of drugs on
malignant cells. As a notable example, KIs may invoke immunogenic cell death (ICD),
an immunologically unique type of apoptosis that could elicit a potent adaptive immune
response against dead cell-related antigens. Unlike the homeostatic removal of dying
cancer cells (i.e., tolerogenic cell death), which facilitates an anti-inflammatory and tumor-
promoting process, ICD induced by certain anticancer agents may elicit the immunos-
timulatory clearance of dying cells by APCs, where the dying cancer cells function as a
vaccine that drives tumor antigen-directed immunity [55]. The capacity of inducing ICD
has been observed in chemotherapy with agents, such as doxorubicin and oxaliplatin,
previously [56]. More recently, it has been reported that Crizotinib, a multitargeted VEGFR
TKI, was able to induce ICD in a NSCLC model [34]. Interestingly, compared to Crizotinib
single-agent treatment, a combination of Crizotinib and cisplatin, a non-ICD inducing
chemotherapeutical agent, further sensitized NSCLC to immunotherapy by upregulating
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PD-1/PD-L1 in a murine lung adenocarcinoma model [55]. Similar results have been
obtained in a murine prostate cancer model. Cabozantinib, a combinatorial VEGFR and
c-MET inhibitor, exerted a greater anti-tumor effect than c-MET inhibition alone, suggesting
a potential mechanism independent of c-MET inhibition. It has been found that Cabozan-
tinib triggers the release of C-X-C motif chemokine ligand 12 (CXCL12) and high mobility
group box 1 protein (HMGB1) from dying tumor cells, which mediate acute neutrophil
mobilization and migration, contributing to an amplified anti-tumor response. Although
the ICD-induced anti-tumor response ultimately relies on CD8+ T cells, intact toll-like
receptor 4 (TLR4) signaling in tumor-infiltrating innate immune cells, such as DCs, is
required since the danger signals or TLR agonists are first perceived by innate immune
cells. Thus, TLR4 functions as a crucial node that bridges innate and adaptive immunity in
the process of ICD [57].

Another mechanism of the immunogenic effects of KIs is through the induction of
pyroptosis, a hyperinflammatory type of programmed cell death that was initially observed
in macrophages upon infection [58]. The immunomodulatory potential of pyroptosis is
mediated through the secretion of pro-inflammatory cytokines, such as interleukin (IL)-
1β and endogenous DAMPs, during the process of cell rupture. Nevertheless, Erkes
et al. revealed that melanoma cells treated with a BRAF–MEK inhibitor released factors
that could activate and prime the DCs in a pyroptosis-dependent way [38]. Indeed, in
an immunocompetent murine model, the BRAF–MEK inhibitor treatment increased the
expression of multiple immunostimulatory molecules, including HMGB1, calreticulin, and
IL-1α, from melanoma cells, which led to increased major histocompatibility complex
(MHC) -II expression on the tumor-resident DCs [38].

KIs could also interfere with the paracrine signaling between tumor and immune
cells as cytokines released by cancer cells can have diverse effects on myeloid cell function.
For instance, in a prostate cancer murine model, tumor cells were able to recruit MDSCs
and drive the immunosuppression-related gene expression in these cells through the
secretion of multiple cytokines. This effect was abrogated by Cabozantinib pre-treatment by
downregulating the immunosuppressive cytokine levels, including IL-1 receptor antagonist
(IL-1Ra), CCL 5, CCL12, CD40, and hepatocyte growth factor (HGF) [40].

Altogether, these observations support the idea that the anti-tumor immune response
elicited by tumor-released factors/signals upon KI treatment might have profound clini-
cal implications.

5. Immunological Effects of VEGFR–MKIs

VEGFR is the major therapeutic target for most MKIs. The multitarget VEGFR KIs can
exert an immunological effect either through the alteration of angiogenesis in the TME or
through other non-angiogenic effects on the TME.

5.1. Immunologic Effects of VEGFR–MKIs Related to Angiogenic Alterations of the TME

A structurally abnormal and leaky vasculature is a hallmark of most tumor tissues.
VEGF, released by tumor cells and surrounding stoma, is the major driver of tumor an-
giogenesis. The VEGFR family contains three tyrosine kinases, of which VEFGR2 is the
dominant signaling receptor for VEGFs that transmits signals to the nucleus and ultimately
promotes vascular endothelial cell mitogenesis, survival, and vascular permeability during
angiogenesis [59]. VEGFRs are expressed by various cell types within the TME, mostly
endothelial cells but also immune cells [60,61]. Beyond their role in angiogenesis, the
VEGF/VEGFR pathways are also implicated in modulating both local and systemic im-
munosuppression. The underlying mechanism could be mediated, directly or indirectly, by
vasculature. First, VEGF has been shown to inhibit DC maturation and antigen presenta-
tion, thus hampering T cell activation [62]. Second, the overexpression of VEGF creates
an abnormal vascular network in cancer, contributing to an immunosuppressive TME
marked by hypoxia, low pH, and elevated interstitial pressure, which could facilitate the
recruitment and differentiation of the immunosuppressive cells, including TAMs, MDSCs,
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and Tregs. It has been shown that MDSCs would rapidly differentiate into immunosup-
pressive TAMs in hypoxic conditions [18,63]. Therefore, the immunostimulatory effect of
anti-VEGF therapy could derive from normalizing tumor vasculature, alleviating hypoxia,
increasing effector T cell infiltration, decreasing the population of MDSCs and Tregs, and
restoring DCs [64–66]. Supporting this notion, various preclinical studies revealed that
anti-VEGF therapy, either with anti-VEGF mAb or TKIs, could enhance the efficacy of
different immunotherapies, leading to tumor regression and a prolonged animal survival
phenotype [67,68]. Based on those promising results, such combinations have been widely
investigated in clinical trials [69].

5.2. Immunological Effects of VEGFR–MKIs Independent of the Angiogenic Pathway

While many of the immunological effects of VEGFR–MKIs can be explained by their
VEGFR-inhibitory effects, various other cellular and environmental factors within TME
may be involved as well. It has been well established that KIs have a direct impact on
both malignant and other healthy cells. The tumor infiltrating myeloid cells (TIMCs) are of
particular interest because some of the targeted kinases are also expressed on TIMCs [70].
Indeed, some VEGFR–MKIs have shown multiple immunostimulatory actions via the
direct interaction with myeloid cells or altering the TME. Such effects include promoting
the functional programming of TAMs towards an antitumoral phenotype [46,64], restoring
the activity of circulating monocytes [45], suppressing the population of regulatory T
cells [71], and inhibiting the function of MDSCs [47,48].

Supporting the therapeutic relevance of these mechanisms, accumulating evidence
suggests that MKIs promote an immune permissive environment by the direct immune-
stimulation on myeloid cells. For instance, Sorafenib activated NK cell-mediated direct
killing against a tumor by inducing pyroptosis in the macrophages and reducing the MHC-I
expression on malignant cells simultaneously [49]. Along similar lines, a murine HCC
model showed that Sorafenib activates NK cells via the reprogramming of TAMs towards
an anti-tumor phenotype [46].

Besides triggering the non-specific cytolysis function of NK cells, KIs mediate an
immune-stimulatory effect by priming effector T cells. For instance, in a preclinical murine
model, low-dose Regorafenib was found to increase cytotoxic T cell function and antitumor
immunity through the programming of macrophages toward the anti-tumor phenotype,
possibly via the p38 mitogen-activated protein kinase (p38MAPK) pathway [39]. DCs
play a central role in the initiation and sustaining of the anti-tumor T cell response. Upon
taking up dying tumor cells that release DAMPs, DCs undergo maturation, migration,
and then process cancer antigens onto MHC-I for presentation to CD8+ T cells. Tumors
have developed multiple pathways to suppress DC maturation and function, including the
release of VEGF. Sorafenib restores DC maturation partially by the blockage of the VEGF
pathway [50]. Interestingly, similar results have been obtained using Pazopanib, which
promoted DC differentiation and functionality by upregulating the maturation markers
MHC-II, CD40, and C-C chemokine receptor type 7 (CCR7) while downregulating PD-L1
concomitantly [51].

Neutrophils are the first line responders in the initiation of an innate immune re-
sponse, and can acquire either pro-inflammatory, antitumor, or pro-tumorigenic properties
through mobilization and infiltration. The differentiation of the aforementioned pheno-
types requires the close interaction with the chemokine context of TME, which could
potentially be modulated by MKIs [72]. For instance, Cabozantinib triggers a neutrophil-
mediated anticancer activity via CXCL-12/HMGB1/CXCR4-mediated recruitment in a
murine model [52]. Similarly, Sorafenib treatment recruits tumor neutrophil infiltration in
animal models as well as HCC patients by inducing the CXCL5 expression in tumor cells
via the hypoxia-inducible factor 1-alpha (HIF1α)/nuclear factor-κB (NF-κB) pathway [53].

MDSCs are described as a heterogeneous population of pathologically activated
myeloid cells at various stages of maturation. MDSCs affect multiple aspects in TME,
including immune suppression, promotion of angiogenesis, and tumor invasion; thus, the
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functional alterations caused by KIs might assist or impair their efficacy [73]. Supporting
this notion, an in vitro study showed that Nilotinib, Dasatinib, and Sorafenib impaired
the MDSCs formation in the early induction phase [47]. On the contrary, in a murine
orthotopic HCC model, Sorafenib treatment increased MDSCs infiltration [48]. Moreover,
contradictory findings have also been observed in clinical studies. Data from HCC patients
revealed that the PD-L1 expression in tumor infiltrating macrophages was significantly
increased after Sorafenib treatment. These conflicting observations might be caused by the
difference between the murine and human immune system and difficulties in replicating
human TME, thus, further investigation is warranted [44,48].

In summary, the majority of the FDA-approved MKIs have been shown to mediate
the robust immune-stimulatory effects that might amplify the therapeutic anti-tumor
efficacy. However, inconsistencies in the literature should be noted, possibly because of the
difference in the selectivity and targeted kinome among the MKIs and the relative shortage
of clinical studies. Hence, the therapeutic relevance remains a matter of debate.

6. Immunomodulation by Other Kinase Inhibitors

Besides the VEGFR pathway, many other growth factors and RTKs have been shown
to work in a complementary and coordinated manner to regulate tumor growth and angio-
genesis. Although practically all kinase inhibitors have been reported to exert antitumor
activity somehow via an immune-mediated mechanism [74], certain kinase families are of
particular interest since they are involved in both oncogenic and immune-related pathways.

6.1. AXL Pathway

The TYRO3, AXL, and MERTK (TAM) family is a group of RTKs that uniquely co-
express on immune cells. Besides its role in tumorigenesis and metastasis, the TYRO3/AXL/
MERTK family plays a major role in maintaining tissue homeostasis and wound heal-
ing via various mechanisms, including efferocytosis, reprogramming macrophages to-
wards anti-inflammatory phenotypes, and terminating TLR signaling in APCs. The
TYRO3/AXL/MERTK family can be triggered by apoptotic cell materials, which are
abundant within the TME, hence promoting a immunosuppressive landscape [75]. There-
fore, targeting the TYRO3/AXL/MERTK RTK family may directly impact tumor growth
and relieve immunosuppression [76]. Supporting this notion, the high expression of AXL is
associated with a resistance to ICIs in a murine breast cancer model [77]. In line with these
observations, several preclinical studies have shown the antitumor immunomodulatory
effects of Cabozantinib, a small molecule KI targeting the AXL and MET pathways. The pos-
sible mechanism includes increased MHC-I expression and robust neutrophil infiltration
and the concomitant suppression of MDSCs recruitment [78].

6.2. HGF/c–MET Axis

Functioning as an RTK binding with HGF, c-MET is aberrantly expressed in cancers,
regulating cell proliferation, motility, migration, and invasion [79]. Interestingly, pre-clinical
data have demonstrated the potential immunomodulatory effect of c-MET inhibitors.
Particularly, Capmatinib, a c-MET kinase inhibitor approved by the FDA to treat metastatic
NSCLC with specific mutations, has shown to promote an anti-tumor response independent
of the tumor cell-intrinsic c-MET pathway blockade. Further, c-MET is also expressed by
tumor stromal cells. For instance, neutrophils upregulates c-MET expression in tumor-
bearing conditions [80]. In a murine melanoma model, c-MET+ neutrophils acquired an
immunosuppressive phenotype after being recruited into the TME. The adjuvant inhibition
of the c-MET pathway either by Capmatinib or genetic ablation specifically in neutrophils
resulted in the improved efficacy of immunotherapy and restored T cell expansion and
functionality [43]. Nonetheless, contradictory results have been reported in both animal
models and patient samples, showing an increased expression of the MET on neutrophils
compared to healthy controls, suggesting that the therapeutic benefit of the MET inhibition
in cancer cells could be, to some extent, hindered by the concomitant blockade of the
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c-MET pathway in anti-tumor neutrophils [54].These findings underscore a mixed role
of MET KIs in cancer treatment: on the one hand, in tumors with MET proto-oncogene
mutation, this pathway is vital for the cell survival; on the other hand, it promotes tumor-
associated neutrophil (TAN) infiltration. However, due to the limited information available
on the roles of TAN, the MET inhibitor mediated immunological response remains to be
further elucidated.

6.3. The Downstream MAPK Pathway and mTOR Pathway

Activated RTKs are able to recruit and regulate a wide range of intracellular protein
kinases to regulate cell proliferation and differentiation, including RAS/MAPK and PI-
3K/AKT/mTOR signaling. Those cytoplasmic kinases are crucial mediators of extracellular
signals perceived by RTKs, and oncogenic mutations in these kinases are also common
in various solid tumors [81]. The MAPK pathway is an essential oncogenic driver of
human malignancies and targeted therapy; specifically, blocking this signaling module has
widely been employed as an important anti-tumor strategy [82]. Trametinib is an inhibitor
targeting MEK1/2, two related kinases in the MAPS cascade. In an immunocompetent
murine model, Trametinib restored an immune-permissive environment by blocking the
expansion of monocyte-MDSCs. This is the result of a reduced differentiation of MDSCs
from their bone marrow precursors and a decreased secretion of chemotactic molecules
from tumor cells that contribute to the reduced recruitment of the MDSC in the TME [83].
Along similar lines, Selumetinib, an ERK inhibitor, has been reported to relieve immuno-
suppression in a murine model. Selumetinib impaired the recruitment and differentiation
of tumor-promoting infiltrating immune cells, including TANs, granular MDSC, and Ly6C
+ MHCII+ intermediate TAMs within TME, while concomitantly inhibiting the expression
of environmental mediators of immunosuppression, such as cyclooxygenase (Cox)-2 and
arginase (Arg)-1 [41].

Taken together, these observations complemented and extended the findings of the
immunomodulation of KIs, which could serve as possible therapeutic targets or be used as
combinatorial regimes with other immunotherapies.

7. Rationale of the Combined Therapy

Immunotherapies, especially ICI that targets PD-1/PD-L1 and CTLA-4 pathways to
re-activate T effector cells, play an emerging role in cancer treatment [84]. However, trials
done in advanced melanoma, NSCLC, and RCC indicate that only a small fraction of the
patients benefit from these treatments [85–87]. Therefore, combination therapies are needed
to increase the response rate. Unresponsive patients tend to have non-T-cell-related intra-
tumoral inflammation, characterized by the tumor-permissive and immunosuppressive
phenotypes of innate immune cells [88]. The immunological effects mediated by KIs poten-
tially influence their clinical performance, on the one hand by re-activating the immune
response that enhances their efficacy or by inducing immunosuppression that offsets the
efficacy of KI monotherapy but may be therapeutically actionable by ICI (e.g., Sorafenib
induced PD-L1 upregulation) [44] (Figure 3). Thus, the combination of ICI and targeted
anti-cancer agents, such as KIs, are promising immune-oncology multimodal strategies.

Preclinical studies have shown the synergistic antitumor efficacy of such combinations
rely on the innate immune system [2,40,89]. For example, Cabozantinib was shown to
enhance ICI efficacy through selectively depleting MDSCs via the suppression of MDSC-
promoting cytokines released by cancer cells and the upregulation of IL-1Ra [40]. Similarly,
Regorafenib amplified the antitumor efficacy of ICI through both anti-angiogenic and
VEGFR-independent mechanisms [39,90]. On the other hand, the addition of ICI could
overcome the undesirable immunological effects caused by KI. This is exemplified by the
combination of Lenvatinib-anti-PD-1/PD-L1 in a pre-clinical immunocompetent murine
model, in which Lenvatinib monotherapy increased the infiltration of TAMs, Tregs, and
polymorphonuclear MDSCs (PMN-MDSCs), while combined therapy showed a signif-
icantly decreased infiltration by PMN-MDSCs, which, in turn, was associated with an
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improvement in tumor shrinkage and survival [35]. Besides ICI, other immunotherapy,
such as a cancer vaccine, could also benefit from the immunological effects of KIs when
administered in combination. For instance, Sorafenib augmented the antitumor effects of
mouse chimeric antigen receptor (CAR) T cells in an immunocompetent murine model,
in part by promoting IL-12 secretion in TAMs and cancer cell apoptosis [36]. Similarly,
Sunitinib showed a synergic effect with cancer vaccination by depleting MDSCs, which
reversed de novo resistance to ICI [42]. In an in vitro and subcutaneous animal model,
Foretinib upregulated the PD-L1 expression in tumor cells through the JAK2-STAT1 path-
way while compromising the function of diverse immunosuppressive cells, such as TAMs
and MDSCs, simultaneously, hence synergizing with the anti-PD-1 antibody to enhance
the T cell anti-tumor response through relieving the immunosuppressive factors within the
TME [37].
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cells creates a tumor-promoting and immunosuppressive environment by impeding DC maturation and T cell infiltration,
increasing the recruitment of Tregs, TAMs, and MDSCs. KIs exert immunological effects by either blocking VEFG pathway
or depleting/reprogramming the immunosuppressive cells directly. (B) ICI are antibodies against inhibitory pathways that
block effective antitumor T cell response, including the PD-1/PD-L1 axis and CTLA-4. The rationale of the combined therapy
is predicated on relief of immunosuppression within TME by KIs and re-activating T cell response by ICI. Abbreviations:
CTLA-4, cytotoxic T-lymphocyte-associated protein 4; ICI, immune checkpoint inhibitors; KIs, kinase inhibitors; MDSCs,
myeloid derived suppressor cells; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; TAM,
tumor-associated macrophages; Tregs, regulatory T cells. Created with BioRender.com.

Several trials using combined ICI and KI therapies are ongoing or have been completed
(summarized in Table 3). Despite the promising results from the preclinical studies, the
regimen of Sunitinib or Pazopanib combined with an anti-PD-1 antibody was largely offset
by its excessive side effects (e.g., liver toxicity). Therefore, the combination with a more
selective VEGFR–MKI, like Axitinib, has been investigated [91,92]. Although most of the
clinical trials are still in the early phases, several international multi-centered randomized
controlled trials (RCTs) have been conducted based on the tolerable dose and safety profile
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obtained from phase I/II trials. The development of a consensus and guidelines is currently
underway. RCC is a highly VEGF-dependent malignancy that facilitates the use of VEGF–
MKIs as the standard therapy for advanced patients; however, the resistance to single agent
therapy inevitably develops in almost all patients [93]. Even though the mechanism of
resistance remains unclear, the early phase trials of MKI–ICI combined therapy showed a
higher response rate and prolonged survival [94], leading to the large-scale investigation of
MKI–ICI combination in advanced patients. Specifically, the CLEAR trial has demonstrated
an improved outcome of Lenvatinib–Pembrolizumab over Sunitinib [95] with regard to the
objective response rate and progression of free survival. Similar results have been obtained
in another two independent trials investigating Cabozantinib plus Nivolumab and Axitinib
plus Pembrolizumab [96,97]. As a result, the latest RCC guidelines recommend three
MKI–ICI combinations for the treatment of advanced RCC [98].

Table 3. Ongoing/completed phase 3 clinical trials of kinase inhibitors combined with immunotherapies in treatment of
solid cancer.

Immunotherapy Kinase Inhibitor
Treatment Conditions Enrollment

(Estimated) NCT Number Outcome Measures

Pembrolizumab
(PD-1) Lenvatinib

Endometrial Neoplasms 827 NCT03517449 OS, PFS
HCC 750 NCT03713593 OS, PFS
Malignant Melanoma 660 NCT03820986 OS, PFS
Nonsquamous NSCLC 726 NCT03829319 OS, PFS
NSCLC 620 NCT03829332 OS, PFS
Endometrial Neoplasms 875 NCT03884101 OS, PFS
Urothelial Carcinoma 694 NCT03898180 OS, PFS
Metastatic NSCLC 405 NCT03976375 OS, PFS
HNSCC 500 NCT04199104 OS, PFS, ORR
HCC 950 NCT04246177 OS, PFS
Advanced/Metastatic GEA 790 NCT04662710 OS, PFS
RCC 1431 NCT04736706 OS, PFS
CRC 434 NCT04776148 OS

Advanced/Metastatic RCC 1069 NCT02811861 * Prolonged PFS (23.9 vs. 9.2 m)
Improves OS ** (HR, 0.66)

Pembrolizumab Axitinib Advanced/Metastatic RCC 861 NCT02853331 *
Prolonged PFS (15.1 vs. 11.1 m)
Improves OS (89.9% vs. 78.3%)
Increases ORR (59.3% vs. 35.7%)

Pembrolizumab Encorafenib Melanoma 624 NCT04657991 PFS

Atezolizumab
(PD-L1) Cabozantinib

HCC 740 NCT03755791 OS, PFS
RCC 500 NCT04338269 OS, PFS
Metastatic Prostate Cancer 580 NCT04446117 OS, PFS
NSCLC 350 NCT04471428 OS

Atezolizumab Sorafenib/
Lenvatinib Unresectable HCC 554 NCT04770896 OS

Nivolumab (PD-1)/
Ipilimumab (CTLA-4) Cabozantinib

Metastatic RCC 1046 NCT03793166 OS
RCC 840 NCT03937219 PFS

Nivolumab
(PD-1) Cabozantinib Advanced/Metastatic RCC 638 NCT03141177 *

Prolonged PFS (16.6 vs. 8.3 m)
Increases OS (85.7% vs. 75.6%)
Increases ORR (55.7% vs. 27.1%)

Nivolumab
(PD-1) Sitravatinib Metastatic Non-Squamous

NSCLC 532 NCT03906071 OS

Avelumab
(PD-L1) Axitinib RCC 888 NCT02684006 OS, PFS

IMA901
(cancer vaccine) Sunitinib Metastatic RCC 339 NCT01265901 OS

*: Completed trials. Results indicate the outcomes of combination therapy (KI+ immunotherapy) compared to standard KI monotherapy
OS **: 12 months follow-up for the measurement of overall survival. Abbreviations: GEA, gastroesophageal adenocarcinoma; HNSCC,
head and neck squamous cell carcinoma; HR, hazard ratio for disease progression or death; m, months; ORR, objective response rate; OS,
overall survival; PFS, progression-free survival.

8. Future Prospects/Remaining Questions

As detailed above, the broad immunomodulatory properties of KIs, combined with
the impressive progress in understanding cancer pathophysiology and the development of
new immunotherapeutic approaches, sets us up for improving cancer patient treatments
and outcomes. Several questions remain, while the answers to these questions through
future research in the coming years will open new opportunities in cancer treatment.
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The first area of future research in this field is to understand even better, and at a
deeper level, the biological effects of KIs. Understanding the precise molecular pathways
through which these drugs influence immune function lies at the foundation of identifying
new therapeutic targets for more potent KIs, or even new compounds targeting equivalent
molecules. Another important area of investigation must focus on KIs’ most important
immune cell targets. Subsequently, due to the prominent role of the TME in tumor progres-
sion and immune evasion, significant opportunities exist for the development of novel KIs
in restoring an immune-permissive TME. A notable example is tyrosine–protein kinase
MER (MERTK), a member of the TYRO3/AXL/MERTK RTKs family, one of the latest
identified oncogenes with concomitant immunoregulatory functions in the innate immune
system, due to its broad expression in various TIMCs responsible for wound healing and
maintaining homeostasis under physiological conditions [75,76,99,100]. Previous studies
demonstrated that the immunosuppressive effects of MERTK consist of multiple aspects,
including the induction of an anti-inflammatory cytokine profile (e.g., transforming growth
factor beta (TGF-β), IL-10, HGF), modulation of the PD-1/PD-L1 axis, and functional
reprogramming of macrophages, MDSCs, NK cells, and T cells. Preclinical studies have
shown promising results of MERTK inhibitors. For instance, MRX-2843, a selective MERTK-
inhibitor, has proven effective in MERTK-negative acute lymphoblastic leukemia (ALL)
and NSCLC in immunocompetent models, suggesting immune-mediated therapeutic ac-
tivity, which was granted an early phase of clinical trials in patients (e.g., NCT04872478,
NCT04762199) [101]. More recently, the other two candidates of the MERTK inhibitor,
ONO-7475 and INCB081776, are also in early stages of clinical trials (e.g., NCT03176277,
NCT03522142). Of note, colony stimulating factor 1 receptor (CSF1R), a class III RTK,
plays a crucial role in shaping macrophage plasticity and phenotypic heterogeneity. The
blockade of CSF1R signaling could be a promising anti-cancer therapy, presumably by
depleting the TME of immunosuppressive macrophages and releasing anti-tumor immune
responses [102] However, most of the drug development is still in the early stage, with
limited success in clinical cancer trials. To our knowledge, at present, Pexidartinib is the
only FDA-approved CSF-1R small molecule kinase inhibitor for the treatment of a rare
benign disease-tenosynovial giant cell tumor, in 2019 [103,104], while broader clinical utility
warrants further investigation.

Secondly, another important area of investigation for the clinical oncologists is to try
and understand the heterogeneity of the therapeutic response to KI treatment. We should
investigate the factors influencing this heterogeneity (why do some patients respond better
than others?) and how we can identify these patients (what are the biomarkers that can tell
us beforehand that a patient responds effectively to KI therapy?).

Thirdly, despite these successes, the field still requires a better understanding of how
to fully exploit KIs for a therapeutic benefit. On the one hand, the poor accumulation
at tumor sites and severe off-target effects that cause intolerable systemic side effects
in patients have greatly offset their therapeutic efficiency and limited further clinical
application. Nanoparticles that improve the selective delivery of drug payloads to the
cancer cells or tumor-promoting immune cells would offer a great opportunity to overcome
the drug toxicity profile and amplify antitumor activity, as recently shown in experimental
models [105]. On the other hand, we should investigate and screen which combinations
of KI-containing regimens are most effective for which type of cancer: it is conceivable to
hypothesize that, for some types of tumors, combinations between KIs and other forms of
immunotherapy would be effective (e.g., ICIs), while, for other types of cancer, KI treatment
should be combined with chemo- or radiotherapy.

In conclusion, in the present review, we highlighted the myeloid cells’ indispensable
role in anti-tumor immune responses, and the effect KIs exhibit to modulate these important
immunological mechanisms. We described KIs’ potential to improve combination therapies
for solid cancers, and we anticipate that ongoing clinical trials will ultimately guide the
implementation of optimal combinatorial approaches to maximize the immune system’s
anti-tumor activity.
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