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Simple Summary: A combination of oncolytic viral therapy and immunotherapy provides an
alternative option to the standard of care for treating the lethal brain tumor glioblastoma (GBM).
Although this combination therapy shows promise, there are many unknown questions regarding
how the tumor landscape and spatial dosing strategies impact the effectiveness of the treatment. Our
study aims to shed light on these questions using a novel spatially explicit computational model of
GBM response to treatment. Our results suggest that oncolytic viral dosing in the location of highest
tumor cell density leads to substantial tumor size reduction over viral dosing in the center of the
tumor. These results can help to inform future clinical trials and more effective treatment strategies
for oncolytic viral therapy in GBM patients.

Abstract: Oncolytic viral therapies and immunotherapies are of growing clinical interest due to
their selectivity for tumor cells over healthy cells and their immunostimulatory properties. These
treatment modalities provide promising alternatives to the standard of care, particularly for cancers
with poor prognoses, such as the lethal brain tumor glioblastoma (GBM). However, uncertainty
remains regarding optimal dosing strategies, including how the spatial location of viral doses impacts
therapeutic efficacy and tumor landscape characteristics that are most conducive to producing an
effective immune response. We develop a three-dimensional agent-based model (ABM) of GBM
undergoing treatment with a combination of an oncolytic Herpes Simplex Virus and an anti-PD-
1 immunotherapy. We use a mechanistic approach to model the interactions between distinct
populations of immune cells, incorporating both innate and adaptive immune responses to oncolytic
viral therapy and including a mechanism of adaptive immune suppression via the PD-1/PD-L1
checkpoint pathway. We utilize the spatially explicit nature of the ABM to determine optimal viral
dosing in both the temporal and spatial contexts. After proposing an adaptive viral dosing strategy
that chooses to dose sites at the location of highest tumor cell density, we find that, in most cases,
this adaptive strategy produces a more effective treatment outcome than repeatedly dosing in the
center of the tumor.

Keywords: mathematical modeling; agent-based modeling; oncolytic viral therapy; immune
checkpoint inhibitor; combination therapy; glioblastoma

1. Introduction

Glioblastoma (GBM) is the most aggressive form of brain tumor, and its poor average
survival rate of 1–2 years has remained largely constant for many years, despite significant
advancements in other cancer treatment modalities [1]. The standard treatment regimen
for GBM consists of surgery, followed by radiotherapy and chemotherapy. Oncolytic
viral therapy (OVT) is a treatment involving the administration of a virus that infects
and replicates within cancer cells, causing them to lyse. Due to oncolytic viruses’ ability
to selectively target tumor cells over healthy cells, OVT has the potential to perform
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better than the standard GBM treatment protocol when it is combined with an anti-PD-1
immunotherapy, a treatment that targets the protein PD-1, primarily found on T cells. This
treatment blocks the immune checkpoint formed when PD-1 binds to PD-L1, which is
upregulated on cancer cells. Combining OVT with anti-PD-1 immunotherapy enables a
robust immune response to treatment, which aids in targeting tumor cells.

In this work, we develop a spatially explicit model of tumor response to a combination
of OVT and immunotherapy, which allows us to study the impact of oncolytic viral dosing
locations. This model adds to a growing body of literature featuring mathematical models
of OVT. D. Wodarz has made significant contributions to this field, initially developing a
model to study the virus-specific and tumor-specific adaptive immune responses to OVT
in [2]. Later, he and N. Komarova developed a general framework to study oncolytic
viral dynamics in [3,4]. R. Eftimie and colleagues extended this work by focusing on
the interactions between an oncolytic virus and T cells, and the resulting multistability
and multi-instability [5]. In [6], R. and G. Eftimie investigate the impact of two distinct
types of macrophage, M1 and M2, on OVT, and found that polarization toward either
type can enhance OVT, in one case through antitumor immune activity, and in the other
through elevated cytotoxic activity. A. Friedman and colleagues studied the effect of
an immunosuppressive drug, when combined with OVT, in glioma patients, and they
concluded that this drug increases the percentage of infected tumor cells in the tumor
microenvironment (TME) [7]. We utilize findings from these models comprised of ordinary
differential equations to develop a spatially explicit model that provides a more realistic
representation of the spatial heterogeneity found in most tumors.

The agent-based model (ABM) has emerged as a premier tool in systems biology
and translational oncology, due to its ability to provide a more realistic approximation
of interconnected cellular interactions and the complex spatial structure of the TME [8,9].
ABMs can be developed based on biological mechanisms inferred from experiments,
with model simulations then used to validate the original datasets, as was carried out
using a model of human adipose-derived stromal cell trafficking during acute skeletal
muscle ischemia in [10]. In [11], the authors developed a translational ABM of liver fibrosis,
combining molecular and histopathological characteristics, which they used to test potential
antifibrotic strategies. ABMs have also been used to investigate the immune response to
various cancer treatements; in [12], G. Chang et al. study the spatial patterns of PD-L1,
a molecule involved in immune checkpoints, which provides a framework to test and
compare predictive biomarkers for various cancer treatments. L.G. de Pillis et al. developed
a hybrid PDE-cellular automata model of tumor–immune interactions in [13,14], which we
used as inspiration for some of the interaction rules in our model. D.R. Berg and colleagues
compare the results from oncolytic viral spread in two-dimensional and three-dimensional
ABMs in [15], revealing the importance of the spatial structure in OVT efficacy.

In this work, we develop a novel multiscale hybrid ABM and partial differential
equations (PDE) model that incorporates tumor cells, innate and adaptive immune cells,
and treatment with an oncolytic virus and anti-PD-1 immunotherapy. We developed this
three-dimensional model in order to investigate the role of space in oncolytic viral dosing
strategies and interactions between the virus and immune and tumor cells. Oncolytic
viruses are typically administered in the same location within the tumor, so we are particu-
larly interested in using the model to study alternative dosing strategies and the importance
of the dosing location in tumor size reduction.

The outline of this paper is as follows: In Section 2 we describe the development of
our multiscale agent-based model and the rules that govern each cell within the model.
In Section 3, we present our results regarding the importance of T cells killing vs. tumor-
mediated T cell proliferation, and the importance of viral dosing in the locations of the
highest cell density. We discuss the implications of our results and describe future directions
in Section 4.
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2. Materials and Methods

In this work, we develop a spatially explicit hybrid cellular automaton (CA) and
partial differential equations (PDE) model. We simulate the model in a three-dimensional
domain, Ω = [0, L]3. Each site in the lattice can be occupied by at most one tumor cell,
one innate immune cell, and one T cell. Note that the average diameter of a GBM cell
(line U87) is 12–14 µm [16], the average diameter of a T cell is 7–10 µm, and the average
diameter of a macrophages is 21 µm [17]. Due to the similar scale between all three cell
types, it is reasonable to model them on the same lattice. We define the three-dimensional
neighborhood of each site to be the Moore neighborhood, i.e., the nearest 26 sites.

We model the virus using a reaction-diffusion PDE, which we describe in more detail
in Section 2.3. The virus is initially injected into the center of the initial population of
susceptible tumor cells, which we initialize as the center of the domain. Thus, we start
with nonzero viral concentration in a spherical region at the center of the tumor, with zero
concentration everywhere else. We start with 1000 tumor cells and administer a dose of 106

pfu, which are scaled analogously from our ODE model in [18]. Each viral dose spans a
region a radius of 2 sites, corresponding to 33 total sites in the model.

To give the reader an idea of the cell actions within the model, Figure 1 displays a
schematic example of a two-dimensional cross-sectional portion of the ABM before and
after a time step τ. The blue shades indicate viral concentration levels, and the shapes
represent tumor and immune cells within the model. The events taking place within this
time step include tumor and T cell division, T cell killing of tumor cells, immune cell
migration, natural cell death, and immune cell consumption of viral particles.  
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Figure 1. An example of a two-dimensional cross-section of the ABM before (left) and after (right)
a time step τ. The blue shades in the background indicate the viral concentration levels at each
site, with darker shades representing higher viral concentrations. In this example, the T cell in A4
replicates and places a daughter T cell in B4, the antitumor T cell in B2 kills the susceptible tumor
cell, the T cell in B3 moves to C4, the tumor cell in B4 replicates and places a daughter cell in B3, the
T cell in C2 dies naturally, the antiviral T cell in C3 kills the infected cell, the innate immune cell in
C4 moves to C3, the viral concentration in D2 decreases due to T cell consumption, and the viral
concentration in D3 decreases due to innate immune cell consumption.

2.1. Tumor Cells

Tumor cells can become infected by the virus in a neighborhood of its location, so we
first define N (x, t) to denote the Moore neighborhood of x at time t, i.e., the 26 nearest
sites in the three-dimensional domain. The probability that susceptible tumor cells at site
x can become infected during the time step [t, t + τ) is defined as a function of the viral
concentration at that site, V(x, t), as follows:

Pin f (V(x, t)) = τβTs(t)V(x, t), (1)
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where β is the infection rate (pfu−1h−1), used in the ODE model in [18], and Ts(t) denotes
the total number of susceptible tumor cells, Ts(t) = ∑x∈Ω Ts(x, t).

For simplicity, we assume no tumor cell motility, so the tumor cells spread outward
exclusively through cell division. Each new tumor cell is assigned an intrinsic cell cycle
time, normally distributed with a mean of ln(2)/rt, where rt is the growth rate of tumor
cells (h−1), and standard deviation σcycle. At each time step, the cell cycle clock decreases
by the time step length with probability Pdiv(t), defined below. A given cell divides once
its cycle clock surpasses 0. Note the mean cell cycle time, µcycle, is converted from the
fitted growth rate rt = 0.0192 h−1 in [18], and σcycle = 3 h is an ad hoc estimate. When a
susceptible tumor cell divides, it randomly chooses one of its neighboring sites, unoccupied
by another tumor cell, on which to place its daughter cell. If there are no unoccupied sites,
then it randomly chooses one of its 26 nearest neighbors to push outward to make room for
its daughter cell, and then a chain of cells is pushed outward in the same direction. Such
cell division assumptions are consistent with those used in the ABM in [19].

In order to enforce the tumor carrying capacity, we define the following probability of
reducing each cell division counter at time t, as a function of the susceptible and infected
tumor populations:

Pdiv(t) = exp(−γdiv(Ts(t) + TI(t))), (2)

where as above, Ts(t) refers to the total number of susceptible cells, and similarly, TI(t) =
∑x∈Ω I(x, t) denotes the total number of infected cells at time t. This assumption is consis-
tent with those made in [13,14,20], and results from these models have shown agreement
with experimental data cited in [14,21].

2.2. Immune Cells

Innate immune cells arise, i.e., become “activated” to target viral antigens, at a site x
which is unoccupied by an innate immune cell, with a probability Pinn. This probability
depends primarily on the viral concentration at each site, as defined below. Additionally,
there is a positive feedback loop of recruitment between macrophages and natural killer
cells, so the probability also depends on the current population of innate immune cells in
neighboring sites of x. We define

Pinn(x, t) = 1− exp(−γi1 V(x, t)− γi2 Z(N (x, t)), (3)

where, as above,N (x, t) denotes the neighborhood of x at time t. We estimate γi1 and γi2 so
that γi1 V(x, t) is generally larger than γi2 Z(N (x, t)) in the presence of the virus. We use a
similar assumption to the models used in [13,14], adapted to account for the concentration
of virus at each site.

Adaptive immune cells, i.e., T cells, are recruited to the tumor microenvironment
(TME) by the innate immune cells. At each site occupied by an innate immune cell and
currently unoccupied by a T cell, there is a probability of τaAZ that a T cell will be recruited
to this site, during the time interval [t, t + τ). The type of T cell, i.e., antiviral vs. antitumor,
recruited to this site is determined globally. This status depends on the proportion of total
susceptible cells, Ts(t), to infected tumor cells, TI(t), in the domain. If Ts(t) + TI(t) > 0,
then the probability that a new T cell will be antiviral is

PAV (t) = 1− exp
(
−γAV

TI(t)
TI(t) + Ts(t)

)
, (4)

and 1− PAV (t) is the probability that the T cell will be antitumor. Note we are assuming
that the tumor vasculature exists throughout the TME, so tumor infiltration by immune
cells occurs via the vasculature, as described in [22]. This allows immune cells to emerge at
sites within the tumor, rather than starting on the boundary of the tumor.
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We also incorporate innate and adaptive immune motility within the model. Innate
and adaptive immune cells move at distinct rates and randomly choose a neighboring site
that is unoccupied by an immune cell of its type. The immune cells move preferentially
toward the cells that they target, modeling chemotaxis. Hence, innate immune cells and
antiviral T cells are mZ and mAV times more likely, respectively, to move toward sites
occupied by infected tumor cells than to other sites, and antitumor T cells are mAT times
more likely to move toward sites occupied by tumor cells than to other sites. Note that
mZ, mAV , mAT are all larger than 1. Innate immune cells move to an empty neighboring
site, i.e., one that is not currently occupied by an innate immune cell, at rate rmovZ . Thus,
the probability that such an innate immune cell moves to a neighboring site in the time
interval [t, t + τ) is τrmovZ . Subsequently the innate immune cell chooses an empty site to
migrate to, and it is mZ times more likely to move to a site occupied by an infected cell
than any other site. Similarly, the antitumor and antiviral T cells move at rates rmovAT and
rmovAV , respectively.

To simulate T cell proliferation, if an antitumor or antiviral T cell and tumor cell are
located at the same site, the T cell proliferates and adds a daughter cell to a randomly chosen
neighboring site during time interval [t, t + τ) with probability τaAT or τaAV , respectively.
Here, aAT and aAV are the rates of the tumor cell- or infected cell-mediated proliferation of
T cells, respectively, from the ODE model in [18], which we have converted to probabilities
in this stochastic ABM. Similarly, innate immune cells at the same site as an infected tumor
cell proliferate at rate aZ, so the probability of such a proliferation event at the site of an
innate immune cell and infected tumor cell in [t, t + τ) is τaZTI(t).

There are two mechanisms of immune cell death: one is driven by a natural death rate,
causing cells to die after a certain amount of time, and the second is driven by immune
activity, causing cells to die after a certain number of immune “events”, modeling the
exhaustion of the cells. For simplicity, we assume that the immune events are restricted
to the killing of tumor cells, since the killing of viral particles is difficult to measure as
individual events.

If an adaptive immune cell and tumor cell simultaneously occupy the same site, i.e., an
antiviral T cell with an infected tumor cell or an antitumor T cell with any tumor cell, then
the tumor cell dies at rate kIA or kTA cell−1h−1, respectively. Hence, the probability of such
an event in [t, t + τ) is τkTA or τkIA. Similarly, the probability that an innate immune cell
kills an infected tumor cell at the same site in [t, t + τ) is τkI , where kTA, kIA, kI are all rates
from the ODE model in [18].

Figure 2 illustrates the three-dimensional locations of infected and susceptible tumor
cells, on the left, and antitumor and antiviral T cells, on the right, on days 11, immediately
after Dose 2 is administered, and on Day 80, at the end of a sample simulation.

We also incorporate PD-1/PD-L1 checkpoints in the ABM, similarly to our ODE
model in [18]. The PD-1/PD-L1 checkpoint implementation is described in more detail
in Appendix A.1. The immune checkpoints can be blocked by anti-PD-1 immunotherapy
when it has been administered. We incorporate treatment with anti-PD-1 using a global
approach, i.e., we calculate the blocking rate of PD-1 using the total concentration of PD-1
in the tumor microenvironment at time t. Further detail describing this implementation
can be found in Appendix A.2.
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Figure 2. Examples of 3-D simulations plots of tumor cells and T cells on Day 11, immediately after
Dose 2, in the top row, and on Day 80, at the end of the simulation, on the second row. On Day 11,
there are 1.51× 103 tumor cells and 1.44× 104 T cells. On Day 80, there are 1.40× 103 tumor cells
and 5.83× 104 T cells.

2.3. Viral Diffusion

The viral concentration will be modeled using a reaction-diffusion equation, as follows:

∂V(x, t)
∂t

= DV∆2V(x, t)−ωV(x, t) + bTδTTI(x, t)− kVZZ(x, t)V(x, t)− kVAYV(x, t)V(x, t), (5)

where DV is the diffusion coefficient for the virus, and kVZZ(x, t) and kVAYV(x, t) represent
viral death due to consumption by innate immune cells and killing by adaptive immune
cells, respectively, at rates kVZ and kVA.

Additionally, αI βTsV represents viral infection of susceptible tumor cells at rate βT .
The term bTδTTI(x, t) represents the viral particles that are released when an infected cell
bursts at rate δT , with burst size bT . We assume that the virus cannot leave or enter from
the boundary, so the boundary conditions are:

V(0, y, t) = V(L, y, t) = V(x, 0, t) = V(x, L, t) = 0.

We discretize Equation (5) using central differences for spatial derivatives and forward
differences for time derivatives (FTCS).

3. Results
3.1. Antitumor T Cell Killing

We utilize the model to gain a better understanding of the role of T cells in response
to the combination therapy, by comparing the relative importance of hte T cell-mediated
tumor killing rate with tumor antigenicity. First, we investigate the impact of the tumor
cell killing rate, kTA, by antitumor T cells on the tumor response to treatment. We vary the
parameter kTA in the range [0.01, 0.06], around the baseline value of 1/24 ≈ 0.42 cell−1h−1,
estimated from [23], leaving all other parameters set at their baseline rates. Figure 3 shows
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the susceptible tumor population at Day 80, the end of each simulation, as a function
of kTA. Interestingly, we observe a nonmonotonic relationship between tumor size and
T cell killing rate. As one would expect, for the lowest killing rate in the range under
consideration, kTA = 0.01 cell−1hour−1, the T cells are not sufficiently cytotoxic to respond
effectively to the treatment, leading to a significantly larger tumor after 80 days than we see
with larger kTA values. The tumor decreases to similar levels for kTA = 0.02 and 0.03, with
a slightly smaller population for kTA = 0.03. However, as kTA increases further, the tumor
population increases as well, suggesting that increasing the T cell cytotoxicity beyond a
certain threshold will not improve the efficacy of the treatment. We hypothesize that in
this high kTA range, the T cells kill cancer cells too quickly early in the treatment process,
which ultimately leads to a smaller number of T cells to mount an attack on the tumor.
This investigation suggests an optimal value of kTA = 0.03, at which the tumor population
initially increases enough to activate a sufficient level of antitumor T cells, which in turn
keep the tumor relatively controlled.
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Figure 3. Antitumor T cell killing rate. This figure depicts the mean tumor population at Day
80, as a function the tumor cell killing rate by antitumor T cells, kTA. Means are calculated from
10 simulations performed for kTA = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06], with all other parameters set at
their baseline levels, including aAT = 0.025.

3.2. Tumor-Mediated T Cell Proliferation

We compare the relative impact of the T cell killing rate from the previous section
with the level of tumor antigenicity. In our model, this antigenicity level is dictated by
the tumor-mediated proliferation rate of T cells, aAT , which we found to be a significant
adaptive immune-related parameter in our ODE model parameter sensitivity analysis
in [18]. Figure 4 displays the susceptible tumor population at the end of the simulation as
a function of aAT . We observe a monotonic relationship between the final tumor size and
aAT , with the tumor decreasing as the level of tumor antigenicity increases. Note that high
levels aAT can lead to a small, well-controlled tumor 80 days after the start of treatment,
around 450 cells for aAT = 0.08 and 260 cells for aAT = 0.09 after starting the simulations
with about 1000 cells. We did not observe this significant reduction in tumor size at the
optimal value for kTA. This suggests that the treatment is more effective when there is a
critical mass of T cells to attack the tumor than when there is a smaller number of highly
cytotoxic T cells. Building this critical mass of T cells seems to be particularly important
during the early stages of the simulation, when the tumor increases rapidly until the T cells
are able to mount a sufficient attack on the tumor cells.

In Figure 5, the graph on the right shows the tumor control achieved from the combi-
nation of six oncolytic viral doses administered in the center of the domain and anti-PD-1



Cancers 2021, 13, 5314 8 of 19

immunotherapy, using a representative simulation with aAT = 0.08. The graph on the
left shows the susceptible tumor population when oncolytic viral therapy is administered
without anti-PD-1. In this case, the tumor size trends upward with short sporadic periods
of decline, until it starts to level off toward the end of the simulation. Overall, we see
no tumor control without the addition of anti-PD-1, and similar behavior is observed
for other parameter sets. Thus, it is imperative to administer an anti-PD-1 immunother-
apy in combination with OVT, so that the immune response stimulated by OVT can be
sufficiently effective.
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Figure 4. Tumor-mediated T cell proliferation. This figure depicts the mean tumor population
at Day 80, as a function the tumor-mediated T cell proliferation rate, aAT . Means are calculated
from 10 simulations performed for aAT = [0.05, 0.06, 0.07, 0.08, 0.09], with kTA = 0.03 and all other
parameters set at their baseline levels.
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Figure 5. Comparison with and without anti-PD-1. Simulations using the same parameter values,
with aAT = 0.08.

3.3. Viral Dose Timing

Thus far, there has been little focus in the literature on the timing of oncolytic viral
doses, but timing can be crucial to treatment efficacy, especially when a multifaceted
immune response plays a significant role, as it does in the case of OVT. Thus, we used our
model to sequentially investigate the optimal timing of six viral doses. We fixed the initial
viral dose at the start of the simulation, and then we varied the timing of viral dose 2, at Day
4, the approximate time of the population peak when a single viral dose is administered,
at Day 10, Day 15, and Day 20. After comparing the means from 10 simulations for each
option, we found that dosing at Day 10, about six days after the tumor population begins
declining, produces the smallest tumor at the end of the simulation. Thus, we fixed Dose 2
at Day 10, and subsequently tested Dose 3 at Days 13, 20, 30, and 40, following the same
procedure that we used to determine the timing of Dose 2. Our results suggested that it was
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optimal to administer Dose 3 shortly after Dose 2, on Day 13. By using a similar process for
Doses 4–6, we determined that it was optimal to administer Dose 4 at Day 30, Dose 5 at
Day 33, and Dose 6 at Day 60. Thus, our results suggest that the combination therapy may
be more effective when pairs of viral doses are given close together, followed by a longer
break before the next pair of doses. The timing of the doses is indicated in Figure 6, which
displays a simulation of the tumor, with tumor antigenicity level aAT = 0.07 and all other
parameters set at their baseline levels.
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Figure 6. A simulation of the ABM with the chosen viral dosing schedule obtained from sequen-
tially testing each dose. In this simulation, aAT = 0.07, and all other parameters are set at their
baseline levels.

3.4. Density-Based Adaptive Viral Dosing

The location of oncolytic viral doses has also not been well-explored, and can be
consequential for developing an effective treatment regimen. Our spatially explicit ABM
proves particularly useful for investigating the effect of the viral dosing locations on the
treatment response. We model the direct intratumoral delivery of the virus, which generally
controls the viral concentration more effectively in a specific location than intravenous
delivery [24]. Typically, the intratumoral dose is administered roughly in the center of the
tumor region, which we simulated in the model by administering each viral dose in the
center of the three-dimensional domain. We then compared the center dosing results with
an adaptive dosing strategy, in which viral doses were administered at the locations of
maximum tumor cell density at the time of each dose. We implemented this in the model
by calculating the cell density in a three-dimensional neighborhood with a two-site radius
around each site in the domain. We chose the site with maximum tumor cell density to
administer the viral dose; if there is more than one site with maximal cell density, then we
split the viral dose evenly between these sites.

Figure 7 shows an example of the adaptive dosing procedure for the realization of the
model with tumor antigenicity level, aAT = 0.07. Each row shows the chosen location(s) for
Doses 2–6, with the three-dimensional plot on the left, showing the susceptible tumor cells
in light blue and the dosing locations highlighted in green. In order to more easily visualize
the dense regions, the plots on the right of the figure display the two-dimensional tumor
cell density resulting from the projection of the z-dimension onto the xy-plane. For Dose 2
on Day 10, the chosen dosing location in the xy-plane is (52, 57), which corresponds to a
high density level in the 2-D projection. There are three chosen dosing locations for Dose 3,
which all have a neighborhood with the maximum tumor cell density level, and these are
all neighboring sites: (46, 51), (46, 52), (47, 52) in the xy-plane. Similarly, two neighboring
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sites are chosen for Dose 4, at (40, 63) and (41, 64) in the xy-plane. Dose 5 is chosen to
be administered at site (41, 56), and Dose 6 is split between the three neighboring sites at
(34, 73), (34, 74), and (35, 74). We note that even when multiple sites have neighborhoods
with the same maximum tumor cell density, they are always neighboring sites in this
example, and they are nearly always neighboring sites in the other realizations that we
have simulated. Thus, in a clinical setting, it is reasonable to choose a single location of
estimated highest tumor cell density using tumor imaging technology.

We compared the adaptive viral dosing strategy to center dosing in the range of
antigenicity levels leading to a responsive or stable tumor, characterized by at least 50%
tumor reduction from its maximum size, by the simulation end time, 80 days after the
start of treatment. These response levels are reached with aAT = 0.07, 0.08, so we simu-
lated 40 realizations of the ABM for each of these antigenicity levels to account for the
stochasticity within the model. Figure 8 displays the mean tumor size resulting from these
realizations, with the center dosing mean shown in blue and the adaptive dosing mean
shown in yellow. The graph on the right is a zoomed in version of the left graph to highlight
the difference in tumor size at the end of the simulation. We also investigated the benefit
conferred by increasing the viral infection rate to β = 1× 10−7 pfu−1h−1, with the mean
tumor size shown by the green curve in this figure. The average tumor size 80 days after
the start of treatment with center dosing is 2.425× 103 cells, and adaptive viral dosing
yields a 24.5% reduction in this average tumor size. Increasing the viral infection rate
to 1× 10−7 pfu−1h−1 yields an additional 8.6% reduction in average tumor size over the
center dosing case. Hence, we observe a sizable improvement in treatment response due
to adaptive dosing in locations of high tumor cell density, with a marginal improvement
when the virus is highly infectious.

Similarly, Figure 9 shows the tumor population means for the same cases, with a
higher level of tumor antigenicity, aAT = 0.08 cell−1h−1. In this case, we see even more
improvement resulting from the adaptive dosing strategy. The mean tumor size 80 days
after the start of treatment with center dosing is 855.3 cells, and the adaptive dosing strategy
reduces this mean by 33.4%, which is comparable to the reduction resulting from both
adaptive dosing and increased viral infectivity in the aAT = 0.07 case. Increasing the viral
infection rate when aAT = 0.08 provides an additional 8.8% reduction in tumor size over
the center dosing mean. These results suggest that choosing viral dosing locations in the
regions of highest cell density produces significant improvement over repeatedly dosing in
the same location, and we observe from Figures 8 and 9 that this improvement appears to
increase over time. Note that for aAT ≥ 0.09, both center and adaptive viral dosing produce
near tumor clearance, so adaptive dosing does not provide a significant improvement
when center dosing yields such a strong treatment response.

In order to make model simulations computationally tractable, we were required to
scale down the initial tumor population to start around 1000 cells, which is two orders
of magnitude smaller the initial tumor population we used in the ODE model in [18].
Similarly we scaled the standard viral dose used in the ODE model by 10−2 to obtain a
proportional viral dose to use in the ABM. To gauge whether we can expect comparable
results in a larger tumor, we tested the aAT = 0.08 case in a tumor starting with 5000 cells,
so about 5 times our typical simulation size. In a single simulation, we found the ratio of
tumor sizes between center dosing and adaptive dosing to be 0.665, or a nearly identical
tumor size reduction of 33.5% with adaptive dosing to the average reduction we observed
with the smaller tumors. The results of this simulation are shown in Figure 10, with the
graph on the right showing a zoomed in version of the full trajectory on the left. Although
this tumor is still significantly smaller than a human tumor in vivo, we are encouraged
by the fact that the percent size reduction scales up nearly identically from our typical
simulation size in this larger example.
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Figure 7. The chosen viral dosing locations for Doses 2–6 in the realization of the ABM. The locations
in the 3-D domain are shown on the left, while the two-dimensional tumor cell density is shown on
the right, obtained from projecting the z dimension onto the xy-plane.
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Figure 8. Means generated from 40 realizations for each parameter set, with antigenicity level
aAT = 0.07. The blue curve is generated from simulations with six center viral doses and viral
infection rate, β = 2.5× 10−8 pfu−1h−1, the yellow curve is generated from simulations with one
center dose and five adaptive doses and β = 2.5× 10−8, and the green curve is generated from
simulations with one center dose and five adaptive doses and β = 1× 10−7.The graph on the right is
a zoomed in version of the full trajectories on the left.
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Figure 9. Means generated from 40 realizations for each parameter set, with antigenicity level
aAT = 0.08. The blue curve is generated from simulations with six center viral doses and viral
infection rate, β = 2.5× 10−8 pfu−1h−1, the yellow curve is generated from simulations with one
center dose and five adaptive doses and β = 2.5× 10−8, and the green curve is generated from
simulations with one center dose and five adaptive doses and β = 1× 10−7. The graph on the right
is a zoomed in version of the full trajectories on the left.
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We also investigate the chosen locations in the adaptive dosing procedure. In order to
compare the dosing locations for each dose number, we plot the mean adaptive viral dosing
distances from the center of the domain for Doses 2–6, generated from 40 realizations
of each parameter set, in Figure 11. We plotted these means for aAT = 0.07, 0.08 and
β = 2.5× 10−8, 1× 10−7, and we observed that, in almost all cases, the dosing locations
move farther away from the domain center as the dose number increases. Due to the
growing difference between the adaptive and center dosing strategies as the dose number
increases, this suggests that adaptive viral dosing may confer a more significant benefit in
later doses, when the high-density regions have spread farther from the initial tumor center.
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Figure 11. Mean adaptive viral dosing distance to the center of the domain. The means are shown
from 40 realizations of each parameter set for adaptive viral doses 2–6.

4. Discussion

Over the past several decades, efforts to develop new therapies for GBM tumors have
intensified, yet none have significantly impacted patient mortality [25]. OVs, equipped
with specific oncolytic properties, have the potential to confer therapeutic benefits to GBM
patients due to their specificity, potency, tolerability, and potential to be combined to with
multiple immunotherapies [26,27]. Questions remain surrounding OVT dosing strategies
and concerning the precise role of the immune system in response to OVT, in a quest
to increase the efficacy of OVT. In order to address these questions, we developed an
agent-based model that allows us to consider immune interactions and to investigate the
impact of the spatial location of viral dosing.

The agent-based approach allowed us to extend our mechanistic ODE model in [18]
to consider more complex spatial interactions. We previously developed the ODE model
to study the interactions between GBM cancer cells and innate and adaptive immune
cells in response to OVT and anti-PD-1 therapy. A limitation of that mechanistic model
was that it could not capture spatial heterogeneity inherent in GBM tumors, including
the spatial distribution of various cell types and the diffusion of the virus and anti-PD-
1 drug. This motivated us to develop a spatially explicit ABM of tumor response to a
combination of oncolytic viral therapy and anti-PD-1 immunotherapy. ABMs are important
tools in translational systems biology, due to their ability to incorporate spatial structure
and stochasticity on multiple spatial and time scales, and they have become much more
prevalent in recent years [9].

Both the ABM and our previous ODE model suggest that anti-PD-1 immunotherapy
is necessary to allow the OVT to work effectively, with the body’s T cells serving as the
primary antitumor weapon. When OVT is not combined with anti-PD-1, the PD-1/PD-L1
complex prevents many T cells from targeting the tumor cells, resulting in an insufficient
immune response. The ABM also confirms our finding using the ODE model, that the
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tumor antigenicity level is more consequential for OVT treatment response than the T
cell killing rate of tumor cells. Thus, if the treatment does not yield a reduction in tumor
size shortly after the start of treatment, it may be advantageous to administer an IL-2
immunotherapy in combination with the OVT and anti-PD-1, in order to increase the T cell
proliferation rate. Modeling the combination of these three treatment options will be the
subject of future work.

An important benefit of the ABM approach is that it allows us to explore spatial
strategies for oncolytic viral dosing, which is not possible with mechanistic ODE models.
We compare an adaptive dosing strategy that chooses the sites with the highest tumor
cell density with a fixed dosing strategy that administers each dose in the same location
throughout the treatment period. Given a sufficiently antigenic tumor, the density-based
adaptive dosing strategy is more effective than the fixed dosing strategy, yielding a smaller
post-treatment tumor. When using the adaptive strategy, each successive viral dosing
location is chosen to be farther from the center, as the tumor spreads outward. Hence, the
utility of the adaptive dosing strategy is more pronounced for doses later in the treatment
schedule. We find that there is a more significant benefit conferred by this adaptive dosing
strategy than from using a highly infectious virus. We note that we explored optimal dose
timing before our investigation of optimal dose location, so it is possible that the adaptive
dosing strategy could be improved even further with the reconsideration of optimal dose
timing. In a clinical setting, the dosing locations can be determined using tumor imaging,
e.g., computed tomography (CT) scans, which display relative tumor density. Such scans
can be used to estimate the location of maximum tumor cell density before each viral
dose. Thus, our results suggest that if clinicians have the ability to collect CT scans before
each viral dose, then this practice will prove valuable, particularly for doses later in the
treatment schedule.

Our ABM allowed us to more accurately approximate tumor growth and local in-
teractions between viral particles, immune cells, and tumor cells. We observed similar
overarching trends between the ODE model in [18] and the ABM, particularly with respect
to the tumor–immune interactions. Additionally, the spatial features of the ABM allowed us
to consider more complex viral dosing strategies. A limitation of the model is that although
we did incorporate T cell exhaustion due to tumor cell killing, we did not include a limit on
the number of times T cells can proliferate. While we included the PD-1/PD-L1 checkpoint
within the model, we did not incorporate other checkpoints like CTLA-4, CD28, and TIM3,
which can also impact T cell proliferation. This may result in the model overestimation
of the T cell population within the TME. Our model can be easily adapted to explore the
impact of additional checkpoints, so in future work, we would like to incorporate these
checkpoints and to investigate the effect of a proliferation limit for T cells on the response
to this combination therapy. We hope to use this work as motivation to design experiments
that test adaptive immune cell killing and proliferation rates and exhaustion-related limits
on these processes. This will help to provide further clarity about the feasible ranges for
these parameters in the model.

Additionally, the model developed here is parameterized using data from mouse
models, so it cannot be directly translated to human patients. We would like to validate our
computational results by designing future murine experiments that compare the adaptive
and fixed viral dosing strategies, for example, by administering the same combination
therapy to each mouse, with the oncolytic virus administered in the tumor center in half
of the mice, and the virus administered adaptively in the site of estimated maximum
tumor cell density in the other half. The proportional difference between tumor sizes after
80 days can then be compared to our ABM results. We hope that the results will motivate a
subsequent clinical trial in GBM patients. In addition, we plan to model the administration
of a new type of oncolytic virus that is engineered to express a PD-L1 inhibitor, which
provides an opportunity to combine OVT and immunotherapy in a single treatment [28].
The ABM framework is flexible enough to investigate novel therapies such as this one,
allowing us to adapt our current ABM for this future work.
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5. Conclusions

In this study, we developed an ABM to model the response of GBM to a combination
of oncolytic viral therapy and anti-PD-1 immunotherapy. Our model simulations suggest
that the tumor antigenicity level, which impacts T cell proliferation, is more consequential
for treatment efficacy than the T cell killing rate. In addition, we determine an optimal
viral dosing schedule and consider an alternative spatial dosing strategy. We show that an
adaptive viral dosing strategy that chooses to dose in the locations of highest tumor cell
density is substantially more effective than administering each dose in the same location in
the center of the tumor. These results suggest that collecting CT scans during treatment for
GBM patients can help to inform the location of oncolytic viral dosing, thereby improving
the effectiveness of this treatment.
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Appendix A

For computational feasibility, we initialized the tumor population with about 1000 cells,
corresponding to a radius of six sites at the center of the lattice domain. HSV particles have
diameters ranging from 155 to 240 nm [29], so we approximate the diameter as 200 nm,
which converts to 2× 10−5 cm. Using our baseline estimate of l = 0.0014 cm for site length,
the initial viral dose spans a radius of two sites, corresponding to 33 total sites.

Appendix A.1. PD-1/PD-L1 Checkpoints

To incorporate PD-1/PD-L1 checkpoints within the model, we multiply the proba-
bilities of the innate immune-mediated activation of adaptive immune cells and of tumor
cell-mediated T cell proliferation by a factor F(P, L). This factor represents the suppression
of T cell activation and proliferation via the PD-1/PD-L1 checkpoint, where P, L denote
the molar concentrations of PD-1 and PD-L1, respectively, expressed by cells within the
model. The molar concentrations (in µmol/cm2) are obtained by first calculating the PD-1
expression on all T cells and the PD-L1 expression on all T cells, tumor cells, and innate
immune cells, as outlined below. As P and L increase, so does the number of PD-1/PD-L1
complexes within the tumor region. This increase corresponds to a smaller F(P, L) value,
modeling the inhibition of T cell activity.

In [18], we calculate estimates for the parameters used in the factor F(P, L). We
estimate the concentration of PD-1 and PD-L1 per T cell to be ρP = 1.259× 10−11 µM and
ρL = 2.510× 10−11 µM, respectively.

We also calculate the parameter KYQ = 1
2 P̄L̄, where P̄, L̄ denote the carrying capacity

for PD-1 and PD-L1, respectively, to be

KYQ = 1.365× 10−12 g2/L2 1
3.165× 104 g/mol

· 1
3.328× 104 g/mol

· 1012µmol2

mol2

= 1.296× 10−9µM2.

https://github.com/kstorey90/ABM_OVT_antiPD1
https://github.com/kstorey90/ABM_OVT_antiPD1
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Appendix A.2. Anti-PD-1

In the model, we track the concentration of anti-PD-1 in the tumor microenvironment,
using µmol/cm3.

For the decay rate of anti-PD-1, we use δA in the range 0.0019–0.01 h−1, from [30,31].
Just as in [18], we estimate the anti-PD-1 blocking rate of PD-1, µPA, by assuming that 10%
of the anti-PD-1 drug is used in blocking PD-1 and that 90% degrades naturally. Thus,

µPAPA
0.1

=
δA A
0.9

,

so we assume that for a steady state P̄ and δA = 0.0019,

µPA = δA/(9P̄) =
0.0019 hr−1

9 ∗ 2.36× 10−5µM
= 8.945 L/µmol/h.

In [18], we derived the following conversion from the dosage, D, of nivolumab, in
mg/kg, to plasma concentration Cmax, in µM = µmol/cm3:

Cmax(D) = 0.139D + 0.064.

A typical nivolumab regimen consists of a single intravenous dose of 3 mg/kg
nivolumab, administered for one hour, once every two weeks. We incorporate this treat-
ment regimen within our model, by adding nivolumab every two weeks, at concentration
Cmax(3 mg/kg) = 0.481 µmol/cm3.

Appendix A.3. Simulation Results

The trajectories are shown for all 40 realizations of the model with aAT = 0.07 and
aAT = 0.08 in Figures A1 and A2, respectively.
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Figure A1. All simulations for aAT = 0.07, with the thicker pink curves denoting the mean of the
trajectories. The left figure shows the simulations with 6 center viral doses administered, and the
right figure shows the simulations with 1 center and 5 adaptive doses administered.
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Figure A2. All simulations for aAT = 0.08, with the thicker pink curves denoting the mean of the
trajectories. The left figure shows the simulations with 6 center viral doses administered, and the
right figure shows the simulations with 1 center and 5 adaptive doses administered.
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Table A1. Baseline parameters in ABM.

Parameter Description Value Units Source

1 l Cell size 0.0014 cm [16]

2 µcycle(σcycle) Mean (st. dev.) cell cycle time 36.1 (3) Hours Estim.

3 DV Viral diffusion coefficient 3.6× 10−4 cm2/h [7]

4 ω Viral clearance rate 0.025 h−1 [7]

5 δT Death rate of infected tumor cells 1
18 h−1 [7]

6 bT Burst size of infected cells 50 pfu/cell [7]

7 αI
Virus absorbed by tumor cell during

infection 5 pfu/cell Estim.

8 γdiv
Parameter used in, Pdiv, the probability of

reducing cell division counter 1× 10−5 1/cell Estim.

9 β Viral infection rate 2.5× 10−8 pfu−1h−1 [32], Est.

10 γi1

Parameter governing viral-mediated
activation of innate immune cells in Pinn

5× 10−5 1/pfu Estim.

11 γi2

Parameter governing innate immune cell
positive feedback in Pinn

5× 10−5 1/cell Estim.

12 γAV

Parameter used in PAV , the probability that a
new adaptive immune cell is antiviral 2 – Estim.

13 kI
Killing rate of infected cells by innate

immune cells 0.02 cell−1h−1 Estim.

14 kVZ Killing rate of virions by innate immune cells 0.005 cell−1h−1 Est., [33]

15 mI
Propensity for an innate immune cell to

move toward an infected cell 2 – Estim.

16 mAT

Propensity for an antitumor adaptive
immune cell to move toward a tumor cell 2 – Estim.

17 mAV

Propensity for an antiviral adaptive immune
cell to move toward an infected cell 2 – Estim.

18 aZ
Rate of infected cell-mediated proliferation

of innate immune cells 2.4× 10−6 cell−1h−1 Estim.

19 δZ Death rate of innate immune cells 0.008 h−1 [6]

20 δYT
Death rate of tumor-specific adaptive

immune cells 3.75× 10−4 h−1 [23,34]

21 δYV
Death rate of virus-specific adaptive immune

cells 5.54× 10−3 h−1 [23]

22 κZ
Number of possible infected cell kills for an

innate immune cell 10 cells Estim.

23 κAT

Number of possible tumor cell kills for an
antitumor T cell 10 cells Estim.

24 κAV

Number of possible infected cell kills for an
antiviral T cell 10 cells Estim.

25 rmovZ

Rate at which an innate immune cell moves
to an empty neighboring site 0.05 h−1 Estim.
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Table A1. Cont.

Parameter Description Value Units Source

26 rmovAT

Rate at which an antitumor adaptive
immune cell moves to an empty neighboring

site
0.01 h−1 Estim.

27 rmovAV

Rate at which an antitumor adaptive
immune cell moves to an empty neighboring

site
0.01 h−1 Estim.

28 aAZ
Activation rate of adaptive immune cells via

innate immune cells 0.05 h−1 Estim.

29 kTA
Killing rate of tumor cells by tumor-specific

adaptive immune cells
1

24 cell−1h−1 [23]

30 kIA
Killing rate of infected cells by virus-specific

adaptive immune cells
1

24 cell−1h−1 [23]

31 kVA
Killing rate of virions by virus-specific

adaptive immune cells 10−5 cell−1h−1 Estim.

32 aAT
Rate of tumor cell-mediated proliferation of

tumor-specific adaptive immune cells 0.0016 cell−1h−1 [23]

33 aAV
Rate of infected cell-mediated proliferation

of virus-specific adaptive immune cells 0.025 cell−1h−1 [23]

34 KYQ Inhibition of T cells by PD-1/PD-L1 1.565× 10−22 µmol2/cm6 [35],Est.

35 ρp Molar concentration of PD-1 per T cell 8.999× 10−15 µmol/cm3 [31], Est.

36 ρL Molar concentration of PD-L1 per T cell 1.793× 10−14 µmol/cm3 [31], Est.

37 εT
Expression of PD-L1 on tumor cells vs. T

cells 10 – Estim.

38 εZ
Expression of PD-L1 on innate immune cells

vs. T cells 10 – Estim.

39 δA Decay rate of anti-PD-1 0.0019 h−1 [30,31]

40 µPA Anti-PD-1 blocking rate of PD-1 1.86× 107 cm3/µmol/h [35]
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