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Simple Summary: Cushing’s Disease (CD) is a rare but severe endocrine disorder due to an adreno-
corticotropic hormone (ACTH)-secreting pituitary tumor, and pathogenetics remained a puzzling
issue for a long time. The recent identification of somatic mutations in the 14-3-3 protein binding mo-
tif of ubiquitin specific peptidase 8 gene (LISP8), present in a consistent subgroup of ACTH-secreting
pituitary tumors, have represented a major advance in the understanding of CD pathogenesis. In our
cohort of 60 patients we found an incidence of 11.7% of USP8 recurrent somatic mutations whereas a
novel USP8 variant (G664R) located upstream the canonical USP8 mutational hotspot was identified
in one case. This alteration has never been reported by previous records. The present study provides
USP8 G664R variant in vitro functional characterization in AtT-20 cells and demonstrates its possible
implication in ACTH-secreting tumor pathogenesis, contributing to enlarge the genetic landscape of CD.

Abstract: Cushing’s Disease (CD) is a rare condition characterized by an overproduction of ACTH
by an ACTH-secreting pituitary tumor, resulting in an excess of cortisol release by the adrenal glands.
Somatic mutations in the deubiquitinases USP8 and USP48, and in BRAF genes, have been reported
in a subset of patients affected by CD. The aim of this study was to characterize the genetic profile
of a cohort of 60 patients with ACTH-secreting tumors, searching for somatic mutations in USP8,
USP48, and BRAF hotspot regions. Seven patients were found to carry USP8 somatic mutations
in the well-characterized 14-3-3 protein binding motif (n = 5 P720R, n = 1 P720Q, n = 1 S718del);
2 patients were mutated in USP48 (M415I); no mutation was identified in BRAF. In addition, a
novel USP8 variant, G664R, located in exon 14, upstream of the 14-3-3 protein binding motif, was
identified in 1 patient. Functional characterization of LISP8 G664R variant was performed in murine
corticotroph tumor AtT-20 cells. Transient transfection with the USP8 G664R variant resulted in
a significant increase of ACTH release and cell proliferation (+114.5 & 53.6% and +28.3 £ 2.6%
vs. empty vector transfected cells, p < 0.05, respectively). Notably, USP8 proteolytic cleavage was
enhanced in AtT-20 cells transfected with G664R USP8 (1.86 + 0.58-fold increase of N-terminal USP8
fragment, vs. WT USPS, p < 0.05). Surprisingly, in situ Proximity Ligation Assay (PLA) experiments
showed a significant reduction of PLA positive spots, indicating USP8/14-3-3 proteins colocalization,
in G664R USP8 transfected cells with respect to WT USPS8 transfected cells (—47.9 £ 6.6%, vs. WT
USPS, p < 0.001). No significant difference in terms of ACTH secretion, cell proliferation and USP8
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proteolytic cleavage, and 14-3-3 proteins interaction was observed between G664R USP8 and S718del
USPS8 transfected cells. Immunofluorescence experiments showed that, contrary to S718del USP8
but similarly to WT USP8 and other USP8 mutants, G664R USP8 displays an exclusive cytoplasmic
localization. In conclusion, somatic mutations were found in USP8 (13.3% vs. 36.5% incidence of all
published mutations) and USP48 (3.3% vs. 13.3% incidence) hotspot regions. A novel USP8 variant
was identified in a CD patient, and in vitro functional studies in AtT-20 cells suggested that this
somatic variant might be clinically relevant in ACTH-secreting tumor pathogenesis, expanding the
characterization of USP8 functional domains.

Keywords: Cushing’s disease; ACTH-secreting pituitary tumor; USP8; USP48; mutation

1. Introduction

Adrenocorticotropic hormone (ACTH)-secreting pituitary tumors are responsible for
a rare condition named Cushing’s disease (CD). In affected patients, ACTH oversecretion
leads to an excess of cortisol production in the adrenal glands; chronic hypercortisolism
results in many severe clinical manifestations such as cardiovascular disease, diabetes,
hypertension, osteoporosis and fractures, infections, and thromboembolic events [1]. The
prevalence of CD is around 3040 cases per million inhabitants per year and the incidence is
1-2 per million per year; the female:male ratio is 3:1 and the age of onset mainly occurs dur-
ing the fourth to sixth decades of life. [1] The first-line treatment for CD is transsphenoidal
surgery excision of ACTH-secreting tumor from the pituitary. After surgery, remission
is observed in about 70-90% of patients, with a 15-25% of recurrence risk and a 20-30%
persistence risk [1].

The pathogenetics of CD remained a puzzling issue for a long time, principally be-
cause the search for responsible candidate genes was hampered by the small size of surgical
tumors and by the rareness of the disease. An important breakthrough arrived thanks to
the recent identification of mutated genes in ACTH-secreting tumors by exome sequencing.
In 2015, two independent groups described gain-of-function mutations in the ubiquitin
specific peptidase 8 (USPS8) gene [2,3]. Ubiquitination is a posttranslational reversible
process which consists of the binding of ubiquitin (Ub) molecules to specific proteins; once
ubiquitinated, peptides are addressed to proteolytic degradation by the 26S proteasome
complex [4]. Deubiquitinating enzymes (DUBs) can remove conjugated Ub molecules
from target proteins, thus preventing their degradation. USP8 deubiquitinating activity
is modulated through the binding of 14-3-3 proteins to the consensus 14-3-3 binding mo-
tif RSYSSP at amino acid positions 715-720 [5-8]. This binding prevents the proteolytic
cleavage of USPS at position 715, which releases the C-terminal 40-kDa deubiquitinase
catalytic domain (USP8-C40). Interestingly, the majority of the mutations identified in
USP8 gene are located in the 14-3-3 binding site and impede the binding between USP8
and 14-3-3 proteins; as a consequence, USP8 mutant proteins are more prone to undergo
proteolytic cleavage and an abnormal amount of USP8-C40 is produced [2,3]. It has been
hypothesized that the increased deubiquitinating activity alters the degradation process of
endocytosed EGFR, recycling elevated amount of EGFR on the plasma membrane; POMC
gene transcription is consequently strengthened by high EGFR levels, leading in turn
to an increase in ACTH secretion and to corticotroph tumorigenesis. Subsequently, in
2018, recurrent somatic mutations were identified in USP48 and BRAF genes [9]. So far,
USP48 mutations concern M415, a residue localized in a very well conserved position in
the catalytic domain of deubiquitinases; in vitro studies showed that M415I or M415V
mutants have a higher deubiquitinating activity, stimulate POMC transcription, and poten-
tiate CRH-induced ACTH synthesis. [9,10]. As regards BRAF, it harbors the well-known
V600E mutation. It has been observed that V600E variant has an increased kinase activity,
resulting in activation of MAPK pathway and elevation of POMC transcription and ACTH
synthesis [9].
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Following the identification of driver mutations in ACTH-secreting tumors, in the
past few years many groups reported the results of genetic analysis of CD patients, mainly
performed for USP8 by exome sequencing or targeted sequencing [11-24]. The aim of the
present study was to characterize the genetic profile of a cohort of 60 patients subjected
to surgery excision of ACTH-secreting tumors, searching for somatic mutations in USPS,
USP48, and BRAF hotspot regions. In addition to the classical mutations in deubiquitinases
USP§ and USP48, here we describe a novel USP8§ variant located in exon 14, upstream
of the 14-3-3 protein binding motif and its functional characterization, contributing to
enlarging the genetic landscape of CD.

2. Materials and Methods
2.1. Sample Collection

ACTH-secreting pituitary tumor samples from 60 subjects were collected during
transsphenoidal surgery (TSS) between 1999 and 2020 in our center, and all patients gave
written informed consent to the use of their sample. DNA was isolated from frozen
specimens (1 = 54) or from formalin fixed specimens (n = 16); 10 samples out of 60 were
available both frozen and formalin fixed. 3 patients with persistence of disease underwent
a second TSS and samples from both interventions were analyzed.

2.2. DNA Extraction and Sanger Sequencing

DNA from frozen specimens was obtained using the Gentra Puregene Tissue Kit
(Qiagen, Hilden, Germany); DNA from FFPE samples was isolated by the QlAamp DNA
FFPE Tissue Kit (Qiagen, Hilden, Germany). DNA quality and concentration were assessed
using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA).
For USP8 hotspot (exon 14), USP48 hotspot (exon 10), and BRAF hotspot (exon 15) amplifi-
cations, couples of primers were designed both in the introns (in order to include the whole
exon and the intron-exon splice junctions) and in the exons (PCR primers sequences are
listed in Supplementary data, Table S1). COLD-PCR was carried out in a C1000 Thermal
Cycler (Bio-Rad, Hercules, CA, USA): after an initial denaturation at 94 °C, 10 cycles were
performed with an annealing temperature of 57 °C, followed by 25 cycles with a reduced
annealing temperature of 55 °C [25]. PCR products were sequenced using the BigDye Ter-
minator v3.1 Cycle Sequencing Kit and the 3130xl Genetic Analyzer (Applied Biosystems,
Foster City, CA, USA).

2.3. Plasmids and Mutagenesis

The pME-Flag plasmid containing the full-length wild-type cDNA of human USP8
with the N-terminal of the USP8 sequence fused to the Flag tag was kindly gifted by M.
Theodoropoulou. The QuickChange II Site-Directed Mutagenesis Kit (Agilent Technologies,
Santa Clara, CA, USA) was used to obtain the G664R USP8 and the S718del USP8 plasmids,
according to the manufacturer’s instructions. For the USP8-C40 construct, a fragment
corresponding to amino acids 715-1118 of human wild-type USP8 was cloned, starting
from human total osteoblast RNA. Briefly, RNA was extracted by RNeasy Plus Mini Kit
(Qiagen, Hilden, Germany), and reverse transcribed by RevertAid H Minus First Strand
cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA). RT-PCR was carried
out with Platinum SuperFi DNA Polymerase, according to the manufacturer’s guidelines
(Thermo Fisher Scientific), in a C1000 Thermal Cycler (Bio-Rad, Hercules, CA, USA).
Direct sequencing of all constructs was performed using the BigDye Terminator v3.1 Cycle
Sequencing Kit and the 31030x]l Genetic Analyzer (Applied Biosystems, Foster City, CA,
USA). All the primers used are available on request.

2.4. ACTH-Secreting Pituitary Cell Culture

Murine pituitary corticotroph tumor cells, AtT-20 cells (ATCC CRL-1795™), were
cultured in DMEM (Life Technologies, Carlsbad, CA, USA) supplemented with 10% fetal
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bovine serum (FBS) and antibiotics (Life Technologies, Carlsbad, CA, USA). Cells were
cultured at 37 °C in a humidified atmosphere with 5% COs,.

2.5. Cell Transfection

AtT-20 cells were seeded in 6-well plates at a density of 4 x 10°/well. The day after,
cells were transiently transfected with expression vectors or empty vector for indicated
times with Lipofectamine 2000 reagent (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA), according to the instructions of the manufacturer. For each experiment, transfection
efficiency was monitored by Western blot analysis using an anti-FLAG antibody (Merck,
KGaA, Darmstadt, Germany). Empty vector was used in each experiment as negative
control (mock). Original western blot images are available in File S1.

2.6. Western Blot Analysis

For phospho-CREB, p27/kipl, and USP8 proteolitic cleavage analysis, AtT-20 cells
were transiently transfected for 96 h. For phopsho-ERK1/2 evaluation, AtT-20 cells were
transiently transfected with USP8 constructs for 48 h and treated with 50 ng/mL EGF for
48 h in medium supplemented with 2% FBS. Cells were lysed with lysis buffer and total
proteins were quantified by BCA assay. 30-100 pg of total proteins extracted were separated
on SDS/polyacrylamide gels and transferred to a nitrocellulose filter. p27 antibody was
from Santa Cruz Biotechnology (Dallas, TX, USA) and diluted at 1:200. Antibodies against
phospho-CREB and total CREB, phospho-ERK1/2, and total ERK1/2 were from Cell
Signaling Technology (Danvers, MA, USA) and used at 1:1000 dilution. The anti-Flag
antibody (Merck KGaA, Darmstadt, Germany) was used at 1:1000 dilution. The USP8
antibody (against a synthetic peptide equivalent to the N-terminal of USP8) was from Merck
KGaA (Darmstadt, Germany) and used at 1:1000 dilution to recognize both the full-length
form of USP8 and the N-term 90 kDa USP8 fragment. Primary antibodies were incubated
o/n at 4 °C, secondary antibodies anti-rabbit or anti-mouse (Cell Signaling Technology,
Danvers, MA, USA) were used at 1:2000 and incubated at room temperature for 1 h. For
normalization, anti-GAPDH antibody (Ambion, Thermo Fisher Scientific, Waltham, MA,
USA) was used at 1:4000 for 1 h at room temperature. Chemiluminescence was detected
using a ChemiDOC-IT Imaging System (UVP, Upland, CA, USA) and densitometrical
analysis was performed with NIH Image] software (National Institutes of Health, Bethesda,
MD, USA).

2.7. Hormone Levels Detection

At 72 h of transfection, AtT-20 cells were trypsinized, counted, and re-seeded in a
24-well plate at a density of 12.5 x 10* cells/well in 500 uL of culture medium at 37 °C.
The following day culture medium was replaced with 300 pL of fresh medium, and cells
were incubated at 37 °C for 4 h based on preliminary time course experiments. Culture
media were then collected to detect secreted ACTH. Murine ACTH levels were determined
using a specific Elisa immunoassay kit (Fine Test, Wuhan Fine Biotech Co., Ltd., Wuhan,
China), according to the manufacturer’s instructions and previously reported protocols [26].
Absorbance was read at 450 nm in a Victor2 multilabel plate reader (Perkin Elmer, Whaltam,
MA, USA). Data were plotted and analyzed with Curve Expert 1.4 program. Hormone
detection was done in triplicate for each condition and experiments were replicated three
times. Hormone levels were normalized on the protein content, measured by BCA as-
say. To test transfection efficiency, Western blot analysis was carried out before hormone
determination, with an anti-FLAG antibody for each experiment.

2.8. Immunofluorescence Analysis and In Situ Proximity Ligation Assay

AtT-20 cells were seeded on 13-mm poly-L-lysine coated coverslips at a density of
1.25 x 10° cells/well in 24-well plates and grown at 37 °C for 18 h. The following day cells
were transiently transfected for 6 h, then chilled on ice and fixed with 4% paraformaldehyde
(Sigma-Aldrich, St. Louis, MO, USA) for 10 min at room temperature, washed three times
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with PBS, and incubated for 1 h at room temperature with blocking buffer (5% FBS, 0.3%
Triton™X-100, in PBS). Cells were incubated overnight at 4 °C with anti-FLAG (1:250,
Merck KGaA, Darmstadt, Germany) and anti-14-3-3 (1:200, Cell Signaling Technology,
Danvers, MA, USA) antibodies. For immunofluorescence analysis, anti-mouse Alexa
Fluor™-546-conjugated secondary antibody (1:500, ThermoFisher Scientific, CA, USA)
and anti-rabbit Alexa Fluor™-488-conjugated secondary antibody (1:500, ThermoFisher
Scientific, CA) were incubated at room temperature for 1 h. All antibodies were diluted in
Antibody Diluent Reagent Solution (Life Techologies, ThermoFisher, CA, USA). In order
to detect potential unspecific signal, negative control coverslips were incubated with only
one primary antibody, respectively.

For in situ Proximity Ligation Assay (PLA) a commercially available kit was used
(Duolink; Sigma-Aldrich, St. Louis, MO, USA), accordingly to previous protocols [27].
For both applications, coverslips were mounted on glass slides with Duolink In Situ
Mounting Medium with 4’,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis,
MO, USA) for subsequent observation at fluorescence microscope. Proximity ligation
events were quantified with NIH Image] software [27]. Briefly, cells were first searched
using an excitation light of 405 nm (DAPI signal) and fine focus adjustment was performed
switching the filter of the excitation light to FITC (488 nm). This procedure minimized
photobleaching before image acquisition of PLA signals. Images of cells showing PLA
spots were subjected to deconvolution protocols before quantification in order to exclude
any possible unspecific signal from the analysis. Ten fields for each transfection condition
were randomly chosen from three independent experiments. About 150 cells showing
PLA signals were analyzed for each condition for each experiment. An approximate total
of 1215 £ 103 PLA spots were quantified for USP8 WT, with a mean of 7.2 £ 0.5 PLA
events/cell, which was then considered as a reference for S718del USP8 and G664R USPS.

2.9. Cell Proliferation Assay

Cell proliferation was assessed by colorimetric measurement of 5-bromo-2-deoxyuridine
(BrdU) incorporation during DNA synthesis in proliferating cells. 72 h transiently trans-
fected AtT-20 cells were trypsinized, counted, and re-seeded in starved medium in 96-well
plate at a cell density of 5 x 10° cells/well. 24 h later, BrdU incorporation was allowed for
2 h. Cell proliferation assay was conducted following the instruction of the manufacturer
(GE Healthcare, Life Science, Buckinghamshire, UK), each determination was done in
triplicate, and experiments were replicated three times.

2.10. Statistical Analysis

The results obtained with AtT-20 cells are expressed as the mean + S.D. A paired
two-tailed Student’s t-test was used to detect the significance between two series of data.
p < 0.05 was accepted as statistically significant. Patients’ data are expressed as mean +
S.D. for normally distributed continuous variables, median and interquartile range (IQR),
or range for non-Gaussian data and proportion for categorical parameters. The latter were
analyzed using the x? test or the Fisher exact test if the expected value was < 5. Continuous
parameters with normal distribution were compared using the t test and non-Gaussian
data using the non-parametric test of Mann Whitney. Two-sided p-value was considered
statistically significant when < 0.05. All statistical analyses were performed using SPSS,
version 26 (IBM, Chicago, IL, USA).

3. Results
3.1. Clinical Characteristics and Prevalence of USP8 and USP48 Mutations in Patients

We performed a retrospective study on a cohort of 60 patients diagnosed with CD
who underwent TSS between 1999 and 2020 in our Centre. Forty-five out of sixty patients
have been described in a recent paper which analyzed the surgical outcome of subjects
with CD after TSS between 1990 and 2016 [28]. Clinical characteristics and hormonal status
of patients are summarized in Table 1. The female:male ratio was 3:1 (45 females and
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15 males); the mean age at diagnosis was 45 £ 15 years. MRI analysis showed 9 patients
(15%) with macroadenomas, 39 patients (65%) with microadenomas, and 12 subjects (20%)
with negative imaging. The remission rate after surgery was 77.9%. Due to persistence
of the disease, 3 patients underwent a second neurosurgery procedure, and one subject
underwent a third.

Table 1. Demographic, clinical, and neuroradiological characteristics of CD patients.

All (1 = 60) WT (n=500 USP8(n=7)* ps

Age (years, mean + SD) 45 +15.1 46 +£15.1 46.8 £14.8 0.88
Females [n/tot (%)] 45/60 (75%) 37/50 (74%) 6/7 (85%) 0.67
ACTH pg/mL (median, IQR)  44.3 (33.1-77.6) 43.6 (32-76) 57 (38-110) 0.308
Relative UFC (median, IQR) 2.3 (1.2-3.7) 2.3 (1.2-3.3) 2.1(0.6-7.1) 0.832
Microadenoma [1/tot (%)] 39/60 (65) 35/50 (70) 2/7 (28) 0.041
Macroadenoma [1/tot (%)] 9/60 (15%) 4/50 (8) 4/7 (57.1) 0.005

Negative imaging [/ tot (%)] 12/60 (20) 11/50 (22) 1/7 (14.2) 1

Remission [n/tot (%)] 46/60 (76.6) 38/50 (76) 6/7 (86.5) 1
Recurrence [n/tot (%)] 9/46 (19.5%) 5/38 (13.1) 3/6 (50) 0.009
Follow-up [years, median IQR)] 5 (2-8) 5 (2-8) 4 (3-6) 0.614

* The USP8 variant and the two USP48 carriers were described separately; S WT vs. USPS.

To assess the presence of somatic mutations in USP8 gene, we decided to sequence the
whole exon 14 and the corresponding exon-intron junctions, since currently 26 different
mutations have been described in the hotspot region and nearby. Seven mutations were
identified in the 14-3-3 protein binding motif: p.Pro720Arg (five patients), p.Pro720GIn
(one patient), and p.Ser718del (one patient). The mutation frequency was 11.7%. As regards
USP48 gene, we targeted sequenced the region encompassing Met415, the only amino
acidic residue affected by mutations in patients, founding the mutation pMet415Ile in two
patients. The mutation frequency was 3.3%. Regarding BRAF gene, we did not find the
classical pathogenic variant p.Val600GIn in any subject of our cohort. All the mutations
identified were heterozygous and were not present in the germline. In any of the tumors
analyzed, mutations in USP8 and USP48 were present contemporarily.

Patients affected by USP8 mutation had a higher frequency of macroadenoma (4/7 vs.
4/46, p = 0.005) than WT patients, and a higher CD recurrence rate during follow-up (50%
vs. 13.1%, p = 0.009). Age, sex, ACTH, and UFC levels at baseline, as well as remission rate
after surgery, did not differ in the two groups (Table 1).

The USP48 carriers were two females aged 31 and 25 years at CD diagnosis. The
first one had a macroadenoma, successfully removed with surgical treatment; however,
the patient experienced disease recurrence six months later. The second patient had a
microadenoma on MRI and manifested persistent hypercortisolism after pituitary surgery.

3.2. Identification of a New USP8 Variant

Searching for somatic mutations in our cohort of CD patients, in one subject we found
a G to A transition at nucleotide position 2165 (c.2165G>A; GenBank accession number
NM_005154.5), which results in the substitution of arginine for glycine at amino acid
position 664 (p.Gly664Arg) (Figure S1).This novel variant is located in exon 14, upstream
from the 14-3-3 protein binding motif (Figure 1a). Homology alignment of the USP8 region
surrounding the p.Gly664 revealed that this zone is highly conserved across a variety of
vertebrate species, suggesting the importance and a possible role for the involved amino
acids (Figure 1b). So far, structural studies on USP8 protein have focused on specific
domains, such as the catalytic domain or the rhodanese domain, for which the crystal
structures are available. More recently the interaction between a peptide corresponding
to the USP8/14-3-3 binding motif (from p.Lys712 to p.Glu724) and the 14-3-3 protein has
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(a)

(b)

been elucidated by crystallography. At present, a crystal model of the region encompassing
the p.Gly664 does not exist. In order to identify proteins containing a similar amino
acidic region and for which a 3D structural model was available, we performed a protein
BLAST search using as query the USP8 region surrounding the p.Gly664; the search
did not evidence any homologous protein domain. Thereafter, to understand whether
the p.Gly664Arg variant had pathogenic effects on the structure and function of USPS,
we did an in silico analysis with some prediction software. In PolyPhen-2 (Harvard
Medical School, Boston, MA, USA), the missense p.Gly664Arg variant has a score of
0.997 (sensitivity: 0.0; specificity: 1.0), where scores greater than 0.908 are predicted to be
probably damaging; to make a comparison, the p.Pro720Arg mutation has a score of 0.994.
Using MutationAssessor (Computational Biology Center, Memorial Sloan Kettering Cancer
Center, New York, NY, USA), a software which predicts deleterious effects caused by a
mutation evaluating the evolutionary conservation of the affected amino acid in protein
homologs, the p.Gly664Arg variant has a score of 0.711 and the p.Pro720Arg mutation
has a score of 0.561 (score between 0 and 1, with higher scores more likely deleterious).
As regards population genetics, the p.Gly664Arg variant was never identified in any
individual out of 400.000.

MIT Rhod SBM1 14-3-3 binding motif SBM2 DUB
109 185 310 708-733 778 1088 1118

| Cleavage (714-715)

7/ \
1 1 |

G664R ] I Mutation hotspot
N-fragment Hyperactivated C-fragment
(90 kDa) (40 kDa)
664
Homo sapiens USPS  GWAKFLDPIT[ G | TERYYHSPIN
Mus musculus USP8  GWAKFLDPIT| G | TERYYHSPIN
Gallus gallus USP8  GWAKFLDPIT| G | TERYYHSPIN
Xenopuslaevis USP8  GWVKFLEPIT| G | TYRYYHSPTH
Daniorerio USP8 GWMKFLDIVT| G | TYRYYHSPIN

Figure 1. Identification of a novel USP8 somatic variant in ACTH-secreting pituitary tumors. (a) The novel USP8 G664R

variant is located upstream the USP8 mutational hotspot (amino acid 713-720). Human USP8 functional regions: MIT
domain (MIT); rhodanese-like domain (Rhod); SH3-binding motif (SBM); 14-3-3 binding motif (14-3-3); and deubiquitinase
catalytic domain (DUB). (b) Homology alignment of USP8 amino acidic sequence: the boxed glycine at residue 664 is highly

conserved between vertebrate species.

3.3. Overexpression of USP8 G664R Variant in AtT-20 Cells Increased ACTH Secretion and Cell
Proliferation

In vitro functional studies of the new USP8 G664R variant were performed in mouse
corticotroph tumor cells AtT-20, bearing wild-type USP8 and endogenously expressing
EGEFR (Figure S2).

As an initial step, we examined the impact of USP8 G664 variant on ACTH release.
To this purpose, AtT-20 cells were transiently transfected with WT, S718del, G664R USPS,
and USP8-C40. S5718del was chosen as the most representative USP8 mutant since it has
shown the higher in vitro ability to induce POMC transcription and ACTH production
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when transfected in AtT-20 cells compared to other USP8 mutants [2,10]. USP8-C40 was
used as a catalytically active mutant. We found that cells expressing G664R USP8 had
increased ACTH secretion compared to empty vector (mock) control cells (+114.5 £ 53.6,
p < 0.05) and those expressing WT USP8, and had similar ACTH secretion compared to
those expressing S718del USP8 and USP8-C40 (Figure 2a). No difference in ACTH secretion
was observed in WT USP8 and empty vector transfected cells.

(b)
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Figure 2. Effects of USP8 G664R variant on hormone secretion and cell proliferation. (a) ACTH released in culture medium
from AtT-20 cells transiently transfected with USP8 constructs was measured by competitive ELISA kit. Each determination
was done in triplicate. (b) Cell proliferation results of AtT-20 cells transfected with USP8 constructs by BrdU assay. Each
determination was done in quintuple. (c) Graphs showing densitometrical analysis of p-ERK1/2 expression levels in
AtT-20 cells transiently transfected with USP8 constructs and stimulated with EGF 50 nM for 48 h. (d,e) Graphs resulting
from densitometrical analysis of p-CREB and p27/kip1 expression levels in AtT-20 cells transiently transfected with USP8
constructs. Values represent mean £ SD and results are expressed as percentage of empty vector transfected cells (mock).
*,p <0.05,**, p <0.01, ***, p < 0.001 vs. mock; §, p < 0.05, §§, p < 0.01, §§§, p < 0.001 vs. WT USPS transfected cells.

To determine possible implications of USP8 G664R variant on cell proliferation, we
performed BrdU incorporation assays. Our results showed that the transfection of USP8
G664R in AtT-20 cells promoted cell proliferation (+28.3 &+ 2.6%, p < 0.001 vs. mock),
similarly to S718del USP8 (+42.8 £ 22.4%, p < 0.05 vs. mock) and USP8-C40 (+24.6 &= 16.2%,
p < 0.05 vs. mock) (Figure 2b).

Since USP8 mutants pathogenetic mechanism involves an abnormal activation of ERK
due to a persistent activation of EGFR, we evaluated the level of active phosphorylated
ERK1/2 in cells transfected with WT and mutants USP8 upon EGF stimulation. We found
that the EGF ability to stimulate ERK phosphorylation in WT USP8 transfected cells was
transient with a peak of phosphorylation reached at 24 h and strongly reduced at 48 h
incubation (data not shown). In contrast, in cells expressing S718del and G664R USPS, a
persistent activation of ERK was observed at 48 h incubation with EGF (+71.5 &+ 10.5%
S718del USP8 vs. mock, p < 0.05, +67.6 = 34.7%, G664R USP8 vs. mock, p < 0.05) (Figure 2c).

The transcription factor CREB is known to be involved in POMC promoter activa-
tion [29] and ACTH release from pituitary corticotroph cells [30], and its phosphorylated
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form has been recently found increased in USP8 mutated tumors and AtT-20 cells trans-
fected with USP8 P720R mutant [19]. Thus, we tested whether USP8 G664R variant
could modulate the level of phospho-CREB in AtT-20 cells. We observed a significant
increase of CREB phosphorylation in cells transfected with both G664R and S718del USP8
(+28.8 £ 5.5%, G664R USP8 vs. mock, p < 0.01; +39.3 £ 22%, S718del USP8 vs. mock,
p < 0.05), but not in WT USPS cells (Figure 2d).

As final step, we assessed the expression level of p27/kip1, a key tumor suppressor
gene involved in cell cycle regulation in the corticotrophs [31,32]. Particularly, downregula-
tion of p27/kip1 has been recently documented in corticotroph tumors carrying the USP8
mutations [19]. Western blot analysis performed in AtT-20 cells transiently transfected
with G664R, S718del, WT USPS, and empty vector revealed that p27/kip1 expression was
strongly reduced in cells transfected with both G664R and S718del USP8 (—30.7 £ 14.9%,
p <0.01 and —8 £ 22.7%, p < 0.05, respectively) but not in WT USPS cells (Figure 2e).

3.4. USP8 G664R Variant Leads to USP8 Proteolytic Cleavage by Affecting USP8/14-3-3 Proteins
Binding

Since downstream effects induced by the new USP8 G664R variant were similar
to those induced by classical USP8 mutation S5178del, we investigated the molecular
mechanisms involved. Indeed, G664 is not localized in the 14-3-3 binding site where all the
known USP8 mutations are found.

The increased catalytic activity of the USP8 mutants so far described is due to an USP8
increased proteolytic cleavage into an N-terminal 90-kDa and C-terminal 40-kDa fragments.
Therefore, we evaluated whether USP8 G664R variant could also affect USP8 cleavage.
To this aim, we performed immunoblotting experiments using an USP8 antibody raised
against the N-terminal region of USP8, recognizing the 90-kDa fragment. As shown in
Figure 3a, G664R variant conferred to USP8 a higher susceptibility to cleavage with respect
to WT USP8 (+2.01 £ 0.48 fold, p < 0.05 vs. WT USP8), similarly to what was observed
with the §718del mutant.

The thus-far described USP8 mutations increased USP8 cleavage by abolishing USP8
binding with 14-3-3 proteins. We thus examined possible alterations of G664R USP8
binding to 14-3-3 proteins by In situ Proximity Ligation Assay (PLA). PLA experiments
were carried out on AtT-20 cells endogenously expressing 14-3-3 proteins and transiently
transfected with G664R, S718del, and WT USPS. First, by Western blot analysis, we verified
that cells transfected with USP8 plasmids showed similar increased expression of USPS ().
As expected, our data demonstrated that USP8 5718del transfected cells have a reduction of
PLA positive spots, indicating proteins colocalization, compared with WT USP8 transfected
cells (—64.5 £ 5.2%, p < 0.01), and, surprisingly, revealed a significant similar decrease in
the PLA efficiency in G664R USPS8 transfected cells with respect to WT USP8 (—47.9 & 6.6%,
p < 0.01) (Figure 3b,c).

We also investigated possible variations in USP8 intracellular localization due to
G664R variant. Immunofluorescence experiments performed on transfected AtT-20 cells
showed that G664R USPS is predominantly located within the cytosol, similarly to WT
USPS8 (Figure 3d). In contrast, S718del USP8 displayed an exclusive nuclear distribution, as
previously described in Hela cells [2].
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14-3-3 proteins. (a) Representative Western blot experiment and densitometrical analysis showing
enhanced USP8 N-term fragment production in AtT-20 cells transfected with G664R USP8 mutant.
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cells (n = 3 and the number of PLA puncta per cell was quantified for 150 cells randomly chosen
from different fields per condition, **, p < 0.01 vs. WT USPS8 transfected cells). (d) Representative
immunofluorescence experiment showing subcellular localization of USP8 mutants (green) in AtT-20
cells. Nuclei are stained with DAPI (blue). G664R USP8 variant is located exclusively in the cytoplasm.
Scale bars, 10 um.

3.5. Clinical Significance of Novel USP8 Variant

The USP8 G664R variant was found in a 21-year old male with an ACTH-secreting
microadenoma. In this patient, pituitary surgery allowed to obtain the remission of disease.
The results of comparative study between WT and USP8 mutations did not differ when
also considering this subject in the group of mutated patients.

4. Discussion

In 2015, the discovery of gain-of-function mutations in the deubiquitinase gene USP§
represented a major breakthrough in the understanding of pathogenesis of CD [2,3]. All
USPS8 mutations identified occur in exon 14 and result in disrupted USP8 association with
14-3-3 proteins, enhanced USP8 proteolytic cleavage, and constitutive DUB activity. Since
then, genetic sequencing of the USP§ mutational hotspot has been carried out on hundreds
of corticotropinomas [10,33,34].

Our study population consisted of 60 (45F/15M) patients who were evaluated retro-
spectively. We identified 3 previously reported USP8 mutations in 7 /60 tumors (p.Pro720Arg,
p-Pro720GlIn, and p.Ser718del) with an overall prevalence of 11.7%. The frequency of USP8
mutations observed in our cohort is lower than in most cohorts described so far. Indeed,
according to a recent published meta-analysis, USP8 somatic mutations have been reported
in about 35% (20-60%) of cases [10], with the lowest and highest prevalence registered
in European studies [16,22,34] and a large Chinese cohort [3], respectively, probably sug-
gesting a role of genetic background and ethnicity differences. Mutations in USP48 and
BRAF have also been recently detected in corticotroph tumors, mostly wild type for USP8
itself [9,24,35]. We found USP48 mutations in 2/60 patients, whereas none of the sub-
jects were mutated for BRAF, still being both percentages lower if compared to other
studies [9,24].

From a clinical point of view, more than half of USP8 mutation carriers had an ACTH
secreting macroadenoma and were at a higher risk of recurrence compared to WT patients,
although our analysis could have been affected by the small number of patients. Previous
reports regarding tumor size and aggressive behavior of disease showed variable findings,
although overall data did not show a significant difference [18]. Our clinical data are in line
with those of Martins and colleagues, showing that USP8 mutated tumors have a superior
tumor size but a similar clinical and biochemical phenotype to wild-type tumors [21].

Moreover, the higher recurrence rate could be a consequence of the radiological
characteristics of USP8 mutated patients. In this context, a recent meta-analysis showed
that macroadenomas are associated with a higher relapse rate of hypercortisolism after
pituitary surgery [36].

While screening for USP8 mutations, we found a novel USPS§ genetic variant p.Gly664Arg
(G664R) in one corticotropinoma. A possible explanation as to why this USPS§ variant
was never reported in the literature might rely on the fact that some of the previously
published works used a primer encompassing the 664 residue [34,37] or a primer designed
downstream of the 664 residue [19,20,22] for sequencing.

The G664R variant is associated with a high PolyPhen-2 score, indicating that this
amino acid substitution could have a strong probability in determining a damaging impact
on the structure and function of USP8 protein. These evidences prompted us to perform a
functional characterization by means of AtT-20 cells, a murine ACTH secreting cell line
bearing wild type USP8. The effects played by G664R USP8 were compared with those
exerted by S718del, one of the USP8 mutants that has shown the highest activity in vitro
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in terms of POMC transcription and ACTH production, and by USP8 catalytically active
fragment USP8-C40, chosen as further positive control.

Firstly, we observed an increased ACTH production by cells expressing G664R USP8
compared to those expressing WT USPS, this result being in line with data obtained by
Reincke and colleagues in cells transfected with S718del and USP8-C40 [2]. Then, by
measuring BrdU incorporation into the newly synthetized DNA of proliferating cells, we
showed that G664R USP8 expression in AtT-20 cells promoted cell proliferation similarly
to what was observed in cells expressing S718del USP8 or USP8-C40.

USP8 mutations have been shown to be associated with unbalanced EGFR signal-
ing, enhanced phosphorylation of the downstream effector ERK1/2, and increased AP1
transcriptional activity on POMC promoter [2,3]. In agreement with previous results, over-
expression of USP8 G664R also resulted in high levels of active phosphorylated ERK1/2
after 48 h of EGF stimulation, thus confirming that the novel USP8 variant sustains EGFR-
MAPK signaling to promote corticotrophs ACTH production and cell growth. Indeed, in
the tumoral corticotrophs, components of the MAPK pathway have been found to be over-
activated and correlated to cell proliferation promotion [38—40]. It is interesting to note that,
while AtT-20 cells used by Fukuoka et al. and Reincke et al. did not express endogenous
EGEFR [2,41], our AtT-20 subclone endogenously expressed the receptor. Similarly, Asari
and coworkers used an AtT-20 subclone expressing EGFR [42].

However, EGFR is not the solely target of USP8. Recent works have shown deregula-
tion of several molecules in USP§-mutated tumors compared to wild type tumors [17,19,21].
Particularly, our results confirmed that p27/Kip1 and phosphorylated CREB expression
levels were respectively reduced and increased in cells transfected with USP8 G664R vari-
ant, in line with the proliferative and secretive role played by this novel USP8 variant and
at a similar extent as 5718del USP8. However, whether p27/Kip1 and CREB are USP8 direct
or indirect clients remains to be established. It also has to be mentioned that in a Brazilian
cohort, no difference in the gene expression of markers involved in cell cycle regulation
including p27/Kip1 has been found between wild-type and USP8 mutated groups [21],
suggesting that altered USP8 deubiquitinase activity might influence other pathways re-
lated to cell growth and proliferation. At the same time, gene expression profiles analysis
in USP8 mutant and wild-type tumors revealed that counter regulatory mechanisms may
fine-tune the EGFR-MAPK pathway in tumor corticotroph cells [17]. Testing the hypothesis
of corticotrope-specific USP8 substrates other than EGFR has provided remarkable insight
into the biological behavior of these cells. Indeed, the recent demonstration of the ACTH
biosynthetic pathway as a direct target of ubiquitination has raised the idea of targeting
the ubiquitin proteasome system to modulate ACTH turnover both in USP8 mutant and
wild-type tumors [17].

Furthermore, and surprisingly, our Western blot and PLA experiments demonstrated
that the USP8 G664R variant shares the same molecular mechanisms underlying its bi-
ological effects exerted by other canonical USP8 mutants, such as a diminished binding
to 14-3-3 proteins conferring to USP8 a higher susceptibility to proteolytic cleavage. It
is noteworthy that the substitution of an arginine for the highly conserved glycine 664
results in the change of a polar residue for a non-polar amino acid. The arginine residue,
providing an extra charge or more simply because of its steric hindrance, may alter the
conformational structure of USP8, thus preventing the binding to 14-3-3 proteins. Sev-
eral studies described glycine to arginine disease-associated mutations, confirming the
pathological relevance of these amino acidic changes in causing dramatic structural and
functional anomalies [43—46].

To the best of our knowledge, only a few other individual USP8 variants located
completely outside the 14-3-3 binding site (p.Thr735lle, Asn741Asp) were reported in
previous studies [3,22]. However, their functional impact needs further investigation.

USP8-mutated pituitary tumors mostly displayed high immunoreactivity of USP8 in
the nuclei [2,19]. This observation prompted speculation that nuclear localization of USP8
may indicate the presence of USP8 mutations in corticotropinomas. Our immunofluores-
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cence data in AtT-20 cells indicated instead that USP8 G664R is predominantly located
within the cytosol, as the wild-type protein. It must be mentioned that in vitro studies
on Hela cells have shown that some of the USP8 mutants, such as S718P and P720R, are
localized both in the nucleus and in the cytoplasm [2]. These results suggest that subcellular
localization of mutant USPS is heterogeneous. Unfortunately, due to lack of material, we
could not test the immunoreactivity of G664R USP8 in the tumor sample of the patient,
thus the intracellular localization of G644R USP8 in human corticotropinomas remains to
be fully demonstrated.

5. Conclusions

In conclusion, somatic mutations were found in USP8 (13.3% vs. 36.5% incidence
of all published mutations) and in USP48 (3.3% vs. 13.3% incidence) hotspot regions.
In our cohort, mutated tumors seem to be associated with a more aggressive clinical
phenotype (i.e., higher prevalence of macroadenoma as well higher recurrence rate of
disease). Moreover, the present study provides an in vitro functional characterization
of the novel G664R USPS§ genetic variant firstly identified in one patient with CD and
located outside the USP8 mutational hotspot and demonstrates its possible implication in
ACTH-secreting tumor pathogenesis.
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