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Simple Summary: The deposition of fibrotic tissue within pancreatic tumors acts as a physical
barrier to therapeutic treatment. Collagen constitutes a large part of this barrier and serves as an
ideal target to improve delivery and efficacy of anti-cancer treatments. This study characterizes a
novel bacterial-based agent engineered to degrade collagens present only in pancreatic tumor tissue.
Treatment using our collagen-degrading bacteria in mouse models of pancreatic cancer resulted in
significant decreases in intratumoral collagen content and pro-tumor immune cell subsets, ultimately
enhancing the efficacy of immunotherapy. These results support the idea that overcoming fibrosis in
pancreatic cancer can dramatically improve therapeutic outcomes.

Abstract: Therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) can be attributed, in
part, to a dense extracellular matrix containing excessive collagen deposition. Here, we describe a
novel Salmonella typhimurium (ST) vector expressing the bacterial collagenase Streptomyces omiyaensis
trypsin (SOT), a serine protease known to hydrolyze collagens I and IV, which are predominantly
found in PDAC. Utilizing aggressive models of PDAC, we show that ST-SOT selectively degrades
intratumoral collagen leading to decreases in immunosuppressive subsets, tumor proliferation and
viability. Ultimately, we found that ST-SOT treatment significantly modifies the intratumoral immune
landscape to generate a microenvironment that may be more conducive to immunotherapy.

Keywords: pancreatic ductal adenocarcinoma; targeted therapies; therapeutic resistance; tumor
microenvironment; desmoplasia; collagen; collagenase; attenuated Salmonella typhimurium

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) represents >90% of all pancreatic cancers
and currently has a dismal five-year survival rate of 10% [1,2]. Diagnostic efforts to detect
early disease are hindered due to lack of specific symptoms, advanced local tumor growth,
and early metastasis, the latter of which frequently excludes surgical resection as a viable
treatment [3,4]. Treatment options beyond resection are limited due to the chemoresistance
of PDAC, attributed to its characteristic desmoplastic reaction that results in significant
increases in collagen content compared to healthy pancreas [5,6]. Of the 28 types of collagen,
collagen I (fibrillar) constitutes the majority of PDAC stroma and has been suggested to
promote PDAC cell migration, proliferation, and invasion [7–9]. Collagen IV (non-fibrillar,
mesh-like), which is additionally upregulated by tumor-associated stromal cells, is highly
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expressed in pancreatic tumors and has been found to promote cancer cell growth [10,11].
Pancreatic cancer cells can also produce these stromal components in vitro and in vivo,
with collagen IV synthesis exceeding that of any other collagen found in PDAC [12].

High expression of collagen and other ECM components, such as hyaluronan, sig-
nificantly correlates with decreased median survival in PDAC patients [13]. In particular,
collagen fibers become increasingly aligned around cancerous pancreatic tissue, com-
pared to their behavior in normal ducts, and directly correlates with worse prognosis [14].
Collagen-dense stroma and basement membranes in PDAC have been shown to contribute
to rigidity, interstitial fluidic pressure, and immunosuppressive signaling that has been
suggested to prevent delivery of chemotherapy and immunotherapeutic treatments and
reduce immune infiltration [15,16]. This markedly inhibits the efficacy of immunothera-
pies such as chimeric antigen receptor T cell therapy and immune checkpoint blockade
(ICB) [17,18]. Immunosuppressive properties of elevated collagen content have also been
demonstrated in other solid tumor models, such as Lewis Lung Carcinoma (LLC1). Peng
et al. recently demonstrated that elevated collagen in LLC1 tumors was associated with
decreased effector CD8+ T cell infiltration and an increase in anergic CD8+ T cells, resulting
in reduced effectiveness of PD-1/PD-L1 checkpoint blockade that was reversed upon
degradation of the collagen through suppression of LOXL2, an enzyme that stabilizes and
promotes collagen deposition [19]. Thus, degradation of collagen and other fibrous stromal
components may improve outcomes for PDAC patients by removing physical barriers
and alleviating immunosuppressive signaling to enable more effective delivery of existing
anticancer agents [20].

The structure of collagen provides resistance to degradation by most proteases, how-
ever, collagenolytic proteases, or collagenases (mammalian or bacterial), can degrade
collagen directly through cleavage at specific sites [21]. Although infrequently explored,
bacterial collagenases, which have been identified as either metalloproteases or serine
proteases [22], are able to degrade collagen with minimal recruitment or binding domains
as well as recognize multiple collagen cleavage motifs [22]. These novel structures and
collagenolytic mechanisms may enable improved expression in vivo as well as increased
activity against collagen, ultimately enhancing direct collagen degradation compared to
previously reported methods [23].

As collagens I and IV comprise a significant portion of PDAC stroma and are noted for
promoting progression, proliferation, and migration of PDAC cells, they are ideal targets for
PDAC stromal degradation; however, collagens I and IV are abundant in normal tissues [24],
similar to other elements of tumor stroma. Previously we have shown that attenuated
Salmonella typhimurium (ST) engineered to express bacterial hyaluronidase could effectively
degrade hyaluronan in PDAC tumors to improve efficacy of gemcitabine treatment without
off-target degradation in tissues high in hyaluronan such as the skin or joints [25]. This is
due to preferential colonization of tumors by attenuated ST compared to healthy tissues at
a ratio >6000:1 [26,27]. In order to efficiently and preferentially degrade tumor-associated
collagen in a similar manner, we selected Streptomyces omiyaensis trypsin (SOT), a small-
molecular weight bacterial collagenase that has specificity for collagens I and IV [28], for
inducible expression in ST (ST-SOT) with the overall goal of increasing delivery of anti-
cancer medications. We employed ST-SOT in preclinical models of PDAC that overexpress
the major collagen types I and IV and observed tumor-specific collagen degradation with
resultant decreases in immune checkpoint marker expression and tumor growth. The
ability of ST-SOT to simultaneously reduce tumor fibrosis and immunosuppressive subsets
may lend itself well to combination treatment with currently available immunotherapies.
This approach to tackling tumor desmoplasia meets the requisites for a safe, inexpensive,
and effective remedy that may improve treatment outcomes for patients with stroma-rich,
therapy-resistant cancers such as PDAC.



Cancers 2021, 13, 3565 3 of 18

2. Results
2.1. Inducible SOT Expression in Attenuated Salmonella Typhimurium (ST-SOT)

We utilized the PBAD promoter of the araBAD (arabinose) operon to control SOT
expression in order to prevent toxic effects associated with foreign protein expression
in ST (Figure 1A) [29]. For the best possible expression, we also synthesized the SOT
sequence with codons most utilized by ST [30]. Additionally, we fused the ST flagellin
signal sequence to the amino terminus of SOT to facilitate greater surface display and
incorporated a C-terminal His-tag for downstream detection. A single plasmid preparation
of pBAD-SOT was used for electroporation into the clinical ST strain YS1646, also known as
VNP20009 [31]. A positive clone, identified by colony PCR, was cultured under uninduced
(media only) and induced (increasing L-arabinose) conditions, followed by Western blot
(WB) of pellet lysates. WB revealed robust expression of His-tagged SOT at the correct
molecular weight (~31 kD) at all percentages of L-arabinose as well as tight regulation of
protein expression under uninduced and induced conditions (Figure 1B and Figure S1).
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Figure 1. Expression, subcellular localization and toxicity of SOT in attenuated ST. (A) Schematic
of inducible pBAD construct (pBAD-SOT) integrating ampicillin resistance with N-terminal flag-
ellin (Fla) fusion and C-terminal 6XHis tag fusion to SOT for downstream analyses. (B) Attenu-
ated ST transformed with the pBAD-SOT construct was cultured in Luria Broth (LB) containing
0% (uninduced) or 1–6% (induced) L-arabinose for up to 4 h at 37 ◦C. Bacterial cell lysates from
~5 × 107 colony forming units (CFUs) at each time point for each L-arabinose concentration were
run on a 4–20% polyacrylamide gradient gel and subjected to Western blot analysis against a His-tag
fused to the C-terminus of SOT (α-His). Predicted SOT fusion size ~31 kDa (arrow). Band densitome-
tries are shown under blots relative to uninduced. (C) ST-SOT was cultured in LB media contain-
ing 2% L-arabinose for 1 h and then immunostained (α-His) to determine subcellular localization
of SOT (red). Nuclei are stained with DAPI (blue). Representative images shown. Scale bar = 10 µm.
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(D) Growth curve of ST-SOT post-induction. Optical density readings (OD600) for uninduced and
induced (2% L-ara) ST-SOT cultures were measured over 24 h. Uninduced and induced cultures were
done in triplicate and error bars represent standard error of the mean. Growth curves of uninduced
and induced are compared. *** p < 0.001, two-way ANOVA. (E) ST-SOT under uninduced and
induced conditions were stained at indicated time points with acridine orange (live, green) and
ethidium bromide (dead, orange) and imaged by fluorescence microscopy at 100× magnification.
Scale bar = 5 µm. (F) Percent viability of ST-SOT under uninduced and induced conditions at indicated
time points based on live/dead staining from six random fields at 100× magnification. * p < 0.05,
** p < 0.01, t-test. Experiments performed ≥2 times.

We determined the subcellular location of SOT expressed by ST using a His-tag fused
to the carboxy-terminus of the protein (Figure 1C). Immunofluorescent staining revealed
subcellular localization of His-tagged SOT outside of genomic DNA staining (cytoplasm),
suggesting that it is located at the outer membrane of the bacterium. Overall, these results
confirm that expression of SOT is tightly regulated and that its subcellular location is
restricted to the outer membrane of ST.

Successful expression of functional SOT may have detrimental effects on ST growth
kinetics. Thus, we performed optical density (O.D.) readings following induction to
determine growth kinetics over a 24-h period. ST-SOT reached a maximum O.D. within
6 h that was maintained through 24 h (Figure 1D). Following induction, there was no
observable increase or decrease from initial O.D., suggesting that SOT expression attenuates
replication without causing immediate ST loss. To further investigate bacterial viability
after induction, we performed live/dead staining using a mixture of acridine orange (AO)
and ethidium bromide (EB), respectively, at 4 and 24 h under uninduced and induced
conditions [32,33]. As shown in Figure 1E, the percentage of live bacteria 4 h after induction
was not significantly different through 24 h but was significantly different from percent
viability observed for uninduced ST-SOT. Overall, these results confirm robust expression
of SOT by ST that is associated with fitness cost to ST, thus emphasizing the importance
of using an inducible system to allow for initial expansion of ST-SOT and robust SOT
expression for subsequent in vitro and in vivo functional studies.

2.2. ST-SOT Hydrolyzes Major Collagen Substrates

To measure the enzymatic activity of ST-SOT on known substrates we used gelatin-
agar plates and fluorescently-labeled substrate assays [34,35]. Hydrolysis of gelatin on
gelatin-agar plates results in the formation of a visible white precipitate [36]. For these
studies, we cultured ST-SOT under induced (2% L-arabinose) or uninduced conditions
and then pipetted 5 µL of culture (approximately 1 × 108 colony forming units (CFUs))
onto gelatin-agar plates overnight. An area of hydrolysis was observed for ST-SOT under
induced conditions that was limited to the size of the colony, suggesting that SOT is
anchored to the outer membrane and not secreted (Figure 2A). The ability of ST-SOT to
hydrolyze gelatin was further confirmed using FITC-labeled gelatin, which is converted
into fluorescent peptides when hydrolyzed. As shown in Figure 2B, induced ST-SOT (+Ara)
caused significant increases in fluorescence intensity, compared to uninduced control (-Ara),
within 4 h and continued to increase through 24 h. These results are the first to suggest that
SOT expressed by ST has sufficient functional activity to hydrolyze the less-complex gelatin.
We next determined whether ST-SOT could hydrolyze the major collagen types found
in PDAC, namely I and IV. Indeed, induced ST-SOT also caused significant increases in
fluorescence intensity when co-incubated with FITC-labeled collagen I or IV (Figure 2C,D),
further confirming that SOT expressed by ST exhibits collagenolytic function. Additionally,
we observed no significant change in fluorescence intensity when FITC-labeled substrates
were co-incubated with uninduced ST-SOT, emphasizing tight regulation by the inducible
pBAD promoter system.
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Figure 2. Hydrolytic collagenase activity of ST-SOT towards various substrates. (A) Uninduced
or induced (2% L-arabinose) ST-SOT was incubated on LB-gelatin plates overnight (16 h) at 37 ◦C.
Hydrolysis of gelatin in LB agar media is observed as opaque areas on LB-gelatin plates. Arrows
indicate areas where uninduced or induced ST-SOT were spotted onto the plate. (B) Hydrolysis
reactions were performed using uninduced or induced ST-SOT co-incubated with FITC-conjugated
pig skin gelatin, bovine skin collagen type I (C) or human placenta collagen type IV (D) in 50 mM
Tris-HCl (pH 8.0) containing 10 mM CaCl2 at 37 ◦C. Enzyme activity was measured by monitoring
fluorescence (FITC) (ex: 495 nm, em: 519 nm). Data are expressed as mean ± error of mean of three
independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, t-test.

2.3. In Vivo Depletion of Collagens by ST-SOT Is Restricted to PDAC Tumor Tissue and
Augments ST Diffusion

We next determined the ability of ST-SOT to colonize and deplete collagen in ortho-
topic (o.t.) KrasG12Dp53R172HCrePdx1 (KPC) 4662.5 and subcutaneous (s.c.) Pan02 tumors
when delivered intravenously into wildtype C57BL/6 mice [37,38]. We first verified that
the YS1646 vector used in the construction of ST-SOT was capable of colonizing o.t. and s.c.
tumors by using a constitutive bacterial reporter construct encoding the bioluminescent
LUX operon [39]. When 5 × 106 CFU recombinant YS1646 encoding LUX (ST-LUX) was
injected intravenously (i.v.) into C57BL/6 mice bearing o.t. KPC4662.5 or s.c. Pan02 tumors
(>150 mm3), we observed bioluminescence localized to the area of the tumor, which was
typically detected by day ~2 and disappeared by day ~7 (data not shown [40]). To further
verify tumor-specific colonization by ST-LUX, we examined o.t. KPC4662.5 tumors, spleen,
and liver [27] 48 h following i.v. injection and measured bioluminescence in each tissue
type. Indeed, ST-LUX was highly concentrated in o.t. tumor tissue and completely absent
in both spleen and liver (Figure S2A). These results suggest that the YS1646 vector is
capable of colonizing o.t. and s.c. tumors after systemic administration and that peak
tumor colonization is achieved by day 2, which represents an ideal time point for SOT
induction. Thus, C57BL/6 mice with o.t. KPC4662.5 tumors (>150 mm3) were i.v. adminis-
tered 5 × 106 CFUs of ST-SOT and then induced 2 days later by a single intraperitoneal
(i.p.) injection of 250 mg of L-arabinose per mouse. KPC4662.5 tumors were excised 48 h
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after induction, sectioned, and stained using Masson’s trichrome. As shown in Figure 3A,
tumors from mice treated with ST-SOT under inducing conditions showed significantly
reduced collagen content compared to collagen content in tumors from uninduced mice
(Figure 3B, p < 0.05). Similarly, s.c. Pan02 tumors were observed to have decreased col-
lagen content in regions colonized by induced ST-SOT, detected by immunofluorescence
(Figure 3C), which was also associated with significantly greater ST diffusion throughout
tumor tissue (Figure 3D and Figure S2B). ST colonization and reduction in collagen content
were not observed in healthy tissue such as the skin (Figure 3E) and joints (Figure S2C)
under inducing conditions. These data suggest that ST-SOT effectively colonizes PDAC
tissue, whether located o.t. or s.c., and degrades tumor-associated collagens that allow for
greater influx of large molecular weight objects, such as ST, from the bloodstream.
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Figure 3. Induction of ST-SOT leads to intratumoral CN depletion and enhanced ST diffusion
in vivo. (A) C57BL/6 mice bearing orthotopic KPC4662.5 tumors (>150 mm3) were administered
5 × 106 colony-forming units (CFU) of ST-SOT by intravenous (i.v.) injection. Forty-eight hours
later, groups were intraperitoneally (i.p.) administered PBS (uninduced) or 250 mg L-arabinose
(induced) and then euthanized 48 h post-induction. Tumor sections were then subjected to Masson’s
trichrome staining (representative images shown, scale bar = 50 µm). Deconvolution of collagen
(black) was performed using ImageJ and percent collagen area present within total tumor section
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(B) was determined. * p < 0.05, t-test. (C) C57BL/6 mice bearing subcutaneous Pan02 tumors (>150
mm3) were i.v. administered 5 × 106 cfu ST-SOT and euthanized 48 h after i.p. injection of PBS (unin-
duced, U) or L-arabinose (induced, I). Serial tumor sections were subjected to immunofluorescence
(IF) staining to detect ST-SOT (ST), as well as trichrome (TC) staining (TC). Representative images
shown, scale bar = 200 µm (inset scale bar = 30 µm). Percent area of ST occupying total tumor area
(approximated by DAPI staining) (D) was determined using Image One software. ** p < 0.01, t-test.
(E) IF and TC staining were performed on skin from Pan02-bearing mice receiving uninduced or
induced ST-SOT treatment. Representative images shown.

2.4. ST-SOT Treatment Reduces Frequency of Suppressive Intratumoral Immune Subsets

Significantly high collagen content is known to increase intratumoral frequencies of
suppressive immune subsets that blunt anti-tumor responses [19,41]. To determine the
effects of reducing collagen content in PDAC tissue, we evaluated intratumoral immune
subsets following ST-SOT treatment by flow cytometry in mice bearing Pan02 tumors. From
our initial gating of total CD45+ cells, we immediately observed dramatic decreases in CD3+

T cells following induction (Figure 4A, p < 0.05). Within this CD3+ population, CD4+ T cells
were significantly decreased in induced mice (p < 0.05), compared to uninduced, specifically
those co-expressing PD-L1+ (Figure 4B, p < 0.0001), which are known to induce apoptosis or
anergy in effector T-cells [42]. Moreover, induced ST-SOT treatment was shown to decrease
the intratumoral frequency of PD-1-expressing CD8+ T cells, macrophages (F4/80+CD11b+),
and dendritic cells (CD11b+CD11c+) (Figure 4C, p < 0.001). Modulation of these specific
immune subsets by collagen is consistent with previous studies [19,43]. Overall, these
results suggest that ST-SOT treatment can modulate the intratumoral landscape to produce
a microenvironment more conducive to immunotherapy.
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Figure 4. ST-SOT treatment reduces intratumoral frequency of suppressive immune subsets. Pan02
tumor-bearing mice were treated with ST-SOT under inducing conditions (I) or uninduced (U). Forty-
eight hours later, mice were euthanized and tumor homogenates were subjected to flow cytometry
to evaluate intratumoral immune phenotypes. (A) Initial gating strategy on CD3+ cells in tumors
from uninduced and induced treatment groups (n = 5). Additional analyses of CD3+ immune
subsets were performed to quantify frequency of (B) CD4+ and PD-L1+CD4+ cells. (C) Percent of
PD-1+ immune subsets was determined for CD8+ T cells, macrophages (F4/80+), and dendritic cells
(CD11b+CD11c+). * p < 0.05, ** p < 0.01, **** p < 0.0001, t-test. Experiments performed ≥2 times.
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2.5. ST-SOT Treatment Effectively Controls Tumor Growth

To determine the therapeutic effects of ST-SOT treatment on tumor cell growth, we
performed a series of in vitro and in vivo studies. Tumor growth control by ST alone is
dependent on the presence of innate immune subsets, such as neutrophils and macrophages,
that exert both bacteriocidal and cytolytic activity [44,45]. However, engineered strains
of attenuated ST may also exert anti-tumor activity when cultured directly with tumor
cells that is independent of media depletion or pH change, which can be observed in
the first 24 h of co-incubation [46]. Whereas co-culturing with ST-SOT did not affect the
overall viability of Pan02 tumor cells under inducing conditions (Figure 5A), a significant
decrease in growth kinetics was observed over 24 h compared to tumor cells cultured
under uninduced conditions or only L-arabinose (no ST treatment) (Figure 5B). These
results suggest that SOT expressed by ST may delay tumor cell growth in culture through
degradation of collagens required for autocrine signaling involved in proliferation and
survival [5,11,47].
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Figure 5. ST-SOT augments the anti-tumor effects of immune checkpoint blockade (ICB) treatment and is associated
with a more permissive tumor immune microenvironment. (A) The direct effects of ST-SOT on tumor cell growth was
determined through co-incubation with Pan02 cells at a confluency of 25% in antibiotic-free culture medium and using
a starting multiplicity of infection = 50. Percent cell viability was determined by trypan blue staining at various time
points in uninfected culture (no treatment) or post-infection under inducing (2% L-arabinose) or non-inducing conditions
for 24 h. Kinetics of tumor cell growth (cells/mL) (B) were also performed simultaneously over the 24 h co-incubation
period. * p < 0.05, two-way ANOVA. (C) C57BL/6 mice bearing s.c. Pan02 tumors (average 100 mm3, n = 3–5) were
i.v. administered ST-SOT (5 × 106 CFU) and then i.p. administered 250 mg L-arabinose (induced, I) or PBS (uninduced,
U). At induction/PBS, mice were i.p. administered immune checkpoint blockade (ICB) antibodies (anti-PD-1 (200 µg) +
anti-CTLA-4 (75 µg)) or control IgG antibody, with maintenance treatments every 3 days at a reduced dose. Fold tumor
volume change was determined by dividing tumor volume at a given time point by the initial tumor volume when ST-SOT
was first administered. * p < 0.05, **** p < 0.0001, two-way ANOVA. (D) Tumor weights for each treatment group (n = 3–5)
were measured at endpoint (Day 30). * p < 0.05, t-test. (E) Tumors excised at endpoint were processed for sectioning and
analyzed by IHC (brown staining) with anti-cleaved caspase 3 antibody (Cl. Caspase 3) or anti-Ki67 antibody. Nuclei were
counterstained with hematoxylin (blue) (representative images shown, scale bar = 50 µm). Bar graphs represent percentage
of positive cells out of total nuclei. * p < 0.05, ** p < 0.01, t-test.
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Based on the ability of ST-SOT treatment to reduce intratumoral suppressive immune
subsets, we evaluated combination treatment with immune checkpoint blockade (ICB)
antibodies against PD-1 and CTLA-4 [48,49]. As shown in Figure 5C, ICB with ST-SOT
under uninduced conditions (U+ICB) or ST-SOT with IgG under induced conditions (I+IgG)
resulted in significant tumor growth control (p < 0.0001) compared to uninduced ST-SOT
plus IgG control (U+IgG) treatment. However, ICB plus ST-SOT under induced conditions
(I+ICB) resulted in the greatest tumor growth control (p < 0.05). Whereas I+ICB reduced
tumor weights at endpoint, only I+IgG treatment reached significance (p < 0.05) when
compared to U+IgG-treated groups (Figure 5D). Analysis of tumors at endpoint to evaluate
proliferation by Ki67 expression or apoptosis by cleaved caspase-3 expression revealed
significant decreases in Ki67-positive cells in the I+ICB group compared to U+IgG or I+IgG
(p < 0.01), and significantly greater expression of cleaved caspase-3 compared to the I+IgG
group but not U+IgG and U+ICB groups (Figure 5E, p < 0.05). Of note, larger tumors,
such as those from the U+IgG group may generally show increased expression of cleaved
caspase-3 in tumor centers due to hypoxia and lack of blood flow, compared to smaller
tumors. Thus, the increased cleaved caspase 3 in the I+ICB group compared to similarly
sized (small) tumors (I+IgG) is likely due to direct action of the treatment. Taken together,
these data indicate that tumors from the I+ICB group demonstrate significantly decreased
cell proliferation and/or increased apoptosis compared to tumors from all other groups.

2.6. Combination ST-SOT with ICB Therapy Prevents Increases in Collagen Deposition and
Checkpoint Expression Concurrent with ICB Therapy Alone

In order to determine the mechanistic effects of combination ST-SOT treatment with
ICB therapy in Pan02 tumors, early analyses of collagen content and immune subsets
immediately after a single combination treatment (48 h) were performed. Analysis of
intratumoral collagen content revealed an approximate doubling of collagen in the U+ICB
compared to the U+IgG group, consistent with dual anti-PD-1, anti-CTLA-4 blockade [50]
(Figure 6A, p < 0.001). However, I+ICB prevented this increase and showed a significant
decrease compared to induction alone (I+IgG) (Figure 6A, p < 0.05). The collagen content of
tumors in the I+IgG group was not significantly different from tumors in the U+IgG group,
possibly indicating a longer time for clearance of degraded collagen when ICB is not present.
Assessment of tumor cell apoptosis also demonstrated an immediate response to the I+ICB
combination, with this treatment showing the only significant upregulation in cleaved
caspase-3 compared to the U+IgG group (Figure 6B, p < 0.05). Tumor cell proliferation,
as measured by Ki67, was also significantly decreased in the I+ICB group compared to
U+IgG- treated mice (p < 0.05), as was tumor cell proliferation in the U+ICB and I+IgG
groups (Figure 6C, p < 0.01), in agreement with tumor growth control observed by these
treatment groups compared to U+IgG treatment in Figure 5C. Analysis of immune subsets
revealed a significant upregulation of PD-L1-expressing CD8+ and NK cells following ICB
treatment (U+ICB) compared to IgG control-treated mice (U+IgG) (Figure 6D, p < 0.001 and
p < 0.05, respectively). Interestingly, groups receiving ST-SOT treatment under induced
conditions blunted increases in both PD-L1-expressing subsets following ICB treatment
(I+ICB vs. U+ICB, p < 0.05). While we did observe significant increases in CD4+ T cells in
I+ICB-treated groups compared to I+IgG control (Figure 6E, p < 0.05), these CD4+ T cells
were not CD25+FoxP3+ (i.e., Tregs). Ultimately, ST-SOT treatment may enhance the efficacy
of ICB therapy by reducing stromal collagen and the prevalence of suppressive subsets pre-
and post-ICB therapy.
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Figure 6. ST-SOT with immune checkpoint blockade (ICB) treatment augments tumor cell apopto-
sis, prevents increased expression of PD-L1 associated with ICB, and preserves CD4 populations
associated with collagen degradation. C57BL/6 mice bearing s.c. Pan02 tumors (average 100 mm3,
n = 3–5) were i.v. administered ST-SOT (5 × 106 CFU) and then i.p. administered 250 mg L-arabinose
(induced, I) or PBS (uninduced, U). At induction/PBS, mice were i.p. administered immune check-
point blockade (ICB) antibodies (anti-PD-1 (200 µg) + anti-CTLA-4 (75 µg)) or control IgG anti-
body. Forty-eight hours later tumors were excised and processed for sectioning and flow cytometry.
(A) Tumors were sectioned, stained using Masson’s trichrome method, and analyzed for collagen
density (representative images shown, scale bar = 100 µm). Bar graph represents whole tumor
quantification of collagen stain out of total tumor area (n = 3). * p < 0.05, *** p < 0.001, t-test. Sectioned
tumors were stained for IHC with anti-cleaved caspase 3 antibody (brown) (B) or anti-Ki67 antibody
(brown) (C). Nuclei were counterstained with hematoxylin (blue) (representative images are shown,
scale bar = 50 µm). Bar graphs represent whole tumor quantification of positive cells out of total
nuclei. * p < 0.05, ** p < 0.01, t-test. (D) Tumors processed for flow cytometry were analyzed for
PD-L1-expressing immune subsets and (E) CD4+CD25+FoxP3+ cells (Tregs). * p < 0.05, *** p < 0.001,
**** p < 0.0001, t-test.

3. Discussion

Therapeutic resistance continues to be a major factor contributing to poor survival
rates in pancreatic cancer. While many anticancer drugs prove potent in vitro, many
have failed in the clinic because they are unable to penetrate tumor tissue in sufficient
amounts to be therapeutic while also averting adverse effects. Eliminating tumor ECM
components, such as collagen, is hypothesized to improve anticancer drug delivery by
decreasing solid stresses and normalizing tissue vasculature [47]. Various preclinical
studies utilizing collagen-targeted therapies have demonstrated promising outcomes but
remain controversial due to the abundance of collagens throughout the body and lack of
tumor-specificity associated with these approaches [20,51,52]. In addition, concerns remain
about increasing metastasis of tumor cells released from the matrix after ECM degradation.



Cancers 2021, 13, 3565 11 of 18

In previous studies, inhibition of stromal deposition by genetic ablation or pharmacologic
inhibition of Sonic hedgehog in an autochthonous PDAC model increased tumor growth
and metastasis [53]. In clinical trials, pharmacologic inhibition of hedgehog did not increase
the efficacy of chemotherapy in patients with metastatic PDAC despite increasing vessel
dilation after stromal depletion [54]. However, direct enzymatic degradation of stromal
components including hyaluronan and collagen improves chemotherapeutic efficacy and
decreases metastasis in PDAC models [55,56].

To achieve tumor-targeted, enzymatic collagen degradation, we engineered ST that
preferentially colonizes tumors to express the collagen-degrading SOT enzyme. After
treatment we find that ST is concentrated in tumors with no ST signal found in other major
organs such as heart and lungs (by whole mouse imaging) or collagen-rich tissues such as
skin and bone (by immunofluorescence) [57,58]. In addition, induced SOT enzyme was
found to anchor to the bacterial surface, minimizing potential for secretion into systemic
circulation. Thus, this system prevents off-target collagen degradation, reducing possible
toxic side effects.

We found that induction of tumor-colonizing ST-SOT resulted in significant reduction
of collagen content and greater bacterial diffusion. Interestingly, significant reduction of
suppressive intratumoral subsets was observed following ST-SOT treatment alone and
subsequent to combination treatment with ICB. Ultimately, ST-SOT pre-treatment facilitated
greater tumor growth control following ICB treatment compared to ICB alone. These
studies are among the first to describe a tumor-targeted strategy to degrade major collagens
within PDAC tissue leading to significant improvement in immunotherapeutic efficacy.

Previous studies have shown that a high-density collagen matrix within tumors is
associated with decreased cytotoxic T cell abundance and increased regulatory T cell
infiltration [59–61]. In line with this, collagen molecules are known to act as a ligand
for the inhibitory leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), which
is encoded by NK, T and B cells [62,63]. Signaling through this receptor induces T cell
exhaustion and increases resistance to ICB [19,64]. Collagen degradation after ST-SOT
pre-treatment may interfere with this ligand–receptor interaction, sensitizing tumors to
ICB treatment, consistent with increased sensitivity to ICB in tumors with low collagen
deposition [19]. Interestingly, in this study we observed a 2-fold increase in collagen
content by 48 h after ICB treatment, which has been observed previously in a pre-clinical
colon cancer model [50]. The combination of ICB with induction of ST-SOT in our model
prevented this increase and synergized to decrease collagen in the stroma greater than
induction with IgG, possibly implying that IgG treatment increases collagen somewhat
similarly to ICB treatment. Regardless, increased collagen after an initial treatment with
ICB may decrease the diffusion of further ICB treatments to the tumor, consistent with a
more recently described mechanism of acquired resistance to ICB [19].

Fifty percent of PDAC diagnoses occur at late-stage, and nearly all histopathologic
analyses of primary tumor and metastases show extensive desmoplasia [13]. However, the
abundance of each ECM component contributing to desmoplasia is not always uniform.
Collagen imparts mechanical stresses that act in concert with other major ECM compo-
nents, such as hyaluronan, to limit tumor perfusion [65,66]. Whereas an overabundance
of hyaluronan contributes to increased interstitial fluidic pressure leading to vessel com-
pression, collagen fibers impart rigidity to maintain tissue-level compression that prevents
stromal collapse and, in turn, vessel decompression. Thus, strategies employing only
individual depletion of hyaluronan or collagen, even if done effectively, may not result
in maximum tumor permeability. A combinatorial strategy to target both hyaluronan
and collagen simultaneously not only presents an approach to maximize drug delivery
in PDAC with broader applicability, but also presents greater risk of adverse events. To
overcome this possibility, we have also engineered recombinant ST expressing bacterial
hyaluronidase (bHs-ST) [25]. A mixture containing both ST-SOT and bHs-ST is predicted to
simultaneously deplete tumor-associated collagen and hyaluronan with minimal off-tumor
toxicity. This is in contrast to previously tested small-molecule inhibitors, which inad-
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vertently increase tumor aggressiveness and metastasis as a result of targeting signaling
pathways involved in collagen and hyaluronan synthesis [67,68]. Our ST-based platform
allows for safe targeting of both components for the first time and will require additional
studies to determine the added benefits of dual versus single depletions as well as effects
on metastatic potential, which remains a major concern with ECM remodeling. In addition
to PDAC, our findings may have broader application to other desmoplastic tumor types
such as those originating in the breast and lung [69].

4. Materials and Methods
4.1. Animals and Cell Lines

C57BL/6 mice were obtained from breeding colonies housed at the City of Hope
(COH) Animal Research Center. The Pan02 cell line was a kind gift from Dr. DC. Linehan,
Washington University School of Medicine [70] and the KPC4662.5 cell line was a kind gift
from Dr. Robert Vonderheide, University of Pennsylvania [37]. Cells were maintained in
DMEM media containing 10% FBS, 2 mM L-glutamine and pen/strep. KPC4662.5 cells,
prior to orthotopic implantation, were passaged ≤5 times and maintained at ≤80% conflu-
ency in DMEM containing 10% FBS, 2 mM L-glutamine and pen/strep.

4.2. ST Strains and Generation of ST-SOT

YS1646 (ST) was obtained from ATCC® (202165TM) and cultured in modified LB media
lacking NaCl (LB-0). The SOT amino acid sequence (GenBank Accession no. AB362837.1)
was used to synthesize a codon-optimized cDNA fused to Fla (N-terminus) and 6XHis-tag
(C-terminus) (Biomatik, Wilmington, DE, USA), which was inserted into a pBAD bacterial
expression vector (kind gift from Michael Davidson, Addgene #54762) to generate pBAD-
SOT. ST-LUX was generated using the pAKlux2 plasmid (pAKlux2 was a gift from Attila
Karsi, Addgene #14080). Plasmids were electroporated into YS1646 and spread onto LB-0
plates containing 100 µg/mL ampicillin and incubated overnight at 37 ◦C. Positive clones
were identified by colony PCR and restriction digest.

4.3. Bacterial Growth, Viability, and Analysis of SOT Expression

Clones of ST electroporated with pBAD-SOT were cultured in media with or without
2% (w/v) L-arabinose at 37 ◦C for 1–24 h. Growth kinetics were monitored through analysis
of absorbance at 600 nm (Genesys 30, Thermo Scientific; Waltham, MA, USA) every
1–2 h. SOT expression was detected in bacterial lysates by Western blot using an anti-
6XHis antibody (Proteintech; Rosemont, IL, USA) and localization of SOT was detected by
immunofluorescence using a primary monoclonal mouse antibody against ST (Clone 1E6,
Thermofisher; Waltham, MA, USA). Western blot band densitometry was performed on
original western tiffs using ImageJ (NIH).

4.4. Gelatin-LB Plate and Fluorometric Substrate Assays

ST-SOT was cultured under uninduced or induced (2% L-arabinose) conditions for
1 h at 37 ◦C and then pipetted onto 1% gelatin-agar plates (1 × 108 CFU in 100 µL) and
incubated overnight at 37 ◦C [71]. To measure enzymatic activity of ST-SOT, substrates
consisting of bovine skin collagen type I, human placenta collagen type IV, and pig skin
gelatin conjugated to FITC (Thermofisher; Waltham, MA, USA) were used. The reaction
was started by the addition of ST-SOT under uninduced or induced (2% L-arabinose)
conditions and subsequently monitored to assess the increase in fluorescence intensity over
24 h using an iBright FL1500 Imaging System (Thermofisher; Waltham, MA, USA).

4.5. Orthotopic and Subcutaneous Tumor Implantation

Orthotopic implantation of KPC4662.5 cells into the mouse pancreas was achieved
using previously published methods [72]. Briefly, small incisions were made through
the skin and peritoneum. The pancreas was identified and, using a 27 gauge needle,
approximately 2 × 105 KPC4662.5 cells in a volume of 50 µL (10% matrigel, BD Biosciences,
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San Jose, CA, USA) were injected into the body. The pancreas was reinserted, and incisions
were closed using absorbable sutures and staples. Analgesics were administered pre- and
post-surgery. Pan02 cells (2 × 105) were implanted subcutaneously above the right flank in
a total volume of 50 µL.

4.6. Quantification of Collagen Degradation

Paraffin-embedded tumors were sectioned and stained using Masson’s Trichrome.
Whole tumors were imaged using the Zeiss Axio Observer II microscope (Carl Zeiss Inc.;
White Plains, NY, USA) and trichrome images were color deconvoluted using the “Masson’s
Trichrome” setting in ImageJ (U. S. National Institutes of Health; Bethesda, MD, USA).
Thresholds were set for individual channels just under background and quantified using
the “analyze particles” option under “measure.” Total collagen area (blue channel) was
divided by the addition of collagen area plus total cytoplasm area (red channel) to obtain
the percentage of collagen.

4.7. Immunohistochemistry

IHC was performed using a Ventana Discovery Ultra IHC autostainer (Roche Diagnos-
tics; Indianapolis, IN, USA) according to manufacturer’s protocols. Briefly, FFPE samples
were sectioned (5 µm) and transferred to glass slides. After deparaffinizing, slides were
incubated with primary antibodies, followed by DAB detection staining (Ventana Medical
Systems; Santa Clara, CA, USA). The slides were counterstained with hematoxylin and
cover-slipped. Antibodies used: cleaved caspase 3 and Ki67 (Cell Signaling Technologies;
Danvers, MA, USA). DAB staining out of total nuclei per field was done using ImageJ
(NIH). DAB and hematoxylin channels were separated using color deconvolution (H-DAB
preset), and thresholds were set to cover positive staining area for DAB (brown) and posi-
tive staining nuclei for hematoxylin (blue) just under background. DAB-positive nuclei
were quantified by dividing DAB threshold area by DAB threshold area plus hematoxylin
threshold area.

4.8. Flow Cytometry

Live cells (~106 cells) were counted using trypan blue and stained with a viability dye
(eBiosciences 65-0866-14, Thermo Fisher Scientific; Waltham, MA, USA) for 30 min at 4 ◦C.
Cells were washed (PBS with 0.05% sodium azide and 1% FBS) and stained with surface
antibodies for 40 min at 4 ◦C. Cells were washed, fixed in flow buffer with 1% PFA, and then
filtered using a 40 µm mesh strainer/tube (BD Biosciences; San Jose, CA, USA). Flow cytom-
etry was performed on the BD FACSCelesta cytometer and data was analyzed using FlowJo
Version 10 (Becton, Dickinson & Co.; Franklin Lakes, NJ, USA). Flow cytometry antibodies
used from BD Biosciences (San Jose, CA, USA): CD45-PerCPCy5.5 (550994), CD8-APC-
R700 (564983), CD4-APC-H7 (560246), Ly6G-BV605 (563005), Ly6C-FITC (561085), CD11b-
APC (561690), PD-1-BV421 (562584), CTLA-4-PE (553720), CD45-APC-R700 (565478), CD3-
PerCPCy5.5 (551071), NK1.1-BV650 (564143), CD11c-BV605 (563057), CD45-BV650 (563410),
CD4-BV786 (563331), CD25-PerCPCy5.5 (551071), CD11c-APC-R700 (565871), and IFN-
gamma-APC (554413). Flow cytometry antibodies used from eBiosciences (Thermo Fisher
Scientific; Waltham, MA, USA): F4/80-Super Bright 780 (78-4801-82), PD-L1-Super Bright
645 (64-5982-82), PD-L1-Super Bright 780 (78-5982-80), and FoxP3-APC (17-5773-82). For in-
tracellular staining against CTLA-4, cells were permeabilized using the Cytofix/Cytoperm
Plus kit (555028, BD Biosciences; San Jose, CA, USA). For intracellular staining against
FoxP3, cells were permeabilized using the FoxP3/transcription factor staining buffer set
from eBiosciences (00-5523-00, Thermo Fisher Scientific; Waltham, MA, USA).

4.9. Tumor Growth Measurements and Treatment

For the Pan02 subcutaneous tumor model, tumors were allowed to grow for two
weeks until reaching an average volume of 100 mm3. At this time, all mice were treated
with 2.5 × 106 CFU ST-SOT intravenously two days in a row. Three days after the first
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treatment, mice were randomized into four groups: (1) ST-SOT uninduced + IgG (n = 3),
(2) ST-SOT uninduced + ICB (n = 4), (3) ST-SOT induced + IgG (n = 4), and (4) ST-SOT
induced + ICB (n = 4). Induced groups received 250 mg L-Arabinose via intraperitoneal
injection while uninduced groups received an equivalent volume of PBS. IgG groups
received 200 µg Armenian Hamster IgG with 75 µg Syrian Hamster IgG (BioXCell; Lebanon,
NH, USA) and ICB groups received 200 µg anti-PD-1 (J43) (gift from Dr. Blazar) with 75 µg
anti-CTLA-4 (9H10) (BioXCell; Lebanon, NH, USA). Maintenance doses of IgG or ICB
were given at reduced amounts (100 µg anti-PD-1/IgG and 40 µg anti-CTLA-4/IgG) every
3 days until the end of the experiment. Tumor volumes were measured thrice weekly
using digital calipers. Tumor growth is represented as fold change in growth compared to
volume at initial ST-SOT treatment.

4.10. Statistics

Prism software by GraphPad (V8) (San Diego, CA, USA) was used for statistical
calculations. T-test and two-way ANOVA followed by Tukey’s multiple comparisons test
were predominant statistics used, unless otherwise stated.

5. Conclusions

Whereas cancer treatments continue to improve at a rapid pace, survival rates for
PDAC patients have, unfortunately, not followed suit. In the case of PDAC, it has become
increasingly clear that combinatorial strategies to eliminate tumor fibrosis may be requisite
for therapeutic success. Increasing evidence also suggests that reducing levels of extracel-
lular matrix (ECM) components not only relieves interstitial pressures to enhance drug
delivery but may also modulate tumor-associated immune subsets to generate a tumor mi-
croenvironment more conducive to immunotherapy. Indeed, we and others have observed
dramatic improvements in immunotherapy following direct depletion of hyaluronan and
collagen. One major hurdle in targeting ECM components has been major adverse events
associated with systemic, off-tumor toxicity. Incorporation of degradative enzymes into ST
vectors represents a novel strategy to restrict ECM degradation to tumor tissue.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13143565/s1, Figure S1: SOT expression in attenuated ST, Figure S2: ST colonization
and diffusion.
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