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Simple Summary: Pediatric mixed-phenotype leukemia is a rare form of blood cancer in children.
In this review, we cover both the evolution of treatment over the past several years and outline new
emerging concepts in this disease.

Abstract: Mixed-phenotype acute leukemias (MPAL) are rare in children and often lack consensus on
optimal management. This review examines the current controversies and emerging paradigms in
the management of pediatric MPAL. We examine risk stratification, outcomes of recent retrospective
and prospective collaborative trials, and the role of transplantation and precision genomics, and
outline emerging targets and concepts in this rare entity.

Keywords: mixed-phenotype acute leukemia; MPAL; Ph+; MLL; lineage switch; minimal residual
disease; treatment

1. Introduction

Mixed phenotypic acute leukemias (MPAL) are rare hematological malignancies
in children, accounting for less than 5% of pediatric acute leukemias [1–4]. MPAL are
heterogeneous and can exhibit cross-lineage myeloid, B-lymphoid, or T-lymphoid antigen
expression on a single blast population (biphenotypic) or have distinct single-lineage
blast populations (bilineal) [3]. Due to phenotypic and genetic diversity, lack of well-
defined diagnostic criteria, treatment resistance, and lineage switch, MPAL often present a
diagnostic dilemma, and prove difficult to treat.

Biphenotypic MPAL are more common than bilineal MPAL. However, the true preva-
lence and survival can be difficult to determine given the various diagnostic criteria utilized,
lack of a centralized review of cases, and treatment protocols that are based on results from
retrospective studies. The Children’s Oncology Group Acute Leukemia of Ambiguous
Lineage Task Force reported that routine institutional flow cytometry was insufficient for
the diagnosis of MPAL in about 15% of children, which further highlights the diagnostic
challenge faced by oncologists [5].

2. Classification of MPAL

Currently, MPAL are classified based on lineage-specific immunophenotypic mark-
ers determined by flow cytometry, immunohistochemistry, or cytochemistry and pri-
mary molecular alteration, and are considered by most co-operative groups to be high-
risk leukemias [5]. The majority of MPAL present as B-lymphoid/myeloid (in about
2/3 cases), with a T-lymphoid/myeloid immunophenotype being the second most com-
mon presentation. Rarely, it can present as B-lymphoid/T-lymphoid or B-lymphoid/T-
lymphoid/myeloid subtypes [6–8]. Myeloid-surface antigen co-expression does not ap-
pear to be prognostic [3]. The classification of MPAL also includes two distinct entities:
MPAL with KMT2A (mixed-lineage leukemia or MLL) rearrangement and MPAL with
t(9;22)(q34.1;q11.2); BCR-ABL1(Philadelphia chromosome positive or Ph+).

After MPAL were recognized as a distinct entity, numerous sets of diagnostic criteria
were established, including the European Group for the Immunological Characterization of
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Leukemias (EGIL), and most recently the World Health Organization (WHO) 2016 system
(updated from previous WHO 2008 classification), which is being increasingly utilized
for MPAL diagnosis [6,9,10]. A hallmark of MPAL in the WHO classification scheme rests
on the fact that other leukemia subtypes (i.e., AML-defining balanced translocations such
as t(8;21) that frequently expresses multiple B-cell markers) must be excluded prior to
the MPAL designation [11]. Given its more widespread adaption in clinical practice, the
World Health organization (WHO) 2016 criteria are presented in Tables 1 and 2. There
are distinct differences between the classification schema, with the European Group for
the Immunological Classification of Leukemias (EGIL) scheme generally considered to be
more inclusive, which often leads to more acute leukemias being classified as MPAL, and a
higher incidence of MPAL compared to the WHO classification. Weinberg et al. published
a review looking at 7627 patients (both pediatrics and adults) with leukemia showing a
mixed phenotype incidence of 2.8% using EGIL compared with 1.6% when using WHO
2008 criteria [3,11].

Table 1. Criteria for lineage assignment in mixed phenotypic acute leukemia.

Lineage Assignment Criteria

Myeloid Lineage

MPO+ (Flow cytometry, immunohistochemistry, or cytochemistry)
or

Monocytic differentiation (at least two of the following: nonspecific esterase cytochemistry,
CD11c, CD14, CD64, lysozyme)

T-Lymphoid Lineage

Strong * cytoplasmic CD3 (with antibodies to CD3 ε chain)
or

Surface CD3

B-Lymphoid Lineage

Strong * CD19 with at least 1 of the following strongly expressed: CD79a, cytoplasmic
CD22, or CD10

or
Weak CD19 with at least 2 of the following strongly expressed: CD79a, cytoplasmic

CD22, or CD10
* Strong is defined by equal or brighter expression than normal B or T cells in the sample.

Table 2. WHO 2016 criteria for acute leukemia of ambiguous lineage.

Acute Undifferentiated Leukemia

Mixed-phenotype acute leukemia (MPAL) with t(9;22)(q34.1;q11.2); BCR-ABL1

MPAL with t(v;11q23.3); KMT2A rearranged

MPAL, B/myeloid, NOS

MPAL, T/myeloid, NOS

Further classification of MPAL can be implemented utilizing the mutational status of
the leukemia. Most MPAL have an abnormal and often complex karyotype, with t(9;22)
mostly identified in adult or older patients, whereas t(v; 11q23) (AFF1 is the most common
fusion partner of MLL) is primarily seen in infant B/myeloid MPAL [11]. Matutes et al.
looked at 100 MPAL patients diagnosed using the WHO 2008 criteria and found that the
most common abnormality was a complex karyotype in 32% of patients, t(9;22) in 20%,
and normal karyotype in only 13% [8]. Less commonly, chromosome 1, 6, and 12 deletions;
trisomy 4; and near-tetraploidy have been reported [5,6,8]. These mutations aid in subclas-
sification but the therapeutic and prognostic importance is still under appreciated.
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3. Molecular Studies in MPAL

The development of MPAL is thought to occur either through the progression of
sequential mutations that drive a leukemia cell towards a multi-lineage phenotype or arise
from primitive hematopoietic cells with multipotency that develop clonal evolution [12,13].
Evidence presented by Alexander et al. supports the primitive cell mechanism by display-
ing similar founder mutations and genomic imprinting throughout multiple subclones in
MPAL patient samples [12].

A recent study out of St. Jude Children’s Research Hospital analyzed the largest
cohort of over one hundred cases of pediatric MPAL which identified genomic patterns
that showed several recurrent alterations common in ALL (i.e., ETV6), AML (i.e., FLT3 and
RUNX1), as well as those seen in both ALL/AML (i.e., WT1 and KMT2A) [12]. Of note,
there were unique mutational patterns noted between B/myeloid and T/myeloid MPAL.
These mutations include alterations in the JAK-STAT pathway in T/myeloid MPAL (seen
in 57% versus 23% of B/myeloid) and ZNF384 rearrangements in B/myeloid, which leads
to a higher FLT3 expression than typical B-ALL or T-lymphoid/myeloid MPAL [12].

Recent publications have utilized comprehensive next-generation sequencing (NGS)
to reveal the complex genetic landscape of MPAL which may further impact diagnosis,
treatment strategies, and prognosis. The majority of B/Myeloid MPAL harbor RAS and
epigenetic regulator mutations, with NRAS and PTPN11 and MLLT3, KMD6A, EP300, and
CREBBP being commonly altered [12]. Compared with T-ALL patients, T/myeloid MPAL
demonstrate a lower frequency of alterations in CDKN2A/B, NOTCH1, and core tran-
scription factors [12]. Most studies investigating the mutational landscape of T/Myeloid
MPAL are limited by small numbers but have reported mutations in ETV6, NOTCH1, WT-1,
and FLT3, as well as in epigenetic modifiers or regulators, IKZF1 (Ikaros), and JAK/STAT
signaling proteins [12,14–17]. Additionally, a retrospective trial out of Memorial Sloan
Kettering showed that MPAL with a T-lymphoid component had higher expression of
mutations in PHF6 (seen in younger patients) and DNMT3A (seen in older patients), which
is line with previous work [7,18].

Additional studies with a limited number of patients have been conducted in adult patients,
further elucidating the diverse genetic landscape of MPAL. A study conducted by Takahashi
et al. looked at thirty-one adult MPAL patients and saw unique mutational patterns between
MPAL subtypes (particularly B-lymphoid/myeloid and T-lymphoid/myeloid) [19]. Of note,
the commonly seen rearrangement in ZNF384 seen in the St. Jude pediatric population
of B-myeloid MPAL was not seen in the adult cohort and would limit FLT3 as a target of
therapy [7,19].

In summary, the studies outlined above elucidate the heterogenous biology and
lineage plasticity of MPAL, and future work may help identify unique targetable molecular
lesions, using precision genomics, in patients with poor response to therapy.

4. Lineage Switch in MPAL

Lineage switch is a phenomenon in which a lymphoid leukemia converts to a myeloid
leukemia (more common), but the opposite switch has also been reported [20]. This
phenomenon is of particular interest in MPAL, is more commonly reported in KM2TA
(MLL)-rearranged leukemias, and often complicates management of these patients [21].

A review article by Hu et al. has elegantly outlined that the mechanisms of lineage
switch are not fully understood and presents several complimentary hypotheses [20]. One
hypothesis is that leukemic clones involved in lineage switches and ambiguous leukemias
may in fact be derived from multipotent hematopoietic cells [20,22]. This concept is further
supported by methylation studies performed by Alexander et al. [12]. Another potential
mechanism of lineage switch involves leukemic cell reprogramming by transcription fac-
tors. It is well known that transcription factors are important for normal hematopoiesis
and loss of transcriptional regulation can lead to leukemia development [20,23]. Overex-
pression of Pu.1 (an important transcription factor for myeloid regulation) has been shown
to cause lineage switch in mouse models, as well as in a case of myeloid switch adult
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leukemia [20,24,25]. Pax 5 is considered an important transcription factor for B-lymphoid
lineage differentiation with high levels seen in B-ALL and lower levels seen in MPAL
following a lineage switch (i.e., after CD19-directed CAR-T cell therapy) [20,26]. The
pressure from the cytokine microenvironment may also play a pivotal role in lineage am-
biguity/switch. B-ALL cells have been reprogrammed into myeloid cells (non-leukemic
macrophages) through exposure to pro-myeloid cytokines including IL-3 and GM-CSF in
in vitro models, which suggests microenvironmental pressure may impact leukemia lin-
eage [27]. The importance of transcription factor and tumor microenvironmental changes
is not specific to MPAL but the importance has also been seen in mature B-cell lymphomas
(including the importance of IL-6 and PAX5) [28,29]. A simplified diagram highlighting
the impact of transcription factors and cytokines is shown in Figure 1.
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Figure 1. Regulation of lineage commitment in hematopoiesis. Solid lines/blue text indicate regula-
tors of normal hematopoiesis, and red lines (—) and text highlight aberrant regulation implicated in
MPAL pathogenesis.

Finally, treatment-related clonal selection pressure may lead to lineage switch or de-
velopment of a mixed-lineage leukemia. This is of particular interest with the increased
use of B-ALL-directed immunotherapy, which has been linked to lineage switch, particu-
larly in KMT2A-rearranged leukemias [20,21,26,30,31]. It is unclear if selective killing of a
CD19-positive clone with subsequent expansion of a more myeloid clone is to blame or if
transcriptional alteration (upregulation of Pu.1 and downregulation of Pax5) could play a
role [26]. A simplified schema outlining potential mechanisms of lineage switch in acute
MPAL is presented in Figure 2.
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5. Treatment of MPAL

Historically, MPAL have inferior outcomes and a high risk of induction failure, com-
pared with ALL/AML, and are treated per high-risk leukemias protocols [32]. Poor
prognostic factors include: an older age at diagnosis, higher white blood cell (WBC)
count at presentation, T-lymphoid/myeloid phenotype, adverse cytogenetics (such as a
KMT2A/AFF1 rearrangement), extramedullary disease at diagnosis, and MRD positiv-
ity [11,33,34]. There have been various chemotherapy approaches for the treatment of
MPAL including acute ALL, AML, and hybrid ALL/AML (such as FLAG (fludrabine,
cytarabine, granulocyte-stimulating factor)-IDA (idarubicin) with vincristine and pred-
nisone (VCR-PRED) or hyper-CVAD (cyclophosphamide, vincristine, doxorubicin, and
dexamethasone) regimens) [8,35,36]. Optimal therapy remains a subject of controversy and
differences between adult and pediatric treatment approaches are often striking [8,37].

St. Jude Children’s Research Hospital reviewed outcomes of 35 pediatric MPAL
patients (treated from 1985 to 2006) and reported that the majority (65%) of the patients
received AML induction chemotherapy with cytarabine, daunomycin, and etoposide,
while 35% of the patients received ALL four-drug induction [15]. In this review, of the
patients treated with upfront AML therapy, 12/23 (52%) achieved complete remission
compared with 10/12 (83%) with ALL therapy. Interestingly, 8/10 (80%) of patients who
did not achieve complete remission (CR) with AML therapy went into remission after
being switched to ALL-like induction therapy [15]. Long-term survival was achieved in
17 out of 35 patients (5 patients treated with AML therapy and 12 patients treated with ALL
therapy either upfront or after initial AML failure). The same study compared historical
survival rates, comparing MPAL with standard ALL therapy to AML therapy. The 5-year
survival estimates for MPAL (combined B/myeloid and T/myeloid) were 47.8% ± 11.5%,
similar to that of AML (56.5% ± 3.5%), but were significantly less than patients receiving
ALL therapy at 84.6% ± 1.1% [15].

Previous studies on adults have shown that the historical 4-year survival for adult
MPAL is less than 10% [8]. A case series of 100 MPAL patients by Matutes et al. further
showed that older patients had inferior survival compared with patients less than 15 years
of age [8,38]. In this case, series median survival in adults was 11.8 months compared with
139 months in children. A similar pattern was seen in patients treated with ALL therapy,
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with a median survival of 139 months compared with 11 months with AML therapy and
3 months with a hybrid approach [8].

However, more recently, due to improved diagnostic criteria and genomic techniques,
and the observation that ALL-like regimens in both pediatric and adult populations
are associated with superior treatment response, the treatment landscape has clearly
changed [5,35,39–41].

Several other studies have also investigated optimal upfront therapy for patients
with MPAL, and support that notion that ALL treatment regimens tend to lead to better
overall survival than AML-based regimens [1,7,11,16,38,39,42–44]. The BFM group interna-
tional pediatric cooperative study (AMBL2012) demonstrated a superior outcome when
patients were treated with ALL primary therapy with a 5-year event-free survival (EFS)
of 80% ± 4% compared with AML therapy (36% ± 7.2%) or hybrid ALL/AML therapy
(50% ± 12%) [36]. In particular, ALL/AML hybrid approach in KMT2A-rearranged pa-
tients resulted in a subpar 5-year EFS of only 28% [36]. A 2018 systematic review from
Maruffi et al. looked at over 1300 adults and children diagnosed with MPAL and showed
that ALL induction regimen was more likely to lead to remission (OR = 0.33) and improved
overall survival (OR = 0.45) compared to AML-like treatment protocols, or an even worse
outcome associated with hybrid regimens [1]. Additionally, a recent multi-center analysis
showed that ALL induction therapy was able to achieve MRD negative remission by the
end of induction in a majority of patients (70%) [40]. Even in studies showing similar
survival benefits between ALL and AML/hybrid regimens, ALL regimens tend to lead
to overall decreased morbidity, due to less toxicity, compared with AML or hybrid-based
treatments [35]. Lumbar puncture is recommended at diagnosis to determine central
nervous system (CNS) status for all MPAL patients, as frequency of CNS involvement is
higher [7,45]. CNS-directed intrathecal chemotherapy is administered, similar to treatment
protocols for acute leukemia with CNS involvement.

A recent review from Children’s Healthcare of Atlanta, highlights that patients with
B/myeloid MPAL with isolated MPO expression might in fact be a unique entity, and have
a more favorable response to ALL therapy [46]. In this review, patients with B/myeloid
with isolated MPO had an overall survival rate at 3 years of 100% compared with 63.1%
with other MPAL, and interestingly, the degree of MPO positivity was not prognosti-
cally relevant [46]. This highlights that the detection of a B/MPAL phenotype with iso-
lated MPO expression is important, and may allow for better prognostic information and
treatment decisions.

MPAL with KMT2A (MLL) rearrangement, are more common in children than adults,
are typically bilineal (lymphoblasts and monoblasts) but rarely biphenotypic, and are
prone to lineage switch [21,24,30,37]. The fusion partner of MLL1 is a determinant of
the leukemic phenotype [47]. For example, MLL-AF4 is predominantly associated with a
lymphoid phenotype and MLL-AF9 with a myeloid phenotype [47]; however, the role of
fusion partners in determining MPAL phenotype or lineage switch remains unclear [48].
Compared with Ph+ MPAL, the MLL+ MPAL patients have significantly inferior survival
odds (HR = 10.2, p < 0.001) [49], and are transplanted, upfront, if induction failure occurs,
or at relapse [11,50,51]. New emerging targets blocking the MLL fusion complex are
under evaluation, include menin [52], disruptor of telomeric silencing 1-like (DOTL1)
inhibitors [53], and spleen tyrosine kinase (SYK) inhibitors [54].

6. Treatment of Ph+ MPAL

Ph+ acute ALL, with t(9;22)(q34:q11.2), constitute 25% of MPAL, and are more common
in adults than children, and often present with a B/myeloid phenotype and a p190 BCR-
ABL transcript and have a high incidence of CNS involvement [3,8,11]. With the advent of
successful TKI therapy directed against BCR-ABL, the treatment paradigm has shifted, and
outcomes have improved significantly [49]. An ALL-chemotherapy backbone combined
with a TKI is increasingly utilized, with comparable outcomes to Ph+ non-MPAL ALL [49].
However, Ph+ MPAL must be distinguished from CML with mixed blast crisis, as the
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latter is treated with AML-like therapy followed by allogeneic transplant. CML is usually
associated with a p210 isoform, and MPAL usually express the p190, although each could
be associated with either isoform. Prior history of a chronic phase or accelerated phase
may also distinguish these entities [55,56].

7. Role of Hematopoietic Stem Cell Transplantation

The role of hematopoietic stem cell transplantation (HSCT) in MPAL remains contro-
versial and recommendations may vary based on the age of the patient being considered.
Several adult retrospective trials show that survival is poor with chemotherapy alone and
that there is possible benefit for the use of HSCT if a patient is able to obtain complete
remission (CR) [1,50,51,57,58]. Munker et al. analyzed a large adult cohort for HSCT
outcomes in MPAL: the 3-year overall survival was 56%, which is an improvement over the
historical SEER data for patients older than 20 years of age, which tend to be 20–40% [59].
On the other hand, several studies have shown there is no clear benefit for the use of HSCT
in pediatric MPAL, and that most pediatric MPAL are able to be treated with ALL-based
chemotherapy regimens alone [17,58,59]. In pediatrics, HSCT is typically only pursued
in patients with induction failure, a high minimal residual disease (MRD) >5% at end of
induction (EOI) or persistent MRD positivity at the end of consolidation (EOC), or after
lineage switch [5]. There is a survival advantage if total body irradiation is incorporated
into the transplant conditioning (similar to ALL), when compared with other preparative
regimens [57].

Relapsed MPAL post transplantation remains a major challenge, and generally there
is no consensus for further management of these cases. Patients treated with an ALL
approach appear to be less likely to relapse than patients treated with an AML therapy
approach. In addition, the remission durations of relapsed patients tend to be shorter,
while age, lineage switch, and higher white counts are not predictive of worse outcomes
per se [60].

8. Assessing Response/Impact of MRD

MRD by flow cytometry or next-generation sequencing (NGS) is a well-established
technique to assess therapy response and prognosis in acute leukemias [32,61]. MRD posi-
tive disease following intense chemotherapy has been shown to be a powerful prognostic
indicator in pediatric and adult B-ALL [62]. MRD evaluation in MPAL presents unique
challenges, due to variable antigen expression, potential for lineage switch, the lack of
validated MRD assays assessing the dual expression or bilineal blasts, and the lack of
established thresholds to assess for adequate therapy response [7].

Despite these challenges, MRD positivity has been linked to worse outcomes in MPAL.
Patients with EOI MRD ≥ 5% performed poorly in the iBFM AMBL2012 trial with a 5-year
EFS of less than 50% [36]. Furthermore, this trial demonstrated that patients who achieved
an MRD < 0.01% by the EOC had excellent outcomes with an overall survival of near
90% [5,36]. An additional multi-center review of almost 100 pediatric MPAL patients
showed that MRD positivity at EOI was associated with worse EFS and OS (HR = 6.00
and HR = 9.57 respectively) [40]. This flow-cytometry-based MRD-directed approach has
been incorporated by the Children’s Oncology Group (COG) to identify MPAL treatment
failures [5]. NGS-based MRD assays or identification of mutational hotspots may assist
in tracking and assessing one or more populations of MPAL blasts and requires further
study [5]. A high end of induction or consolidation MRD may necessitate augmentation of
therapy, a switch from ALL to AML directed therapy, and a consolidative hematopoietic
stem cell transplant [1].

9. Novel Approaches

With the growing molecular/genetic understanding of MPAL, this opens the door for
potential targeted, novel therapeutic approaches. These targeted therapies include those
already being successfully utilized in the treatment of B-ALL, including tyrosine kinase
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inhibitors for Ph+/Ph-like disease [63–65] and FLT3 inhibitors used in MLL-rearranged
disease [12,66]. BCR-ABL translocations had previously been shown to have poor outcomes
in MPAL, but with the addition of TKI therapy to an ALL backbone they have outcomes
similar to Ph+ B-ALL [65]. FLT3 inhibition is an attractive option, particularly given the
data from St. Jude showing the increased prevalence of ZNF384 rearrangement leading
to upregulated FLT3 expression in B-lymphoid/myeloid MPAL. Pre-clinical and clinical
research has been conducted in KMT2A-rearranged leukemia (particularly in infants)
and has shown increased sensitivity to both FLT3 and RAS inhibition, which could be
translated into MPAL patients harboring such mutations [67–69]. Novel agents such as
BCL-2 inhibitor venetoclax, in combination with hypomethylating agents, have been used
to induce remission in MPAL [70–72]. Given the unique biology of MPAL, engineering
hematopoietic stem cells harboring altered transcription factor profiles could mimic a
pre-clinical model and allow the expanded testing of novel target agents, using a precision-
medicine approach.

An expanding area of research includes the use of immunotherapy for the treat-
ment of hematologic malignancies. Immunotherapies, including bispecific T-cell engagers
(BITE) and chimeric antigen receptor T-cells (CART), have been successfully utilized for
the treatment of CD19+ relapsed/refractory B-ALL [73–76]. There is growing evidence
that these therapies can also be utilized in the treatment of MPAL. Recent case reports
and small retrospective reviews support the use of CD19 BITE cells and CART cells as
efficacious treatments for refractory MPAL [77–80]. A recent case series from Bartram
et al. out of the United Kingdom presented three pediatric cases of refractory MPAL that
successfully utilized Blinatumomab as a bridge to transplant, including in a patient with a
significant CD19-negative blast component [81]. Given the presence of different lineage
antigens in MPAL, it is thought that bi-specific immunotherapy options might be more
efficacious. Pre-clinical data have shown that dual-targeting triplebody therapy directed
against CD33/CD3/CD19 leads to selective and effective lysis of biphenotypic B/myeloid
cells expressing CD19 and CD33 [82,83]. A recent case report successfully utilized two
immunotherapy options targeting separate antigens (Blinatumomab for CD19 and Gem-
tuzumab for CD33) to successfully treat a refractory, KMT2A-rearranged infant MPAL [37].
Table 3 summarizes clinical reports that highlight the successful use of immunotherapy
in MPAL. Despite potential success, the use of direct/immunotherapy-based treatment
strategies for MPAL proposes unique challenges, including selective pressure towards
treatment resistance and lineage switch, requiring further studies.

Table 3. Clinical reports utilizing immunotherapy to treat MPAL (FLA: fludrabine, cytarabine; IDA: idarubicin).

Reference MPAL Patients Treatments Outcomes

Bartram et al. [81]

Patient 1:
6-month-old female with B/Myeloid

MPAL with KMT2A deletion
Patient 2: 10-month-old male with

B/Myeloid, KMT2A-USP2, and FLT3
ITD

Patient 3: 72-month-old female with
B/Myeloid MPAL and
KMT2A-ARHGEF12

ALL induction followed by FLA-IDA
(myeloid regimen) with CD19+ MRD,
and Blinatumomab followed by HSCT

>10% disease after ALL induction
(CD19+, CD19-, populations):

Blinatumomab and FLA-IDA prior to
HSCT

ALL induction followed by
Blinatumomab and high-dose Ara-C

prior to HSCT

CR for 24 months post HSCT
CR for 8 months post HSCT

CR 5 months post HSCT

Li et al. [77]
29-year-old male with B/myeloid

CD19+ MPAL and SET-NUP14 fusion
gene transcript

ALL induction followed by hybrid
Consolidation (hyper-CVAD-B and

hyper-CVAD-A) and HSCT
For Relapse#1: received CD19

Directed CART therapy x2
(donor-derived)

Relapse#1 after 6 months
Relapse#2: 24 months following

first infusion of CAR T-Cells
despite persistent CD19 CAR

T-Cells at 8 months

Durer et al. [77] 51-year-old female with B/myeloid
CD19+ MPAL

ALL induction followed by HSCT but
relapsed after 3 months. Received

Blinatumomab and donor lymphocyte
infusions (x 4 cycles)

Attained CR after one cycle and
maintained CR for 15 months
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Table 3. Cont.

Reference MPAL Patients Treatments Outcomes

El Chaer et al. [78]

Patient 1: 39-year-old male with Ph+
B/myeloid MPAL

Patient 2: 55-year-old female with
B/myeloid

Induction with Cytarabine,
Daunorubicin, and Dasatinib followed

by Blinatumomab with HSCT
HyperCVAD (held due to toxicity),

and later received 3 cycles of
Blinatumomab followed by HSCT

CR at 6 months
CR at 14 months

Brethon et al. [37] 4-month-old female with B/myeloid
MPAL with KMT2A-AFF1

Interfant-06 protocol with refractory
disease; received Blinatumomab and

Gemtuzumab followed by HSCT,
followed by CART for relapse

Relapsed 11 months post HSCT;
then achieved CR for 12 months

post CART

10. Conclusions and Future Directions

MPAL are a heterogeneous group of leukemias that often have a complex pheno-
type/genetic basis and historically have been difficult to diagnose and treat. Despite recent
advances in the diagnosis criteria and treatment landscape of MPAL, there is still much
to learn about this unique subset of acute leukemias. As most current treatment recom-
mendations are based on retrospective studies, prospective clinical trials standardizing
the treatment regimens and utilizing MRD for assessing treatment response, such as the
ongoing COG trial AALL1732, are urgently needed to solidify a uniform approach for the
management of MPAL.
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