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Simple Summary: Despite the existence of powerful therapeutic agents, cancer is still an incur-
able disease in many clinical scenarios. In this regard, nanomedicine and particularly polymeric
nanoparticles have raised attention as a manner to improved drug delivery. Polymeric nanoparticles
can optimize existent compounds or be used to improve the formulation for novel therapeutics. In
this article the advantages and disadvantages of polymeric nanoparticles will be discussed, and
current nanodevices, raw materials for their formulation, methods of formulation, and polymeric
nanoparticles in clinical investigations will be reviewed. Finally, options for improvement and clinical
applications will be suggested.

Abstract: Many therapeutic agents have failed in their clinical development, due to the toxic effects
associated with non-transformed tissues. In this context, nanotechnology has been exploited to
overcome such limitations, and also improve navigation across biological barriers. Amongst the many
materials used in nanomedicine, with promising properties as therapeutic carriers, the following one
stands out: biodegradable and biocompatible polymers. Polymeric nanoparticles are ideal candidates
for drug delivery, given the versatility of raw materials and their feasibility in large-scale production.
Furthermore, polymeric nanoparticles show great potential for easy surface modifications to optimize
pharmacokinetics, including the half-life in circulation and targeted tissue delivery. Herein, we
provide an overview of the current applications of polymeric nanoparticles as platforms in the
development of novel nanomedicines for cancer treatment. In particular, we will focus on the
raw materials that are widely used for polymeric nanoparticle generation, current methods for
formulation, mechanism of action, and clinical investigations.

Keywords: nanomedicine; polymeric nanoparticles; drug delivery system; cancer treatment

1. Introduction

At the end of the nineties, nanomedicine arose as a panacea for the diagnosis and
treatment of diseases. However, today, nanomedicine is still there, waiting for its potential
to be fully tapped.

The history of nanomedicine is linked to the evolution of high-resolution microscopy.
The first visualization of <4 nm structures took place in 1902, and was performed by
Richard Zsigmondy and Henry Siedentopf. Fifty years later, the disposition of the atoms
over surfaces was reported, for the first time, by Erwin Müller in 1951 using ion field
microscopy. In this regard, the development of the first atomic force microscope in 1986
allowed us to finally see nanostructures in high resolution [1]. These findings attracted
great interest in the field of medicine, and a surge of scientific studies and research allowed
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us to come up with the term “nanomedicine” [2]. Nevertheless, the first time we saw this
concept on paper was in the book “What is Nanomedicine” in 1999, by Robert A. Freiras [3].

Figure 1 illustrates the most important events in the development of nanomedicine as
a branch of science. Looking back, we saw the first nanoparticles (NPs) as drug delivery
systems (DDS), reported in the late 1960s by Peter Paul Speiser [4]. In 1964, Kulkarni et al.
used biodegradable and biocompatible polymers to make NPs for the first time [5]. In the
early seventies, Georges Jean Franz Köhler and César Milstein produced monoclonal anti-
bodies (mAbs), which Leserman et al. used to make immunoliposomes years later [6]. This
event is considered one of the greatest moments in the history of nanomedicine, because it
represented the first “Targeted Nanotherapy”. There were other important findings aimed
to implement nanotechnology in the field of medicine, such as the use of dendrimers [7]
or chips [8], but, undoubtedly, the use of nanomaterials in tissue engineering paved the
way for considering nanomedicine as an area of expertise in science [9]. Aside from this,
of particular interest to cancer treatment researchers, is the approval of Doxil® [10] by the
Food and Therapeutic Administration (FDA) as the first encapsulated therapeutic, which
meant a step forward in the development of new treatments. In fact, it accelerated the
registration and marketing approvals of key pharmaceuticals in developed countries [11].
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Figure 1. Major discoveries made in the field of nanomedicine, which are linked to the evolution of high-resolution microscopy.

Nanomedicine provides hope to improve current cancer treatment. In this sense,
nanoparticles can offer several advantages in comparison to conventional chemothera-
peutics based on the enhanced permeability and retention (EPR) effect. The drug can be
delivered in high concentrations to the site of interest, reducing the effects to the surround-
ing tissues (Table 1 collects the advantages of nanomedicines comparted to conventional
chemotherapeutics). Apart from all the advantages of the use of DDS for cancer treatment,
polymeric DDS are notable for clinical translation, due to the biocompatibility of the raw
materials and the easy modulation to improve efficacy.

Table 1. Advantages of nanomedicine compared to conventional chemotherapeutics.

Advantages of Nanomedicine

Improved bioavailability

Greater dose response

Enhanced solubility

Scope for improvement efficacy

Assess therapeutic efficacy in real time: simultaneous monitoring of drug release and imaging distribution

Reduced toxicity

Allow to design specifically targeted therapies

Possibility of designing smart nanosystems capable of responding to external stimuli



Cancers 2021, 13, 3387 3 of 19

Nanomedicine can be divided into the following three main areas depending on its
application: nanodiagnosis, regenerative medicine, and nanotherapy [12]. The main aim of
nanodiagnosis is the early detection of diseases by the use of nanomaterials [13–15]. The
in vivo diagnosis consists of the administration of different nanodevices for the quantifi-
cation of several parameters, compounds or metabolites in the organism, while in vitro
diagnosis achieves disease detection through samples obtained from patients. One of the
principal nanomaterials for nanodiagnosis is the nanobiosensor, which can detect a number
of compounds in real time [16].

On the other hand, regenerative medicine consists of the repair or substitution of dam-
aged tissues and organs by nanomaterials [12]. The most commonly used nanomaterials
employed for this purpose are based on carbon nanotubes, hydroxyapatite nanodevices,
nanocomposites, and biodegradable polymers [17].

Unfortunately, therapeutic agents are not free of side effects and contraindications. In
fact, there is a significant proportion of patients who experience adverse effects with the
current therapies. Some therapeutics are very quickly metabolized and require high doses
to be effective. On the other hand, minor, but frequent, side effects produced mean that
many patients report low levels of adherence to treatments [18]. Chemical modifications of
approved therapeutics, to improve their pharmacokinetics and safety profile, are costly.
In this context, nanotherapy seems to provide solutions by therapeutic encapsulation in
controlled-release systems. NPs of 100–400 nm diameter can accumulate within the tumor,
through the EPR effect [19]. They can deliver high concentrations of the therapeutic to the
target site by convection and diffusion processes, which can also reduce the effects on the
surrounding tissues [20].

Figure 2 displays the advantages and disadvantages of the most important DDS (struc-
ture, benefits and intended use of the different NPs are described in Table 2). Lipid-based
NPs are simply formulated and are able to carry large payloads [21], but they are rapidly
retained by the reticuloendothelial system, and modifications to extend their half-time cir-
culation are requested for clinical use. Solid lipid NPs are particularly important in genetic
therapy, due to their efficacy for nucleic acid delivery [22]. However, the low therapeutic
loading, and accumulation in the liver and spleen limit their options for clinical develop-
ment [21]. Inorganic NPs possess additional magnetic, electrical, and optical properties for
application, such as diagnostics, imaging and photothermal therapies [23]. Nevertheless,
their clinical application is limited by their low solubility and toxicity [24]. Amongst the
many materials used in nanomedicine, with promising properties as therapeutic carriers,
the following one stands out: biodegradable and biocompatible polymers [25,26]. Poly-
meric NPs are ideal candidates for drug delivery, given the versatility of the raw materials
used for their production. These NPs are also stable during storage, and large-scale produc-
tion is feasible. Furthermore, they show great potential for easy surface modifications to
optimize pharmacokinetics, including the half-life in circulation and tissue delivery, and, by
modulating the polymer structure, loading and release kinetics can be controlled [27–29]. It
is worth noting other advantages of polymeric NPs, such as the ease of customized surfaces
to be constructed to recognize target proteins and cells [30], along with the generation of
stimuli-responsive nanodevices [31,32]. To date, many polymeric NPs are in clinical trials
(Table 3) [33].
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Table 2. Structure, benefits and intended use of the most significant DDS in medicine.

Type of DDS Structure Benefits Indented Use

Lipid-based NPs Spherical vesicle having a
lipid bilayer

Formulation simplicity and
high drug loading

First vehicle for administration of
pharmaceutical drugs

Solid lipid NPs Spherical solid lipid core
stabilized by surfactants Temporal and in vivo stability Delivery vehicle for nucleic acids

Dendrimers Branched polymeric
molecules

Encapsulation of
hydrophobic drugs

Easy chemical modification to
increase in vivo suitability

MOFs Clusters of metal ions
coordinated to organic ligands

High encapsulation and
loading efficiency

pH-, magnetic-, ion-, temperature-
and pressure-response carriers

Metallic NPs Mainly iron oxide, gold, or
silver core

Small size and easy surface
functionalization

Development of diagnostic and
therapeutic agents

Silica mesoporous NPs Mesoporous silica core
Extensive multi-functionality

based on its high
specific surface

Stimuli-reactive guided liberation
of drugs through
chemical coatings

Polymeric NPs Biodegradable and
biocompatible polymers

Low cost, large-scale synthesis,
payload flexibility,

biocompatibility and easy
surface modification

Clinical translation of
nanomedicines
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Table 3. Polymeric NPs in clinical trials.

Nanomedicine Drug Polymer Conditions Reference Clinical Trials

Genexol-PM® Paclitaxel polymeric micelle
formulation

Metastatic adenocarcinoma of
the pancreas NCT02739633

Hepatocellular carcinoma after
failure of sorafenib NCT03008512

Advanced urothelial cancer NCT01426126

Advanced non-small-cell
lung cancer NCT01770795

Advanced, metastatic and
recurrent breast cancer

NCT01784120
NCT00876486
NCT01169870
NCT00912639
NCT02263495
NCT02064829

Gynecologic cancer NCT02739529

Advanced ovarian cancer
NCT00877253
NCT01276548
NCT00886717

Advanced and metastatic
pancreatic cancer

NCT00882973
NCT00111904

Advanced non-small-cell
lung cancer NCT01023347

Advanced head and neck cancer NCT01689194

Advanced esophageal squamous
cell carcinoma

NCT01474642
NCT00816634

PICN® Paclitaxel
copolymer

polylactide-polyehtylene
glycol

Metastatic breast cancer CTRI/2010/091/001116

BIND-014® Docetaxel
copolymer

polylactide-polyethylene
glycol

Metastatic castration-resistant
prostate cancer NCT01812746

Non-small-cell lung cancer NCT01792479

Advanced or metastatic cancer NCT01300533

KRAS positive or squamous cell
non-small-cell lung cancer NCT02283320

Urothelial carcinoma,
cholangiocarcinoma, cervical

cancer and squamous cell
carcinoma of the head and neck

NCT02479178

Livatag® Doxorrubicin Polyalkylcyanoacrylate Advanced hepatocarcinoma EudraCT-2006-004088-77

CALAA-01® siRNA
Adamantane polyethylene

glycol containing
cyclodextrin

Solid tumor cancers NCT00689065

2. From Raw Materials to Polymeric NPs

Polyesters are the most used raw materials for polymeric DDS generation. Ideally, the
polymers selected must be biocompatible and biodegradable, and therefore the existence
of ester bonds in the macrostructure make these devices easily broken in biological envi-
ronments. Non-synthetic biodegradable polymers, such as alginate, chitosan, and albumin,
have been used to prepare polymeric NPs. Despite their biocompatibility, biodegradability
and non-toxic properties, these raw materials present limitations to clinical translation,
due to the high variability in batch productions and high immunogenicity of some natural
polymers. In addition, their degradation strictly depends on intrinsic properties. On the
other hand, synthetic polymers can be designed to modulate delivery parameters such as
loading efficiencies, therapeutic release kinetics, surface charge, stability, responsivity, and
size and polydispersities of the polymeric NPs. In this sense, polylactide (PLA), polyglycol-
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ide (PGA), polycaprolactone (PCL) and polylactide-co-glicolide (PLGA) are commercial
FDA-approved polymers for DDS generation [34] (see chemical structures in Figure 3).
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2.1. PLA

PLA is an FDA-approved polymer, due to its biodegradability, low immunogenicity,
low toxicity and high biocompatibility. PLA is degraded to lactic acid, which, in turn,
is used in other metabolic routes [35]. Some studies with PLA NPs showed that lactic
acid was metabolized fast, to H2O and CO2, and, therefore, was easily eliminated by the
body [36]. PLA is produced by a polycondensation reaction of lactic acid, or by ring-
opening polymerization (ROP) of the cyclic ester. Both raw materials are obtained by the
anaerobic fermentation of organic substrates such as sugars, beet, or wheat starch [37,38].
PLA has high hydrophobicity, which is an ideal environment for the encapsulation of
hydrophobic therapeutics [39]. Representative examples for the development of new
cancer treatments using PLA NPs are the work carried out by Coolen et al., where PLA
NPs were used for cell transfection [40], or the work reported by Feng et al., to encapsulate
fisetin for breast cancer therapy [41].

2.2. PGA

PGA is an FDA-approved polymer, obtained by ROP of glycolide. PGA was used for
the generation of the first bioresorbable suture in the seventies [42]. PGA is a biodegradable
thermoplastic that produces glycolic acid after degradation, and is then excreted in urine.
The low solubility in organic solvent, low stability in water, and quick enzymatic degrad-
ability limited the use of PGA for NPs formulation. Indeed, the use of PGA is focused on
tissue engineering for bone, tendons, cartilage, teeth, and spinal regeneration [43].

2.3. PLGA

PLGA is an FDA-approved biodegradable and biocompatible copolymer, obtained
by ROP of lactide and glycolide. The degradation products of PLGA are lactic acid and
glycolic acid, which are innocuous for humans [44]. The physicochemical properties of
the polymer depend on the PLA:PGA ratio. Due to the high degradability of PGA, the
degradation of PLGA is marked by the amount of PLA in the copolymer structure [34,44].
PGLA is by far the most used for DDS generation [45]. However, as has happened for
all the polymers mentioned, PLGA needs to be pegylated for enhancing in its vivo effi-
ciency [46,47]. The incorporation of polyethylene glycol into the macromolecular structure
allows the circulation time of the NPs to increase [48], and the bio-adhesion to different
immune cell lines or different plasmatic components to decrease [49,50]. Also, PLGA is
used as a raw material for the generation of molecule-targeted therapy. As an original
strategy, Pan et al. reported hyaluronic acid-decorated hybrid PLGA nanoparticles as
17-allylaminogeldanamycin delivery carriers for targeted colon cancer therapy. In vivo
studies showed much better therapeutic efficiency than the free therapeutic [51].
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2.4. PCL

PCL is a biodegradable and biocompatible FDA-approved polymer, obtained from
fossil resources [52]. This polyester is obtained by ROP of ε-caprolactone. It is soluble in
a wide range of organic solvents and presents slow degradation rates (2–3 years). Once
again, its use is focused on tissue engineering [53]. However, it has also been used as a
raw material for DDS generation, in the form of copolymers with other low degradation
rate polymers, such as PLGA or PEG [54,55]. There are some successful examples of PCL
formulations for the treatment of cancer [56–58].

2.5. Other Synthetic Polymers

Poly(anhydrides) [59], poly(orthoesters) [60], poly(amides) [61], poly(phosphoesters) [62],
and poly(alkylcyanoacrylates) [63] are examples of other polymers used for the generation
of DDS. In many cases, successful devices have been formulated, such as the one reported
by Fusser et al., using poly(2-ethylbutyl cyanoacry-late) to encapsulate cabazitaxel for
breast cancer treatment [64], or the poly(ester amides) NPs reported by Villamagna et al. to
encapsulate Celecoxib [65].

3. Mechanism of Action of Polymeric NPs

Three mechanisms govern the release of the therapeutic load from polymeric NPs.
Burst release, diffusion through the polymer matrix, and erosion are the mechanisms
proposed for the release of therapeutics. The extension of each one will depend on the
therapeutic structure, raw material employed, NP morphology, and release media [66].
A triphasic profile is expected for the release of the therapeutic from polymeric NPs (see
example of profile in Figure 4). Note that mechanisms can act simultaneously.
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3.1. Stage I

This stage is governed by the burst release mechanism. The therapeutics physically
absorbed over the surface of the NPs are released through desorption–diffusion processes.
This stage is characterized by very short times.

3.2. Stage II

In this case is the diffusion of the therapeutic through the polymer matrix or pores,
which explains the release phenomena. This stage is much slower and can coexist with
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polymer erosion [34,66]. The diffusion relies on the intermolecular therapeutic/polymer
forces, as well as the permeability and thickness of the nanodevices [67]. Stage I and II
follow the Higuchi pattern, a mathematical model to describe the release of water-soluble
and low-soluble drugs incorporated into semisolid and solid matrices. Thus, the simplified
Higuchi model describes the release of therapeutics as a square root of a time-dependent
process (t1/2), based on a pseudo-steady state approach that matches the Fick’s 1st law
(Fickian release) for an ideal steady-state in stage II [68].

3.3. Stage III

The erosion mechanism governs this stage and will depend on the physico-chemical
properties of the raw materials [66]. Usually, the release is very slow. Nevertheless, those
polymers easily hydrolyzed show this phase in shorter times. In this case, the release kinetic
is unpredictable [69]. The Korsmeyer and Peppas model is based on an empirical equation,
to include both the Fickian and non-Fickian release of the drug from the polymeric matrix.
This describes the release as a time-dependent tn process, where n is the release exponent,
indicative of the mechanism of drug transport through the polymeric matrix, allowing the
erosion process to be included in the release mechanism in stage III [68].

Biphasic profiles and constant release profiles have been also reported in a few cases [34].

3.4. The Release of the Therapeutic Depends on Many Factors

Cellular and intracellular barriers, crystallinity and degradability of the polymer, the
hydrophilic/hydrophobic ratio between the therapeutic and polymer, and the type of
surfactants are key variables for the delivery.

3.4.1. Cellular and Intracellular Barriers

Cells and intracellular membranes vary widely, as well as lipid rafts and transmem-
brane proteins. Therefore, membranes are heterogenous within a patient or across a patient
population, which creates diverse barriers to NPs delivery [70]. In addition, polymeric
NPs can contact biomolecules such as serum proteins and lipids, to form a corona over
their surface. This fact can dictate the uptake of the polymeric NPs, even their stability and
cargo [71].

3.4.2. Crystallinity

Polymer crystallinity is defined as the rate of ordered regions inside the polymer
matrix in relation with the disordered regions. The orientation of the polymer chains
into the NPs can influence the physicochemical properties of the nanodevices. Thus,
ordered macrostructures will hamper the water entrance, slowing down the erosion. It is
mandatory to calculate the glass transition temperature to know about the crystallinity
rate of a polymer (Tg). The Tg is the temperature in which the polymer changes from a
rigid state to a more flexible state, and it is calculated by dynamic scanning calorimetry
(DSC) [39]. In general terms, the therapeutic release decreases with the increasing Tg, and
the crystallinity is directly related to the molecular weight of the polymer [44]. Polymers
with low molecular weights are less crystalline and degrade easily, which causes faster
therapeutic release rates [34].

3.4.3. Hydrophilic/Hydrophobic Ratio

This ratio is a limiting factor to achieving high encapsulation efficiencies. Polymers
are hydrophobic in nature and, therefore, hydrophobic therapeutics are suited to being
entrapped in polymeric NPs. Those polymers with high solubility in water will give rise to
DDS with fast therapeutic release profiles [72].

3.4.4. Degradability

Polymer degradation mainly depends on the lability of its chemical bonds, and the
crystallinity and hydrophobicity. Polymers with high crystallinity and high hydrophobicity
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present low degradation rates and low susceptibility to hydrolysis. In the same way, ester
and amide bonds facilitate the DDS degradation for enzyme action [66].

3.4.5. Type of Surfactants

Surfactants are humectant, and are capable of reducing the superficial tension of
liquids and the interfacial tension between liquids. Each surfactant has a hydrophilic grade,
which is a determinant for the generation of NPs [73]. Surfactants can be divided into
anionic, cationic and zwitterionic, and non-ionic surfactants. Tweens®, spans®, pluronic®

and poly(vinil alcohol) are the most common surfactants employed in formulation. The
surfactants are determined to modulate the size, shape, and surface of polymeric NPs.
In general terms, non-ionic surfactants are less toxic. Aggregation phenomena can be
observed if the surfactant is not appropriate, impacting the size and polydispersities of the
formulation [74]. Also, the release of the therapeutic can be modified [75]. Gagliardi et al.
recently discussed the role of surfactants for the construction of polymeric NPs [25].

3.5. Systemic Administration of Polymeric NPs Is Common for Cancer Treatment

In terms of size, NPs of less than 10 nm are rapidly eliminated by the kidneys, and
those larger than 20 mm stimulate recognition by macrophages or other cells of the immune
system [76]. Thus, PEG is usually incorporated into the polymeric NPs to improve their
circulation time. Another option is the surface modification by conjugation techniques.
Many polymeric NPs have successfully added moieties, such as antibodies, glucose, or
proteins, to direct their delivery [77,78].

In terms of surface charge, neutral and slightly negative polymeric NPs have a longer
circulation time. Anionic polymeric NPs have to overcome repulsive forces to make
contact with the cell surface, and, on the contrary, the attractive forces suffered by cationic
polymeric NPs can damage the cells and cause toxicity [79].

The mechanism of action of polymeric NPs is based on the EPR effect. NPs in the
range of 100–400 nm have been widely reported to accumulate at the tumor site via the
EPR effect [80]. This favors high accumulation of the therapeutic, facilitating its delivery
to the site of interest by convection and diffusion processes [81]. However, works sug-
gest potential limitations, because the EPR effect can differ among patients and types of
tumors [82,83]. The internalization of the NPs into the cell is produced through endocyto-
sis [82], and results in early endosome formation. The type of endocytosis is determined by
cell type and size of the NPs. It should be noted that the endocytosis process can cause
changes in the stability of the NPs and their cargo. Figure 5 illustrates the mechanism of
action. Endosomes couple to lysosomes that cleave the NPs, which subsequently release
the free cytotoxic therapeutics into the cytoplasm, interfering with the cellular mechanisms,
and ultimately promoting cell death [84].
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4. Methods to Formulate Polymeric NPs

There are several methods to formulate polymeric NPs. The methods can be broken
down in two main strategies, top-down and bottom-up methodologies (Figure 6).
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Figure 6. The methods to formulate polymeric NPs are divided into top-down and bottom-up
methodologies. Top-down methodologies generate the NPs from preformed polymers, whereas in
bottom-up methodologies the polymerization of the monomers is achieved during formulation.

In top-down methodologies, the NPs are obtained from preformed polymers; mean-
while, in bottom-up methodologies, the polymerization of the monomers is achieved
during formulation [85,86]. The nanoprecipitation and displacement solvent method, sev-
eral techniques of emulsification and evaporation, solvent diffusion, dialysis methods,
salting-out, electro-static spraying and micro-fluids are the most important ones in the
case of top-down methodologies. Bottom-up strategies have not been widely explored,
but, among them, emulsion polymerization, interfacial polymerization, interfacial polycon-
densation and the coacervation approach are the most used [86]. The following is a more
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detailed explanation of the most widely used methods for the generation of polymeric NPs
(see illustrations in Figure 7).
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4.1. Simple Nano-Emulsion (Top-Down)

In this approach, the therapeutic and polymer are solubilized in immiscible organic
solvents, such as ethyl acetate or dichloromethane, within the aqueous phase containing
surfactants [87]. The phases are emulsified with the help of a high-speed homogenizer or
sonicator. Once the nano-emulsion is stabilized, the solvent is removed. This methodology
is characterized to give rise to large particle sizes [88].

4.2. Double or Multiple Nano-Emulsion (Top-Down)

It was designed to encapsulate hydrophilic therapeutics and proteins. This approach
consists of the formulation of two nano-emulsions, once a simple nano-emulsion prepa-
ration is added to an external aqueous phase, and again emulsified to obtain the double
nano-emulsion. NPs are formed when the organic solvent is removed. This approach
was designed in order to attain higher encapsulation efficiencies for hydrophilic therapeu-
tics [89].

4.3. Salting Out (Top-Down)

This approach is a modified formulation of nano-emulsion in which the mixture to
be emulsified contains a polymer, a therapeutic, surfactants, and salting-out agents. The
common choices of salting-out agents are magnesium chloride, calcium chloride or sucrose.
Fast mechanical stirring is used to emulsify, and the solvent is removed via reduced
pressure. The mixture needs ultracentrifugation and repeated washing to eliminate the
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salting-out agents and surfactants [90]. The main disadvantage of this methodology is that
the salting out agents are, in many cases, incompatible with therapeutics [91].

4.4. Nanoprecipitation and Displacement Solvent Method (Top-Down)

The polymer and therapeutic are solubilized in miscible organic solvents, and then
the mixture is added in a controlled manner over an aqueous solution during continuous
stirring [92]. During nanoprecipitation, NPs are formed instantly and the therapeutic
is entrapped in the polymer matrix. In this case, the solvent is removed by reduced
pressure [28]. The formation of NPs is governed by the Gibbs-Marangoni effect, which de-
scribes a mass transfer in an interphase between two fluids, due to a gradient of superficial
tension [93]. The nanoprecipitation method prevents the loss of therapeutics during the
emulsification process.

4.5. Electrosprying (Top-Down)

The basic principles of this approach are based on the application of electrostatic
charges to manufacture the NPs. For this approach, a charged solution where the thera-
peutic and polymer are dissolved is used, and the concentration, caudal, voltage and other
parameters are adjusted to generate little drops with different defined shapes and sizes in
the matrix solution. This technique achieves very high therapeutic loading efficiency with
a low polydispersity index [94].

4.6. Microfluids (Top-Down)

The microfluid devices are designed to manipulate fluids in microscale channels. Ob-
taining NPs in microfluid systems is carried out by microdevices with internal dimensions
of less than 1 mm [95,96].

4.7. Emulsion Polymerization (Bottom-Up)

Emulsion polymerization is the fastest scale-up method to manufacture polymeric NPs.
There are two types [97], emulsion polymerization with a continuous organic phase, which
consists of the dispersion of the monomer into an emulsion, and emulsion polymerization,
with a continuous aqueous phase in which the monomer is dissolved in an aqueous solution
without surfactants. The former is less used because of the use of toxic solvents, surfactants,
and initiators, which are difficult to be removed [97].

4.8. Interfacial Polymerization (Bottom-Up)

In this case, the mixture of the therapeutic, monomers and initiator are extruded
through a needle over an aqueous solution within a surfactant. During the process, NPs
are spontaneously formed by monomer polymerization. Later, the solvent is removed, and
the NPs are obtained. The advantage of this approach is the high encapsulation efficiency
in the one-step formulation. However, the organic solvent is very difficult to remove [97].

5. Polymeric NPs in Clinical Investigations

There are more than 15 nanomedicines on the market for cancer treatment [98]. Con-
cerning the polymeric NPs (see Table 3), PICN® is a polymeric formulation of paclitaxel
that is approved in India for metastatic breast cancer [99]. The non-targeted PICN® is
currently in clinical trials in the USA [98]; Genexol®, produced by Samyang Biopharm, is a
polymeric micelle formulation of paclitaxel that is clinically approved to treat breast cancer
in South Korea [100–102]. BIND-014® is composed of a copolymer PLA–PEG and is used
for the controlled release of docetaxel against prostate cancer [103,104]. In this particular
case, the small-molecule S,S-2-[3-[5-amino-1-carboxypentyl]-ureido]-pentanedioic acid was
used to guide the NPs. Preclinical studies showed different pharmacokinetic properties
than those reported with sb-docetaxel. Negative phase II clinical trials were reported, due
to their little activity [105]. Livatag® is a polymeric NPs formulation of doxorubicin for
the treatment of primary liver cancer. Poly (alkyl cyanoacrylate) and cyclodextrin are
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the raw materials for the generation of this formulation. Initial studies reported higher
activities and a very low toxicity in the heart compared to free doxorubicin. However,
several adverse pulmonary events led to the termination of the clinical development of
Livatag® [106]. CALAA-01® are targeted polymeric NPs generated for siRNA-mediated
treatment of solid tumors [107]. They were constructed by the self-assembly of a mixture of
cyclodextrin-containing polymer backbone, adamantane-conjugated PEG, and transferrin-
conjugated PEG and siRNA. Increased inhibition of tumor growth in mice by CALAA-01®

was demonstrated in a mouse model of metastatic Ewing’s sarcoma. It was the first experi-
mental interfering RNA therapeutic agent to be administered in cancer patients [108]. Early
results in patients with solid tumors showed dose-dependent intracellular localization in
tumor cells. Phase II clinical studies are completed, but no data has been released yet.

The identification of genomic alterations, such as gene amplifications or mutations,
in cancers has permitted the design of chemical entities against those alterations. This
approach has been shown to be effective, with a wide range of compounds reaching the
clinical setting. However, many of those have failed in their clinical development due
to an inadequate toxicity profile [109]. The toxic effect of the therapeutic agent against a
non-transformed tissue that also expressed the target protein has clearly had a constant
limitation: this concept is called on-target off-tumor toxicity [110]. A classic example has
been the cardiotoxicity observed with anthracyclines, which is a type of chemotherapy
that is widely used for the treatment of many solid tumors. Similar findings can be
described for targeted agents, such as the kinase inhibitor against HER2 neratinib that
shows an inadequate toxicity profile in relation with diarrhea. In both examples, long-term
exposure requires reductions, or even limitations, in their use. Another example is the
mucositis and glucose deregulation observed with everolimus, which produces treatment
discontinuations [111]. In this context, it is expected that strategies targeting pan-essential
genes will be toxic, having an inverse therapeutic index [112,113]. Nano-vectorization is a
potential approach to improve their delivery and reduce their toxicity. Another approach
will be the identification of smart drug combinations, but, again, both agents could be
loaded in the same nanoparticle [114].

In addition, the pharmacokinetic (PK) profile can influence the toxicity and particularly
when the toxicity itself is not reversible [109]. To resolve this problem, encapsulation of
compounds to improve their PK profile, limiting their exposure to non-transformed tissue,
is a main area of research. The encapsulation of PROTACs is an example of success [115],
but there is still a long way to go, which requires safety and efficacy experiments in different
animal models. Novel methods for the encapsulation of targeted agents, such as small
chemical entities, are under evaluation.

6. Guided and Smart NPs

Polymeric NPs made of polymers that are naturally pharmaceutically active, or poly-
mers conjugated with therapeutics, or with biomacromolecules such as proteins or antibod-
ies, are being designed to enhance delivery and optimize precision medicine therapies [116].
Therefore, polymeric NPs with targeting moieties, such as antibodies, transferrin or folate,
use ligand–receptor, enzyme–substrate or antibody–antigen interactions to improve NP up-
take and distribution. Such is the case of the transferrin-targeted polymeric NPs formulated
for the codelivery of tarquidar and paclitaxel. These polymeric NPs enhanced cytotoxicity
in ovarian cancer cell lines and cancer spheroid cultures [117]. Another example is the
conjugation of doxorubicin to PLGA, to form polymeric NPs. The surface of the polymeric
NPs was decorated with a hepatocellular carcinoma-specific peptide moiety, to mitigate
toxicity in animals and enhance the efficacy of doxorubicin against hepatocellular carci-
noma [118]. Another representative example is the nutlin-3-loaded PLGA NPs conjugated
with rituximab to successfully target CD20-positive leukemic cancer cells [119], or the
paclitaxel-loaded PLGA/montmorillonite NPs conjugated with trastuzumab antibodies,
formulated to reduce the side effects of paclitaxel [120]. To exploit this approach, the
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identification of biomarkers on the surface of tumoral cells is mandatory to avoid on-target
non-tumoral toxicity.

On the other hand, smart polymeric NPs can activate depending on the tumor mi-
croenvironment or a specific biological stimuli [121]. Some pH-sensitive, visible-light-
and temperature-responsive polymeric NPs have been reported to provide successful
targeted delivery. A representative example of pH-responsive drug delivery is the ultra-
pH-responsive polymers, which are designed for the generation of polymeric NPs for the
in vivo delivery of RNAi therapeutics [122]. Interestingly, nanomedicines loaded with
paclitaxel and siRNA’s targeting antiapoptotic genes were reported for hepatocellular
carcinoma treatment. By the use of low-frequency ultrasound on the tumor site, an en-
hanced antitumoral activity was observed in vivo [123]. It is worth highlighting that recent
technological advances tend to archive multifunctional polymeric NPs that allow the si-
multaneous accommodation of therapeutic and imaging agents, which, together with the
correct choice of the appropriate functionalized smart polymer, facilitate the construction
of hybrid multi-modal NPs for theranostic, simultaneous monitoring of drug release and
imaging distribution, and to assess therapeutic efficacy in real time [124]. This is the case
of the semiconducting polymer nano-PROTACS, which was recently reported for activable
photo-immunometabolic cancer therapy [125].

7. Conclusions

Over the last decade, polymeric NPs have been designed to overcome the limitations
of free therapeutics for the treatment of cancer. Polymeric NPs have shown a more fa-
vorable pharmacokinetic profile than the free chemotherapeutics, but optimization of the
formulation, in terms of the polydispersity and size of the NPs, is still needed to improve ef-
ficacy. In the same way, drug release from polymeric NPs can be more precisely controlled,
with a range of polymers designed specifically for that purpose. In this sense, therapeutic
polymers emerge as polymers with pharmaceutical and biomedical applications, and with
a promising future in cancer research. On the other hand, selective-targeting tumoral cells
can augment the permeability and penetration of the polymeric NPs within the tumor, and,
therefore, diminish toxicity and avoid the adverse effects of prolonged treatment. For this
purpose, guided polymeric NPs may provide benefit over NPs when targeting receptors
that also have a biological effect.

In conclusion, although great advances have been performed, there is still a long way
to go, and combined efforts from the scientific and biotechnology community are needed
in order to speed up the development of this technology.
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