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Simple Summary: The most commonly diagnosed lung cancer is non-small-cell lung cancer (NSCLC).
In contrast, the most frequent subtypes of NSCLC, accounting for 80% of cases, are ADC and SCC.
Nevertheless, subtype identification is based on the diagnosis of characteristic gene mutations
occurring in each subtype. The aim of the study was the metabolomics analysis of the early stage
of NSCLC and the determination of new biochemical pathways differentiating the subtypes. Our
studies demonstrated that there are new potential significant changes in the biochemical pathways
involved in N-acylethanolamine (NAE) biosynthesis that distinguish early-stage SCC from ADC.
Moreover, the analysis of the plasma of patients with COPD and NSCLC allows the exclusion of
metabolites related to inflammation in the lungs and the identification of compounds characteristic
of cancer. Our research indicates new pathways that have not been explored in NSCLC so far, which
may have diagnostic, prognostic, and therapeutic potential.

Abstract: Identification of the NSCLC subtype at an early stage is still quite sophisticated. Metabolomics
analysis of tissue and plasma of NSCLC patients may indicate new, and yet unknown, metabolic
pathways active in the NSCLC. Our research characterized the metabolomics profile of tissue and
plasma of patients with early and advanced NSCLC stage. Samples were subjected to thorough
metabolomics analyses using liquid chromatography-mass spectrometry (LC-MS) technique. Tissue
and/or plasma samples from 137 NSCLC patients were analyzed. Based on the early stage tissue
analysis, more than 200 metabolites differentiating adenocarcinoma (ADC) and squamous cell lung
carcinoma (SCC) subtypes as well as normal tissue, were identified. Most of the identified metabolites
were amino acids, fatty acids, carnitines, lysoglycerophospholipids, sphingomyelins, plasmalogens
and glycerophospholipids. Moreover, metabolites related to N-acyl ethanolamine (NAE) biosynthesis,
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namely glycerophospho (N-acyl) ethanolamines (GP-NAE), which discriminated early-stage SCC
from ADC, have also been identified. On the other hand, the analysis of plasma of chronic obstructive
pulmonary disease (COPD) and NSCLC patients allowed exclusion of the metabolites related to
the inflammatory state in lungs and the identification of compounds (lysoglycerophospholipids,
glycerophospholipids and sphingomyelins) truly characteristic to cancer. Our results, among already
known, showed novel, thus far not described, metabolites discriminating NSCLC subtypes, espe-
cially in the early stage of cancer. Moreover, the presented results also indicated the activity of new
metabolic pathways in NSCLC. Further investigations on the role of NAE biosynthesis pathways in
the early stage of NSCLC may reveal new prognostic and diagnostic targets.

Keywords: non-small-cell lung cancer; metabolomics; early stage; advanced stage

1. Introduction

Lung cancer is one of the five most often diagnosed diseases in the world. Furthermore,
it is the leading cause of death from cancer. The most common type of lung cancer
is non-small-cell lung cancer (NSCLC), representing about 85% of all cases. The most
frequent histological subtypes are adenocarcinoma (ADC), squamous cell lung carcinoma
(SCC) and large cell carcinoma (LCC), of which ADC and SCC represent about 85% of
all cases [1]. However, this traditional distinction is now over-simplified, since several
oncogenic driver mutations have been found. Especially, that for several driver mutations
(e.g., EGFR, ALK, ROS-1, KRAS, EML4-ALK mutations in ADC; NRF2 mutation in SCC or
cMYC overexpression and inactivation of TP53 via mutations in both subtypes), targeted
therapies have been developed [2,3]. Unfortunately, only up to 60% of ADC and up
to 50–80% of SCC patients have a known oncogenic driver mutation. Moreover, the
tumors inevitably develop drug resistance, and in case of some treatment options, even
more than 60% of patients develop resistance to received therapy [4]. Therefore, despite
the introduction of new treatment strategies, for many patients, classic histopathology-
based therapy is the gold standard [5]. Considering what is above, and the fact that
specific mutations are also characteristic to particular subtype (e.g., EGFR, ALK, and ROS1
mutations are highly associated with ADC subtype [6]), proper NSCLC subtyping is of great
importance. Currently, non-invasive methods for NSCLC subtyping and early diagnosis
are not available. Metabolomics is still a new field of science, which has the potential to
discover metabolic pathways altered by particular disease and subsequently propose novel
diagnostic markers and targets for the therapy. Such analyses can be performed on various
types of biological material. Easy-to-obtain biological samples such as serum/plasma or
urine are commonly used, but cancer tissue samples, which indicate in situ metabolic
changes, can also be studied. However, obtaining a tissue sample for examination from
a large set of patients is challenging [7]. So far, there have been few studies in which a
metabolomics approach has been used to study lung cancer. There have been attempts
to identify altered metabolites in NSCLC by monitoring different types of samples but
mainly plasma and serum [8,9]. Analysis of the metabolomics profile of plasma showed a
significant variation in the level of amino acids, carbohydrates, organic acids, fatty acids,
lipids or acylcarnitines [10–12]. However, the results described are not always coherent. An
example is the level of glutamate that in some studies was found increased in patients with
NSCLC [11,13], but in the work presented by Hori et al., the level of this metabolite was
reduced [14]. A similar situation was observed in the level of lactic acid [14,15]. Moreover,
differences in the metabolomics profile may also depend on the stage of the disease. The
metabolism of early-stage cancer differs significantly from the advanced stage due to
tumor size and activity [11]. Although the latest scientific reports focus on a growing
number of patients included [16], the most crucial aspect of treatment is a diagnosis of the
disease at the earliest possible stage. Recent scientific reports increasingly indicate panels
of metabolites that may help in the early diagnosis of lung cancer [8,10,11]. However,
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due to high blood homeostasis, it is difficult to find specific cancer markers in serum or
plasma. Therefore, tissue analysis is a crucial element of research to identify potential
lung cancer biomarkers. The tissue is the center of action in which all tumor proliferation
reactions and the secretion of metabolites to the blood occur. To date, a limited number
of studies have been published presenting the analysis of metabolic differences arising in
lung cancer tissue. The first work was performed by Fan et al., who analyzed C13 glucose,
labelled tissue extracts and observed increased levels of amino acids, lactate and citrate,
indicating changes in the Krebs cycle and pyruvate carboxylation [17]. Similar studies
were conducted by Hori et al., who analyzed tissue samples and identified metabolites
indicating for disturbances in the TCA cycle [14]. Besides that, Kami et al. presented the
results showing high glycolytic activity in lung cancer [18]. Finally, Farhmann et al. and
Wikoff et al. studied early-stage lung cancer and identified various metabolic alterations
associated with the ADC subtype [19,20].

Although plasma or serum are preferable over tissue samples for cancer diagnosis
or monitoring treatment effects, knowledge gathered by analysis of tissue is vital for
exploring cancer biochemistry. In this study, metabolic profiles of cancer tissue samples
collected from NSCLC patients and adjacent normal lung tissue from the same patient
as well as plasma samples collected from the same (if possible) NSCLC patients and the
control group (composed of chronic obstructive pulmonary disease (COPD) patients) were
obtained. Based on the histopathological examination, NSCLC patients were divided
into three subgroups representing the following histological subtypes: ADC, SCC and
LCC. Additionally, studied patients were divided into those in the early (TNM IA-IB) and
advanced stage (TNM IIA-IIIA) of the disease. The aim of this study was to search for
metabolites discriminating control tissue from cancer tissue and the plasma of NSCLC
patients from the plasma of control group. Furthermore, identification of tissue and
plasma metabolites that differentiate NSCLC subtypes was also undertaken. All of these
comparisons were performed separately in early- and advanced-stage groups.

2. Materials and Methods
2.1. Patients’ Characteristics and Samples Collection

Lung tissue samples were obtained from patients undergoing surgical treatment for
primary NSCLC at the Department of Thoracic Surgery of Medical University of Bialystok
Clinical Hospital (Poland). In total, tissue samples from 99 NSCLC patients were included
in this study. Both lung tumor tissue and adjacent control tissue without morphological
changes were collected, histologically reviewed and classified. All tissue samples were
frozen and stored at −80 ◦C until analysis. The samples were collected following the
highest biobanking standards established at our university [21].

Plasma samples analyzed in this study were obtained from 72 patients with NSCLC
and 20 patients with COPD, classified as a control group. For 45% of NSCLC patients
enrolled for plasma metabolomics, lung tissue samples were also available and analyzed
in this study. Whole blood was collected in 9 mL vacuum system tubes with K2EDTA as
an anticoagulant. After gentle mixing, plasma was separated by centrifugation at 1300× g
for 20 min at room temperature. Plasma fractions (0.5 mL each) were then collected
in Eppendorf tubes and stored at −80 ◦C until analysis. In total, the study group was
composed of 137 NSCLC patients. In case of patients enrolled for tissue analysis, according
to TNM classification, 28 participants (14 with ADC and 14 with SCC subtype) were
classified as early-stage NSCLC patients, while 71 patients (19 with ADC, 40 with SCC
and 12 with LCC subtype) were classified as advanced-stage NSCLC patients. In the case
of patients enrolled for plasma analysis, 39 participants (21 with ADC and 18 with SCC)
were classified as early-stage NSCLC patients, while 33 (11 with ADC, 15 with SCC and 7
with LCC) were classified as advanced-stage NSCLC patients. The Ethics Committee of the
Medical University of Bialystok approved the study. Before collecting the samples, written
informed consent for specimen collection was obtained from all participants.
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All studied groups were age-, BMI- and sex-matched. The clinicopathological charac-
teristics of the entire patients’ cohort is summarized in Table 1.

Table 1. Patients’ characteristics.

Type of Biological
Material

Patients
Characteristic

Squemous Cell
Carcinoma (SCC)

Adenocarcinoma
(ADC)

Large Cell
Carcinoma (LCC)

Tissue

Age (mean) 64.45 ± 8.02 64.77 ± 8.44 64.58 ± 6.43

BMI (mean) 25.4 ± 3.48 25.4 ± 3.59 25.5 ± 2.83

Male 39 23 10

Female 15 10 2
pTNM: I A 7 8 0

I B 7 6 0
II A 13 6 2
II B 18 7 7

III A 9 6 3

Plasma

Age (mean) 65.61 ± 6.52 64.16 ± 6.91 64.57 ± 5.62

BMI (mean) 27.4 ± 4.48 26.0 ± 3.41 24.9 ± 1.78

Male 21 20 6

Female 12 12 1
pTNM: I A 10 10 0

I B 9 10 0
II A 3 4 0
II B 7 6 6

III A 4 2 1
Control group

Plasma

Number of patients 20

Age (mean) 61.5 ± 12.06

Male 13

Female 7

2.2. Tissue and Plasma Samples Preparation

Preparation of tissue samples was performed using the previously described method [22].
Lung tissue samples were homogenized in a freeze cold 50% methanol. Freezing cold
acetonitrile was then added to extract the metabolites. After extraction, the samples were
centrifuged, filtered and then analyzed.

Plasma samples preparation was performed using the previously described method [23].
The extraction of metabolites and simultaneous protein precipitation was carried out with
a mixture of freezing cold methanol/ethanol (1:1). The samples were then centrifuged,
filtered and analyzed.

The details of the samples preparation procedure are described in the Supplementary
Materials.

2.3. Lung Tissue and Plasma Metabolic Fingerprinting

Metabolic fingerprinting was performed using the previously described LC-MS meth-
ods [22,23]. Samples were analyzed in four sets, plasma and tissue additionally divided
into early and advanced NSCLC stages. Each tissue sample set was analyzed using re-
versed phase (RP) and hydrophilic interactions (HILIC) chromatography, while plasma
samples using RP chromatography. Extracted samples were analyzed by an LC-MS sys-
tem consisted of 1290 Infinity UHPLC (Agilent, Santa Clara, CA, USA) combined with
6550 iFunnel technology QTOF mass spectrometer as a detector (Agilent, Santa Clara, CA,
USA). Analyses were performed in ESI+ and ESI− ion modes. Consequently, 12 data sets
were obtained: early-stage tissue (RP+, RP−, HILIC+, HILIC−), advanced-stage tissue
(RP+, RP−, HILIC+, HILIC−), early-stage plasma (RP+, RP−), and advanced-stage plasma
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(RP+, RP−). Data was collected in centroid mode at a scan rate of 1.5 spectra per second.
Accurate mass measurements were obtained using calibrant solution delivery using a
dual-nebulizer ESI source. Detailed information on performed LC-MS measurements is
described in the Supplementary Materials.

2.4. LC-MS Data Treatment and Statistical Analysis

Raw data analysis was performed using Mass Hunter Qualitative Analysis Software
B.06.00 (Agilent, Santa Clara, CA, USA). Alignment, data filtering and quality assurance
protocol were performed for each of 12 data sets independently using Mass Profiler Pro-
fessional 12.6.1 (Agilent, Santa Clara, CA, USA) software. Quality control (QC) samples
were filtered to select features present in >50% of QCs and with relative standard devia-
tion (RSD) for signal intensity in QCs < 20%. Principal components analysis (PCA) was
used to provide an overview of QCs projection in each data set. The tissue dataset was
further normalized to an internal standard and the amount of protein in the sample. The
details of raw data treatment are described in the Supplementary Materials. Two-groups
comparisons (Control vs. ADC, SCC, or LCC as well as ADC vs. SCC) were performed
using univariate statistics. Depending on the normality of the data distribution (assessed
by the Shapiro–Wilk test), the t-test or non-parametric Mann–Whitney U-test was used.
Obtained p-values were corrected by Benjamini–Hochberg false discovery rate (FDR). The
level of statistical significance was set at 95% (p < 0.05). Univariate statistical analyses were
performed in MATLAB (R2015a). Multivariate statistics were used to select compounds
responsible for NSCLC subtypes separation. To select metabolites contributing the most
into groups’ discrimination, partial least squares discriminant analysis (PLS-DA) was
applied to log-transformed data. Statistically significant metabolites were selected based
on the variable importance into projection (VIP) values (VIP > 1) and jackknife confidence
interval (p < 0.05). Validation of the PLS-DA models was performed by cross-validation
using the leave 1/3 out approach as described previously [24] or using a permutation test
available in SIMCA−P + 13.0.3.0 (Umetrics, Umea, Sweden) software, which also was used
for all multivariate data analysis.

2.5. Metabolite Identification

Accurate masses of significant features were searched against the METLIN, KEGG,
LIPIDMAPS, and HMDB databases, which were simultaneously accessed by CEU Mass
Mediator (http://ceumass.eps.uspceu.es/mediator/faces/index.xhtml, accessed on 21
September 2020) [25]. The identity of metabolites was confirmed by matching the ex-
perimental MS/MS spectra to MS/MS spectra from databases or fragmentation spectra
and retention time obtained for the metabolite’s standard. Experiments were repeated
with identical chromatographic conditions to the primary analysis. Ions were targeted
for collision-induced dissociation (CID) fragmentation on the fly based on the previously
determined accurate mass and retention time. Phospholipids and acylcarnitines were
identified based on a previously described characteristic fragmentation pattern [26].

3. Results
3.1. Quality Assurance of Metabolomics Data

For each data set, a quality assurance protocol was performed. Close clustering of
QC samples observed on PCA plots provided in the Supplementary Materials (Figures S1
and S2 obtained for tissue samples data and Figure S3 obtained for plasma samples data)
indicate the proper quality of obtained data.

3.2. Samples Classification

To classify the samples into studied groups, PLS-DA models were built. In the case
of tissue samples collected from early-stage NSCLC patients, separation of the groups is
presented in Figure 1. Advanced-stage tissue samples could be separated based on data
obtained using RP chromatography (Figure S4) but not HILIC chromatography (data not

http://ceumass.eps.uspceu.es/mediator/faces/index.xhtml
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shown). In the case of data collected for plasma samples, good models discriminating
NSCLC subgroups were obtained for advanced-stage (Figure S5) but not for early-stage
(data not shown) patients. Validation of the models indicated their proper quality to be
used for multivariate statistics (Figure S6). The cross-validation results using the “leave
1/3 out” approach showed that excluded samples were classified correctly in 65 ± 13%.

Figure 1. Discrimination between tumor and control tissue (early stage) as well as NSCLC sub-
types based on lung tissue metabolic fingerprinting data. Data from RP and HILIC (ESI+ and ESI)
methods were used to create these plots. PLS-DA plot showing discrimination between different
NSCLC subtypes (ADC, SCC and control tissue (RP+)) is presented on panel (A) (Pareto scaling;
cumulative values for six components: R2 = 0.983, Q2 = 0.853; p-value = 9.6 × 10(−18)). PLS-DA plot
showing discrimination between different NSCLC subtypes (ADC, SCC and control tissue (RP−)) is
presented on panel (B) (Pareto scaling; cumulative values for five components: R2 = 0.93, Q2 = 0.666;
p-value = 2.2 × 10(−15)). PLS-DA plot showing discrimination between different NSCLC subtypes
(ADC, SCC and control tissue (HILIC+)) is presented on panel (C) (Pareto scaling; cumulative val-
ues for three components: R2 = 0.858, Q2 = 0.732; p-value = 1.7 × 10(−21)). PLS-DA plot showing
discrimination between different NSCLC subtypes (ADC, SCC and control tissue (HILIC−)) is pre-
sented on panel (D) (Pareto scaling; cumulative values for three components: R2 = 0.72, Q2 = 0.547;
p-value = 4.1 × 10(−7)). ADC (green triangle), SCC (red square) and control (blue dots).

3.3. Metabolomics of Tissue Samples

Metabolites discriminating tissue samples collected from NSCLC patients are pre-
sented in Supplementary Materials: Table S1 (early stage) and Table S2 (advanced stage).
Metabolites significant at an early stage mainly belong to amino acids, fatty acids, car-
nitines, glycerophospholipids (GPL), sphingomyelins, plasmalogens GPL and others. Com-
parison of an early-stage SCC and ADC showed that creatine, creatinine, xanthine and
dihydrothymine are upregulated in SCC, while metabolites belonging to fatty acids, car-
nitines, glycerophospholipids, lysoglycerophospholipids, amines, amino acids or amides
are upregulated in ADC (Figure 2A,B). A summary of metabolic pathways which include
metabolites discriminating early-stage SCC and ADC tissue is presented in Figure 3. Sev-
eral of metabolites discriminating early-stage tissue samples belong to lipids. Among
them, changes in a large number of glycerophospholipids were observed. A pathway
of glycerophospholipid metabolism, on which metabolites significant in ADC vs. SCC
comparison are highlighted, is presented in Figure 4. In addition, several glycerophospho-
(N-acyl)-ethanolamines (GP-NAE) differentiating NSCLC subtypes have been identified.
These metabolites, reported for the first time as discriminators of early-stage ADC and SCC
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tissues, are intermediates in endocannabinoid biosynthesis pathway (Figure 5). Comparing
the results obtained for advanced-stage lung tissue samples (Table S2) with early-stage
results, we see similar relationships in the groups of metabolites characterizing subtypes
as in the early-stage samples. Carnitines, amino acids, lipids and fatty acids are the most
important discriminators (Figure 6A).

Figure 2. Metabolites that differentiate the early stages of SCC from ADC in tissue and plasma
samples. Panels (A,B) show the intensity of selected identified tissue metabolites that differentiate the
early SCC and ADC subtypes. Panel (C) shows the intensity of selected identified plasma metabolites
that differentiate the SCC and ADCS subtypes (* p-value < 0.05; ** p-value < 0.01). Glycerophospho-
N-heptacenyl ethanolamine (GP-N-heptacenyl EA); glycerophospho-N-heptadecanoyl ethanolamine
(GP-N-heptadecanoyl EA); glycerophospho-(N-acyl)-ethanolamine (GP-NAE); glycerophospho-N-
hexadecenyl ethanolamine (GP-N-hexadecenyl EA); glycerophospho-N-octadecanoyl ethanolamine
(GP-N-octadecanoyl EA); and glycerophospho-N-octadecenyl ethanolamine (GP-N-octadecenyl EA),
dihydrothymine (DHTH).



Cancers 2021, 13, 3314 8 of 18

Figure 3. Summary of metabolic pathways which include metabolites discriminating early stages SCC and ADC tissue.
Red rectangle—significant metabolites with a decreased percent of change in SCC vs. ADC comparison. Green rectangle—
significant metabolites with an increased percent of change in SCC vs. ADC comparison. Red box—non-significant
metabolites with a decreased percentage of change in the SCC vs. ADC comparison. Green box–non-significant metabolites
with an increased percentage of change in SCC vs. ADC comparison.

The figure shows the biosynthesis of GP-NAE, metabolites discriminating early-stage
SCC and ADC tissue samples. The metabolites in the red rectangle have a decreased
percent of change in SCC vs. ADC and are statistically significant. The yellow rectangle
present enzymes involved in the synthesis of endocannabinoids.

3.4. Metabolomics of Plasma Samples

Metabolites discriminating plasma samples collected from NSCLC patients are pre-
sented in Supplementary Materials: Table S3 (early-stage) and Table S4 (advanced stage).
Analysis of plasma samples from patients with early NSCLC stage showed a much lower
number of significant metabolites as compared to tissue results. The metabolites dis-
criminating NSCLC from control group belong to GPL and sphingomyelins. Only two
metabolites (PC 15:0/22:6 and 18:1/22:6) (Figure 2C) were found to be significant in SCC
vs. ADC comparison at an early-stage. In the case of advanced-stage plasma samples,
metabolites differentiating NSCLC subtypes mainly belong to fatty acids, carnitines and
fatty acid amides (Figure 6A,B).
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Figure 4. Pathway of glycerophospholipid metabolism. The metabolites in the red rectangle have a decreased percent of
change in SCC vs. ADC comparison.

Figure 5. Pathway of endocannabinoid biosynthesis.
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Figure 6. Metabolites that differentiate the advanced stages of SCC, ADC and LCC in tissue and
plasma samples. Panels (A,B) show the intensity of selected identified tissue metabolites that
differentiate the three subtypes in the advanced stage. Panels (C,D) show the intensity of selected
identified plasma metabolites that differentiate the three subtypes in the advanced stage.

4. Discussion

Over the past decade, metabolomics was used in different studies to identify tissue,
plasma or serum metabolites differentiating NSCLC subtypes. Regardless of the stage and
subtype of non-small-cell lung cancer, most of these studies, especially those conducted
on tissue, were performed on a relatively low number of cancer patients (n < 40) [14,17,20].
So far in only one study, both tissue and plasma from the same population were studied
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together. Berker et al. examined paired tissue and serum samples from 93 patients show-
ing a panel of metabolites indicating the survival time of patients in the early stage of
NSCLC [27].

This study aimed to identify metabolites in tissue and plasma samples that would al-
low the correct classification of NSCLC subtypes at an early and advanced stage. Moreover,
the study aimed to compare the tissue and plasma metabolome of the same population,
which may indicate systemic metabolic changes occurring in the body at various stages
of NSCLC. Changes in the metabolites’ levels in both tissue and plasma of NSCLC pa-
tients and plasma of control group (patients with COPD) were investigated using the
LC-MS technique.

Our research shows significant changes in many metabolites between control and
cancerous tissue (both subtypes) at an early stage of the disease. Several metabolites have
also been found different in comparison of SCC and ADC tissues (Table S1). Our results
are in accordance with these published by Roch et al. [28] and Moreno et al. [29], who
reported increased creatine/creatinine levels in SCC tissue compared to ADC. Increased
creatine/creatinine levels in tumor tissue lead to increased ATP production, which is
associated with the high-energy process of tumor growth and proliferation, especially in
the early stages [11]. Elevated xanthine levels in stage I SCC have also been reported in
other publications [29]. However, so far, the decrease in uric acid level in SCC tissue in
comparison to ADC has not been reported. Such observation may suggest low xanthine
oxidoreductase activity and reduced activity of the uric cycle in SCC, due to reduced levels
of other purine bases such as inosine and guanosine. Similarly to Moreno et al. [29], in our
study, we observed an increase in the level of dihydrothymine in SCC. In contrast, taurine
levels were upregulated in ADC. Changes in systemic taurine levels can be used to predict
the formation and malignant transformation of certain cancers. In addition, taurine has
been shown to induce apoptosis and inhibit proliferation in breast cancer cells [30]. Recent
studies on lung cancer cell lines have shown a significant reduction in the volume and
weight of xenograft tumors in nude mice after taurine application [31]. Trimethylamine
(TMA), increased in ADC in comparison to controls and significantly different between
ADC and SCC in our study, is also a biologically interesting compound. TMA can be
formed from L-carnitine (decreased in SCC vs. control and decreased in SCC vs. ADC in
this study) or choline with support of different strains of bacteria [32]. Consequently, an
increased level of TMA in ADC tissue may indicate an association of NSCLC, especially
ADC subtype, with gut microbiota [33].

To date, a large number of scientific reports showing the great importance of fatty
acids in the carcinogenesis process have been presented [34]. It is suggested that fatty acids
belonging to the group of OMEGA-3 acids, such as docosahexaenoic acid (DHA), eicosapen-
taenoic acid (EPA) or eicosatrienoic acid (ETrE), show chemopreventive and therapeutic
potential against lung cancer, inducing apoptosis of cancer cells especially in combination
with platinum-based chemotherapy [35]. Comparison of cancer and control tissue clearly
shows that GPL: lysophosphatidylcholines (LysoPC), lysophosphatidylethanolamines
(LysoPE), lysophosphatidylinositols (LysoPI), PC and phosphatidylethanolamines (PE) as
well as acylcarnitines are accumulated in cancer tissue, but this effect is stronger for ADC
subtype, with some GPL discriminating ADC and SCC tissue (Table S1). Changes in the
lipids, which are used as an energy source (acylcarnitines) and building components (phos-
pholipids) for rapidly multiplying cancer cells, are very often observed in both tissue and
plasma studies on NSCLC [36–39]. Changes in plasmalogens e.g., (LysoPC P-16:0; LysoPE
P-16:0 and P-17:0; PE P-18:0/20:4; PC P-16:0/18:2, PC P-16:0/20:5 and PC O-16:1/18:2)
are especially interesting (Tables S1 and S3). So far, the role of plasmalogens has been
described based on tissue samples analysis [40], while the role in plasma of NSCLC patients
has not yet been described. To date, the occurrence of plasmalogens in cancer has been
quite accurately presented, among others, in gastrointestinal [41] and breast cancer [42] in
various biological materials. Plasmalogens play a crucial role as endogenous antioxidants,
protecting phospholipid, lipid and lipoprotein molecules against oxidative stress. The plas-
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malogens decomposition protects polyunsaturated fatty acids and other membrane lipids
from oxidation. Thus, plasmalogens rather interfere with the multiplication stage than the
initiation of lipid peroxidation, which has a considerable role in inhibiting the peroxidation
of polyunsaturated fatty acids and low-density lipoproteins oxidation [41]. We observed
a statistically significant decrease in the level of plasmalogens in plasma of patients with
early NSCLC in comparison to control group, while in cancer tissue, we found an increase
in these metabolites in comparison to normal tissue. Accumulation of plasmalogens in the
early-stage cancer tissue may play a protective role against the oxidative activity during
cancer development. Considering metabolites discriminating ADC and SCC tissue, in our
study for the first time, differences in several GP-NAE are reported (Table S1). GP-NAE are
constituents of N-Acyl ethanolamines (NAEs) biosynthesis [43]. NAEs are an important
class of signaling lipids involved, among others, in inflammation and the regulation of
TNFα [44]. Among NAEs, so far, the role of anandamide and 2-arachidonoylglycerol in
cancer has been thoroughly studied [45]. The reduction of NAE in SCC vs. ADC requires
further research that may clarify the metabolic mechanisms that differentiate these two sub-
types at an early stage. Among other metabolites discriminating early-stage ADC and SCC
tissues, acetylaspartic acid can be mentioned. Lou et al. detected N-acetyl aspartate (NAA)
in NSCLC, while in the normal pulmonary epithelium, it was not detected. Increased
N-acetylaspartate synthetase (Nat8l) expression was also confirmed in approximately 40%
of examined ADC and SCC cases. It has been suggested that NAA biosynthesis depends
on the availability of glutamine, which is the main carbon source for the NAA molecule
in NSCLC cells [46]. In addition, Fahrmann et al. presented the results of increasing the
glutaminolysis process, especially in ADC [19].

Only few plasma metabolites, mainly PC and LysoPC, were found to be significant in
comparison of the control group and early-stage NSCLC patients (mainly in comparison of
the control group with SCC group). However, contrary to other metabolomics studies on
the plasma of NSCLC patients [38,47], in our study, the control group was composed of
patients with COPD what is crucial to exclude metabolites related to inflammation which
may falsely indicate cancer [48]. Even though, metabolites from the same classes were
proposed as early-stage NSCLC plasma markers by other authors [10,38,47], but in these
studies, a larger number of discriminating metabolites and with a higher magnitude of
change was observed. As these metabolites are known to be affected by inflammatory
processes [49], observed differences between other studies and ours can be explained by
the different control group selected.

Several of the significant metabolites observed in our study have already been intro-
duced as potential NSCLC classifiers. Diacetylspermine has been identified in plasma as a
useful biomarker for early detection of NSCLC while in urine as a prognostic marker [50,51].
Carnitines or lipids have also been noted as discriminators of cancerous tissue from control
one [10,29,36].

Although the number of significant metabolites discriminating advanced-stage NSCLC
subtypes is much lower than in early stage, similarly, carnitines, amino acids, lipids and
fatty acids are the most important discriminators. Amino acids, such as histidine and
arginine, have the highest intensity in the SCC subtype. Ni et al. presented the use of
arginine, among others, as a biomarker of lung cancer [12]. Changes in amino acids indicate
increased L-type amino acid transporter 1 activity, which has also been noted in other
studies [52]. We noted the same with acylcarnitines, which are the most intense in SCC
tissue. This observation may indicate very intense processes occurring in mitochondria
(acetyl-CoA synthesis) to obtain the energy for a highly proliferating tumor. The accu-
mulation of acylcarnitines in SCC tumor is also reflected by their level in plasma. The
intensity of acylcarnitines is lower in SCC patients’ plasma compared to ADC patients
and similar to those with LCC subtype (Table S4). We also observed significant differences
between the NSCLC subtypes in the level of such long-chain fatty acids such as adrenic
or oleic acid (Figure 6). Their highest intensity in SCC tissue may indicate greater use of
the long-chain acyl-CoA synthetase, primarily ACSL3 and ACSL4 in advanced SCC [34].
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Only arachidonic acid was less intense in SCC and LCC advanced tissue. Similarly to
previously described acylcarnitines, we observe reduced levels of long-chain fatty acids
(linoleic and arachidonic) in plasma of advanced SCC patients compared to ADC, but not
LCC patients (Table S4). In plasma of advanced-stage SCC patients, the intensity of one
bile acid (deoxycholic) was found to be the highest in comparison to other subtypes. Bile
acids are responsible for cholesterol homeostasis and are central signaling molecules trans-
mitting messages on the consumption and availability of energy to peripheral tissues. This
observation, together with previously mentioned results on fatty acids and acylcarnitines,
may indicate a higher energy demand in SCC subtype in comparison to ADC and LCC.
Furthermore, it also suggests stronger expression of TGR5 receptor in SCC tissue, which
promotes cell migration and invasion through a TGR5-dependent way [53].

In the case of lipids, we have observed reduced levels of LysoPC, especially LysoPC
18:3 in plasma of cancer patients compared to the control group in the early stage. By
contrast, tissue levels of all LysoPC were clearly increased in all types of cancer tissue
compared to control tissue. The reduced level of all LysoPC at an early NSCLC stage was
also observed by other researchers [38]. Low levels of LysoPC can be associated with a
higher rate of LysoPC and LysoPC-related fatty acids consumption by cancer cells [54]
as well as by an increased extracellular LysoPC cleavage rate [55]. In addition, scientific
reports suggest that LysoPC participate in the process of phagocyte recruitment and the
opsonization of apoptotic cells [54]. The same situation is also observed for LysoPE but
only for patients with ADC. By contrast, the level of LysoPE in patients with SCC does not
change in plasma, relative to the tissue. Additionally, what is very interesting, in patients
with advanced LCC, the intensity of LysoPE in plasma increases, while in the tissue, it
decreases, unlike in patients with ADC.

The use of LysoPE as potential biomarkers in the early stages of NSCLC has al-
ready been demonstrated [47]. Moreover, LysoPE levels may be associated with lysophos-
phatidylethanolamine acyltransferase 2 (LPEAT2) activity. Studies conducted on neuronal
cells indicate an important role of LPEAT2 in the incorporation of DHA into phospholipids
in the brain via the remodeling pathway. Furthermore, overexpression of the enzyme
(LPEAT2) caused cell death when neural cells were treated with DHA [56]. In addition,
the previously described role of DHA as a modulator of cell death in combination with
chemotherapy [35,57], which we identified at an early-stage, can confirm the presented
theory. In the same way in patients at an early stage and at an advanced stage, we observed
an increase in the number of identified PC and PE. In patients with LCC, most of the
plasma PC is more intense than in patients with ADC and SCC. By contrast, the intensity
of plasmalogens in tissue increases in patients with ADC and SCC compared to LCC. We
also identified oxidized lipids in both tissue and plasma, with the intensity of the oxidized
lipids decreasing in plasma and tissue of patients with ADC and SCC (Tables S2 and S4). A
significant increase in sphingomyelin and sphingosine-1-phosphate (S1P) intensity was
observed in ADC patients’ plasma. This confirms the increase in sphingomyelin synthase
(SMS) enzymes, which convert ceramide to sphingomyelin (SM) via insertion of a choline
moiety into ceramide as a head group using PC as a donor [58], which is also indicated by
the significantly reduced intensity of some PC in the plasma of ADC patients. The increased
distribution of ceramides, especially in patients with ADC, may also indicate an increased
level of S1P. The role of ceramides and S1P in lung cancer is quite well described [59].

5. Conclusions

In summary, we observed a significantly changed metabolic profile in the early and
advanced stage of NSCLC. However, in the case of early-stage patients, stronger discrim-
ination was observed based on tissue metabolites, while in the case of advanced-stage
patients, it was based on plasma metabolites. Using untargeted metabolomics, we showed
for the first time that glycerophospho (N-acyl) ethanolamines discriminate early-stage ADC
and SCC tissue. In addition, performed analyses enabled us to point out the differences
between plasma of NSCLC and COPD patients and indicate that plasmalogens are potential
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early-NSCLC plasma biomarkers. Our research also showed new biochemical changes
occurring in NSCLC and confirmed the results presented so far. Among others, significant
metabolites indicate the possible role of gut microbiota in the formation and progress of
NSCLC. Presented research emphasizes the power of metabolomics in identifying potential
biomarkers and exploration of the mechanisms underlying NSCLC.
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between NSCLC subtypes based on lung tissue (advanced-stage) metabolic fingerprinting data;
Figure S5: Discrimination between NSCLC subtypes based on plasma samples (advanced stage)
metabolic fingerprinting data, Figure S6: Permutation test showing the reliability of the separation
obtained in the multidimensional model (PLS-DA) in advanced NSCLC stage, Table S1: Tisuse early
stage, Table S2: Tisuse advanced stage, Table S3: Plasma early stage, Table S4: Plasma advanced stage,
Supplementary Materials.
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Abbreviations
ADC Adenocarcinoma
ALK Tyrosine kinase receptor
BMI Body Mass Index
CID Collision-induced dissociation
cMYC C-myc protein
COPD Chronic obstructive pulmonary disease
DHA Docosahexaenoic acid
EGFR Epidermal growth factor receptor
EML4-ALK Tyrosine-protein kinase receptor
EPA Eicosapentaenoic acid
ESI− Electrospray ionization negative
ESI+ Electrospray ionization positive
ETrE Eicosatrienoic acid
FDR False discovery rate
GPL Glycerophospholipids
GP-NAE Glycerophospho (N-acyl) ethanolamines
HILIC Hydrophilic interactions chromatography
KRAS GTPase KRas
LCC Large cell cancer
LC-MS Liquide chromatography mass spectrometry
LPEAT2 Lysophosphatidylethanolamine acyltransferase 2
LysoPC Lysophosphatidylcholines
LysoPE Lysophosphatidylethanolamines
LysoPI Lysophosphatidylinositols
NAA N-acetyl aspartate
NRF2 Nuclear factor erythroid 2-related factor 2
NSCLC Non-small-cell lung cancer
PC Phosphatidylcholines
PCA Principal components analysis
PE Phosphatidylethanolamines
PLS-DA Partial least squares discriminant analysis
QC Quality control
ROS1 Proto-oncogene tyrosine-protein kinase ROS
RP Reversed-phase chromatography
SCC Squamous cell cancer
SM Sphingomyelin
TCA cycle Tricarboxylic acid cycle
TMA Trimethylamine
TNM Tumor, node, metastasis classification
TP53 Tumor protein p53
VIP Variable importance into projection values
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