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1. Literature Review and Wed-Based Searches

PubMed (www.pubmed.ncbi.nlm.nih.gov) was searched for articles between 1 Feb-
ruary 2021-28 February 2021 using the following terms: "french"(All Fields) AND ("cana-
dian"[All Fields] OR "canadians"(All Fields)) AND "gene name"(All Fields). Genes inves-
tigated include those implicated in hereditary breast cancer (HBC) and/or hereditary
breast and ovarian cancer syndromes (HBOC) syndromes: ATM, BARD1, BRCA1, BRCA2,
BRIP1, CHEK2, MLH1, MRE11A, MSH2, MSH6, NBN, PALB2, PMS2, PTEN, RAD51C,
RAD51D, RECQL, STK11, and TP53. Variants that appear in the supplementary tables
were identified in BC and/or OC cases in the context of HBC/HBOC from this literature
review. Variants were excluded if they were common (minor allele frequency >1%) in
non-cancer general population in the Genome Aggregation Database (gnomAD v2.1.1;
www.gnomad.broadinstitute.org) [1]), synonymous, or intronic (+ 21 nucleotides from the
exon).

2. Bioinformatic Tools Used for Evaluating Variants

Variant effect predictor (VEP; grch37.ensembl.org/Homo_sapi-
ens/Tools/VEP?db=core) was used to annotate variants with the following in silico tools:

2.1. Protein damaging

1. Combined Annotation Dependent Depletion (CADD) v1.4 [2]

=  Phred score =15 was considered damaging
2. Eigenvl.1[3]

= Rankscore >0.4 was considered damaging
3. Consensus Deleteriousness (Condel) [4]

= Rankscore >0.4 was considered damaging
4. Meta Logistic Regression (MetaLR) [5]

* Rankscore >0.4 was considered damaging
5. Meta Support Vector Machine (MetaSVM) [5]

= Rankscore >0.4 was considered damaging
6. Protein Variant Effect Analyzer (PROVEAN) v1.1 [6]

* Rankscore >0.4 was considered damaging
7. Rare Exome Variant Ensemble Learner (REVEL) [7]

= Rankscore >0.4 was considered damaging
8. Variant Effect Scoring Tool (VEST) v4.0 [8]

= Rankscore >0.4 was considered damaging

2.2. Conservation

1. Phylogenetic Analysis with Space/Time Models Conservation (phastCons) v1.5 [9]
* Rankscore >0.4 was considered conserved

2. Site-specific Phylogenetic analysis (SiPhy) [10]
= Rankscore =0.4 was considered conserved
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3. Phylogenetic P-values (PhyloP) 100 way in vertebrates [11]
= Rankscore >0.4 was considered conserved

4. Genomic Evolutionary Rate Profiling (GERP++) [12]
=  Score =2 was considered conserved

2.3. Splicing
1. Database of splicing consensus regions (dbscSNV) adaptive boosting (ADA) [13]
* Rankscore >0.4 was considered conserved to affect splicing
2. dbscSNV random forest (RF) [13]
* Rankscore >0.4 was considered conserved to affect splicing
3. MaxEntScan [14]
= Difference =1 was considered conserved to affect splicing
4. SpliceAI[15]
* Rankscore >0.4 was considered conserved to affect splicing

e The above in silico tools were chosen as the algorithms were shown to have high predictive performance char-

acteristics across different data sets [16].

e Varsome (www.varsome.com) [17] was used to extract the American College of Medical Genetics and Ge-

nomics (ACMG) classification (pathogenic, likely pathogenic, uncertain significance, likely benign, benign)
and was last accessed on 30 April 2021.

e ClinVar [18] was used to determine the clinical interpretation of identified variants and was last accessed on

30 April 2021.

2.4. Variants in BRCA1 and BRCA?2

e Variants in BRCA1 or BRCA2 were considered pathogenic if they were classified as pathogenic or likely path-

ogenic by ACMG or ClinVar (www.ncbi.nlm.nih.gov/clinvar/).

e Variants in BRCA1 or BRCA2 were considered potentially pathogenic if they were classified as uncertain sig-

nificance in ACMG or ClinVar, or with conflicting interpretations in ClinVar (of which at least one submission
is uncertain significance).

e BRCAExchange (https://brcaexchange.org) v45 [19] was used to annotate if variants in BRCAI or BRCA2 were

considered pathogenic, uncertain significance, or benign based on review from an expert panel.

¢ National Center for Biotechnology Information (NCBI) Protein (www.ncbi.nlm.nih.gov/protein/) was used to

determine the protein domains of BRCAI (AAC37594.1) and BRCA2 (AAB07223.1).

e BRCAI and BRCA?2 exon sizes were determined using the University of California Santa Cruz (UCSC;

www.genome.ucsc.edu) Genome Browser [20].

2.5. Variants in other genes

e All frameshift and nonsense variants were considered to be potentially pathogenic as they likely result in loss

of encoded protein function.

e Missense variants were considered potentially pathogenic if variants were predicted to be damaging in at

least four of eight in silico tools and conserved in at least two of four in silico conservation tools described
above.

e  Splice site variants were considered to affect splicing if they were predicted to do so by at least two out of four

in silico tools described above.
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